The Dominant Thermal Resistance Approach for Heat Transfer to Supercritical-Pressure Fluids

Size: px
Start display at page:

Download "The Dominant Thermal Resistance Approach for Heat Transfer to Supercritical-Pressure Fluids"

Transcription

1 The Dominant Thermal Resistance Approach for Heat Transfer to Supercritical-Pressure Fluids Donald M. McEligot 1,2, Eckart Laurien 3, Shuisheng He 4 and Wei Wang 4,5 1. Nuclear Engineering Division, U. Idaho, Idaho Falls, Idaho U.S.A. 2. Professor Emeritus, U. Arizona, Tucson, Ariz U.S.A. 3. Institut für Kernergetik und Energiesysteme (IKE), Uni. Stuttgart, D Stuttgart, Germany 4. Mechanical Engineering Dept., U. Sheffield, Sheffield S1 3JD, England 5. No at Daresbury Laboratory, Science and Technology Facilities Council, Warrington, WA4 4AD England page 1

2 sco 2 Recuperative Recompression Brayton Cycle 'Advanced Design' of the MIT-Study 200 bar 77 bar critical point region of interest page 2

3 Outline Introduction Test Case : Direct Numerical Simulation (Wang, He) Dominant Thermal Resistance Approach Results Conclusions and Outlook page 3

4 Physical Properties of Supercritical Water pressure : 23.5 MPa case 1 2 page 4

5 Why Develop an Approximate Method? Approach to provide approximate predictions and improved analyses ith varying fluid properties Possibly a useful basis for extending constant property correlations to variable properties A reasonable, sensible, simple analysis ill (may) provide better predictions than empirical correlations for fluids ith significant property variation Improved treatment for all functions in CFD page 5

6 Outline Introduction Test Case : Direct Numerical Simulation (Wang, He) Dominant Thermal Resistance Approach Results Conclusions and Outlook page 6

7 DNS of Supercritical Pipe or Channel Flos (Water or CO 2 ) DNS : Direct Numerical Simulation Computational Fluid Dynamics (CFD) ithout turbulence model, all scales resolved Rynolds Number Re must belo (typically: Re < 6000) authors case HT mode published year Bae, Yoo, Choi (Korea) upard vertical pipe all heating Phys Fluids 2006 used in the present ork Nemati et al. (Delft) Chu and Laurien (Stuttgart) Wang and He (Sheffield, UK) vertical pipe hith/no buoyancy horizontal pipe plane channel hith/no buoyancy all heating IJHMT 2015 all heating constant T at the alls J. Supercritical Fluids 2016 NURETH Pandey and Laurien (Stuttgart) vertical pipe all heating or cooling this conference 2018 page 7

8 Description of the Wang-DNS (no accelation, no buoyancy) p = 23.5 MPa, G = kg/m2s, T c = 367 C Geometry case: 1, T h = 367 C case 2, T h = 380 C Turbulence structures visualized by the second-largest eigenvalue of the stress tensor um 2 Reb 5730 Reb 5670 W. Wang & S. He, NURETH-16, 2015 b page 8

9 case 1 Forced-Convection Correlations for Nu Dittus Boelter (DB), Gnielinski (VG), Mokry and Pioro (Mok) q 2 Nu ( T T ) k Nu b b pseudo-critical temperature K at the all page 9

10 Forced-Convection Correlations for Nu Dittus Boelter (DB), Gnielinski (VG), Mokry and Pioro (Mok) q 2 Nu ( T T ) k b b case 2 30 Nu pseudo-critical temperature K at the all page 10

11

12 Importance of the Turbulent Core DNS data from Bae, Yoo and Choi, Phys. Fluids % y laminar sublayer r/ R page 12

13 Outline Introduction Test Case : Direct Numerical Simulation (Wang, He) Dominant Thermal Resistance Approach Results Conclusions and Outlook page 13

14 Dominant Thermal Resistance Approach assumptions Steady state, Quasi-established velocity and temperature profiles Constant shear layer and heat flux layer approximations Negligible buoyancy, negligible acceleration Turbulent core - high turbulence, high, high c p ----> T T T T b centerline laminar conducting sublayer sublayer page 14

15 WangF653-Profs-T.qpc left all Wang-DNS Mean Temperature Profile Case 1 region of interest 1.01 T T ref cooled side 2 heated side conducting sub-layer y cs h c pc y all distance right all page 15

16 Wang-DNS Mean Velocity Profile Case 1 WangF653-Profs.qpc region of interest u U cooled side heated side viscous sub-layer y vs h 0 2 c pc y all distance page 16

17 Integration of the Thermal Energy Equation in the laminar, conducting sub-layer: the region of dominant thermal resistance T q 0 cu p q( y) const. q x y Near the all e have Fourier s la: Define then q( y) k( T) T T y Integrate: ( T) k( T) dt a property q y ( T) ( T) At y = y cs T ref ( Tb) ( T) q y cs y T ( y) q( y) d y k( T) dt 0 May be a good approximation If one has a good estimate of y cs T page 17

18 Ho to get good Estimates for y cs using the universal all units Prandtl [1910] approach y cs+ y vs + To-layer approximation y vs here y + = y ( /) 1/2 / or y + = (y/d h ) Re Dh (C f /2) 1/2 DO WE HAVE A GOOD ESTIMATE OF C f? page 18

19 Forced-Convection Correlations for all friction used in Gnielinski (VG), Dre, Koo, McAdams (DKM), M.F. Taylor (MFT), Blasius (Blas) case 1 c f c f 0.5 u 2 m c f T K page 19

20 Forced-Convection Correlations for Nu used in Gnielinski (VG), Dre, Koo, McAdams (DKM), M.F. Taylor (MFT), Blasius (Blas) c f u Case 2 m c f T K page 20

21 Integration of the Momentum Equation in the laminar, conducting sub-layer: the region of dominant flo resistance U ( y) ( y) const. y Near the all e have Neton s la and Fourier s la: dy ( T ) du dy du ( T ) Define Integrate U Solve for 0 b ( T) du T T and ref q kt ( ) ( T ) T T b q dy dy dt a property kt ( ) ( T) k( T) dt kt ( ) dt q dt Ub q ( T ) ( T ) b du Ub ( Tb) ( T) q kt ( ) dt ( T) q page 21

22 Integration of the Momentum Equation (contd.) in the laminar, conducting sub-layer: the region of dominant flo resistance Substitute into i.e. into to give q y ( T ) ( T ) cs cs ycs q ( Tcs) ( T) ith ycs q ( Tcs) ( T) Ub q ( T ) ( T ) and solve for b y cs y cs q U ( T ) ( T ) b b 2 ( y cs) ( T ) ( Tb ) 2 page 22

23 Outline Introduction Test Case : Direct Numerical Simulation (Wang, He) Dominant Thermal Resistance Approach Results Conclusions and Outlook page 23

24 case 1 Nu Nu Result Heat Transfer q 2 ( T T ) k b b present y y vs y y cs 11.6 upper index + in all units T K page 24

25 Nu Result Heat Transfer q 2 ( T T ) k b b case 2 Nu present T K page 25

26 c f Result Friction 0.5 u 2 m case 3 c f present T K page 26

27 Nu Result Heat Transfer q 2 ( T T ) k b b case 3 T h = 655 K Nu present T K page 27

28 Concluding Remarks Demonstrated a closed-form, approximate, coupled analysis for Nu for ScPF (ith negligible buoyancy and acceleration) Some reasonable agreement ith DNS of Wang+He Nu is sensitive to choice of y vs + Useful approach to provide approximate predictions and improved analyses Improved treatment for all functions in CFD Can provide a first estimate for interative processes in "more sophisticated" analyses page 28

29 Outlook Extend to significant buoyancy and acceleration Revise analysis to treat differing y cs+ and y vs + Add thermal resistance for turbulent core? page 29

30 DNS data: 80 bar, CO 2, D = 2 mm upard donard T [K] bulk bulk q W = 61 kw/m 2 K h [kj/kg] 1 h [kj/kg] T [K] q W = 61 kw/m 2 K 8 8 page 30

31 Backup Slides page 31

32 State-of-the-Art Correlations for Narro Channels (2 mm) G = 60 kg/m2s, q = -30 kw/m2 (cooled all) Forced convection Mixed convection (/ gravity influence) index 0 : constant properties : all b : bulk Nu : Nusselt number Gr : Grashof number Re : Reynolds number + upard, - donard flo almost the same result for upard and donard flo page 32

33 DNS-Results of a Heated PipeFlo at Re = 5400 upards: thermally stable buoyancy first damps later induces turbulence (recovery) g donards: thermally unstable buoyancy induces turbulence Visualization of turbulence structures using the λ 2 criterium g page 33

34 Terminology of Single-Pipe or Channel Experiments at Super-Critical Pressure 100 pseudo-critical point (p pc, T pc ) pseudo-critical line heating ρ = 100 kg/m 3 p [bar] 73.1 critical point cooling 50 saturation line bulk temperature (T b ) of a heated/cooled pipe/channel T [ C] page 34

35 sco 2 Recuperative Recompression Brayton Cycle 'Advanced Design' of the MIT-Study: Net Efficiency ~47 % HighTemp Lo Temp 77 bar Recuperator Recuperator % p T 4 Input HX 200 bar Reject HX Alternator % MPa C 1 7,7 32, , , , ,0 6 7,7 534,3 7 7,7 165,8 8 7,7 68,9 Turbine Re-Compressor Main Compressor 200 bar 77 bar region of interest critical point page 35

36 Example: To-Layer Model for Turbulent Boundary Layers Prandtl 1910, Kays and Craford 1980, constant properties T T laminar sub-layer T l R turbulent core layer y D 2 T b T R The temperature in all units c u p T y T T y cp u R q Can be considered a non-dimensional thermal resistance. Expand to T y c u R R p lam turb And compare to the Kays and Craford relation Prt T R Pr y ln R ln y T lam lam b The total resistance is the sum of to individual resistances fore the to layers page 36

37 page 37

38 page 38

Two-Layer Model for the Heat Transfer to Supercritical CO 2

Two-Layer Model for the Heat Transfer to Supercritical CO 2 5th International CO 2 Poer Cycles Symposium March 28-31, 2016, San Antonio, USA To-Layer Model for the Heat Transfer to Supercritical CO 2 E. Laurien, S. Pandey Institute of Nuclear Technology and Energy

More information

The dominant thermal resistance approach for heat transfer to supercritical-pressure fluids

The dominant thermal resistance approach for heat transfer to supercritical-pressure fluids The 6th International Supercritical CO 2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania The dominant thermal resistance approach for heat transfer to supercritical-pressure fluids Donald

More information

Two-Layer Model for the. Heat Transfer to Supercritical CO 2. E. Laurien, S. Pandey, and D. M. McEligot*

Two-Layer Model for the. Heat Transfer to Supercritical CO 2. E. Laurien, S. Pandey, and D. M. McEligot* 5 th International Supercritical CO Poer Cycles Symposium March 8-31, 016 San Antonio, USA To-Layer Model for the Heat Transfer to Supercritical CO E. Laurien, S. Pandey, and D. M. McEligot* University

More information

Direct numerical simulation database for supercritical carbon dioxide

Direct numerical simulation database for supercritical carbon dioxide Direct numerical simulation database for supercritical carbon dioxide S. Pandey 1, X. Chu 2, E. Laurien 3 Emails: sandeep.pandey@ike.uni-stuttgart.de 1 xu.chu@itlr.uni-stuttgart.de 2 laurien@ike.unistuttgart.de

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer The Meaning and Significance of Heat Transfer Coefficient Alan Mueller, Chief Technology Officer The Meaning of Heat Transfer Coefficient I kno the meaning of HTC! Why should I aste my time listening to

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/m-K) of 100 mm outside diameter and 8 mm wall thickness. During winter,

More information

Convection. U y. U u(y) T s. T y

Convection. U y. U u(y) T s. T y Convection Heat transfer in the presence of a fluid motion on a solid surface Various mechanisms at play in the fluid: - advection physical transport of the fluid - diffusion conduction in the fluid -

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7 ectures on Nuclear Power Safety ecture No 7 itle: hermal-hydraulic nalysis of Single-Phase lows in Heated hannels Department of Energy echnology KH Spring 005 Slide No Outline of the ecture lad-oolant

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect

Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect Journal of Mechanical Science and Technology (8) 375~385 Journal of Mechanical Science and Technology.springerlink.com/content/1738-494x DOI 1.17/s16-8-55-7 Analysis of fluid induced vibration of cryogenic

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY)

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY) hapter 5 Principles of onvection heat transfer (Tet: J. P. Holman, Heat Transfer, 8 th ed., McGra Hill, NY) onsider a fluid flo over a flat plate ith different temperatures (Fig 5-1) q A ha( T T ) since

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Laminar external natural convection on vertical and horizontal flat plates, over horizontal and vertical cylinders and sphere, as well as plumes, wakes and other types of free flow will be discussed in

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Heat Transfer to Sub- and Supercritical Water at Low Mass Fluxes: Numerical Analysis and Experimental Validation

Heat Transfer to Sub- and Supercritical Water at Low Mass Fluxes: Numerical Analysis and Experimental Validation Heat Transfer to Sub- and Supercritical Water at Lo Mass Fluxes: Numerical Analysis and Experimental Validation Samuel O. Odu a, Pelle Koster a, Aloijsius G. J. van der Ham a,*, Martin A.van der Hoef b,

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

COMPARISON STUDY FOR FORCED CONVECTION HEAT TRANSFER OF SUPERCRITICAL CARBON DIOXIDE FLOWING IN A PIPE

COMPARISON STUDY FOR FORCED CONVECTION HEAT TRANSFER OF SUPERCRITICAL CARBON DIOXIDE FLOWING IN A PIPE HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 26 July 214 Orlando, Florida COMPARISON STUDY FOR FORCED CONVECTION HEAT TRANSFER OF SUPERCRITICAL CARBON

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations L. Makaum, P.v.Z. Venter and M. van Eldik Abstract Refrigerants

More information

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid Reduction of Parasitic Currents in Simulation of Droplet Secondary Breakup with Density Ratio Higher than 60 by InterDyMFoam Iranian Journal of Chemical Engineering Vol. 11, No. 2 (Spring 2014), IAChE

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

OUTCOME 2 - TUTORIAL 1

OUTCOME 2 - TUTORIAL 1 Unit 4: Heat Transfer and Combustion Unit code: K/60/44 QCF level: 5 Credit value: 5 OUTCOME - TUTORIAL Heat transfer coefficients Dimensional analysis: dimensionless groups; Reynolds, Nusselt, Prandtl,

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

INVESTIGATION OF THE THERMAL BOUNDARY LAYER DEVELOPMENT LENGTH IN ANNULAR UPWARD HEATED SUPERCRITICAL FLUID FLOWS

INVESTIGATION OF THE THERMAL BOUNDARY LAYER DEVELOPMENT LENGTH IN ANNULAR UPWARD HEATED SUPERCRITICAL FLUID FLOWS INVESTIGATION OF THE THERMAL BOUNDARY LAYER DEVELOPMENT LENGTH IN ANNULAR UPWARD HEATED SUPERCRITICAL FLUID FLOWS JURRIAAN W. R. PEETERS Delft University of Technology, Department of Radiation, Radionuclides

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

CFD Modeling of Supercritical Water Heat Transfer in a Vertical Bare Tube Upward Flow

CFD Modeling of Supercritical Water Heat Transfer in a Vertical Bare Tube Upward Flow CFD Modeling of Supercritical Water Heat Transfer in a Vertical Bare Tube Upward Flow Dr. Vladimir Agranat Applied Computational Fluid Dynamics Analysis, Thornhill, Ontario, Canada E-mail: vlad@acfda.org

More information

Tutorial for the supercritical pressure pipe with STAR-CCM+

Tutorial for the supercritical pressure pipe with STAR-CCM+ Tutorial for the supercritical pressure pipe with STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities with

More information

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Internal Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction Pipe circular cross section. Duct noncircular cross section. Tubes small-diameter

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT Bing-Chen Wang Department

More information

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel To cite this article:

More information

ENG Heat Transfer II 1. 1 Forced Convection: External Flows Flow Over Flat Surfaces... 4

ENG Heat Transfer II 1. 1 Forced Convection: External Flows Flow Over Flat Surfaces... 4 ENG7901 - Heat Transfer II 1 Contents 1 Forced Convection: External Flows 4 1.1 Flow Over Flat Surfaces............................. 4 1.1.1 Non-Dimensional form of the Equations of Motion.......... 4

More information

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS طراحی مبدل های حرارتی مهدي کریمی ترم بهار 96-97 HEAT TRANSFER CALCULATIONS ١ TEMPERATURE DIFFERENCE For any transfer the driving force is needed General heat transfer equation : Q = U.A. T What T should

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

ANALYSIS OF HEAT TRANSFER IN TURBULENT FLOW THROUGH THE TUBE WITH UNIFORM HEAT FLUX

ANALYSIS OF HEAT TRANSFER IN TURBULENT FLOW THROUGH THE TUBE WITH UNIFORM HEAT FLUX ANALYSIS OF HEAT TRANSFER IN TURBULENT FLOW THROUGH THE TUBE WITH UNIFORM HEAT FLUX Kianoush Dolati Asl 1 and Ahmad Jalali 2 1 Department of Mechanical Engineering, Payame Noor University, Tehran, Iran

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

HEAT TRANSFER AT SUPERCRITICAL PRESSURES (SURVEY) 1

HEAT TRANSFER AT SUPERCRITICAL PRESSURES (SURVEY) 1 HEAT TRANSFER AT SUPERCRITICAL PRESSURES (SURVEY) 1 Igor Pioro*, Hussam Khartail and Romney Duffey Chalk River Laoratories, AECL, Chalk River, ON, Canada K0J 1J0 Keywords: Supercritical pressure, forced

More information

Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay

Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Convective Heat and Mass Transfer Prof. A. W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No.# 01 Lecture No. # 41 Natural Convection BLs So far we have considered

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1 Course plan 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume nalysis 4. Differential nalysis of Fluid Flow

More information

DIRECT NUMERICAL SIMULATION OF FLUID FLOW AT SUPERCRITICAL PRESSURE IN A VERTICAL CHANNEL

DIRECT NUMERICAL SIMULATION OF FLUID FLOW AT SUPERCRITICAL PRESSURE IN A VERTICAL CHANNEL DIRECT NUMERICAL SIMULATION OF FLUID FLOW AT SUPERCRITICAL PRESSURE IN A VERTICAL CHANNEL W. Wang and S. He* Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK *s.he@sheffield.ac.uk

More information

Miss M Hallquist 6/1/2012 1

Miss M Hallquist 6/1/2012 1 Miss M Hallquist Prof JP Meyer Laminar Turbulent Re < Re > 3 Less insulation needed Good energy balances High pressure drop High insulation requirements Insufficient energy balance Low heat transfer coefficients

More information

Applied Thermal Engineering

Applied Thermal Engineering Applied Thermal Engineering 33-34 (2012) 70e76 Contents lists available at SciVerse ScienceDirect Applied Thermal Engineering journal homepage: www.elsevier.com/locate/apthermeng Influence of supercritical

More information

Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

More information

Investigation of heat transfer model for horizontal tubes at supercritical pressures of CO2

Investigation of heat transfer model for horizontal tubes at supercritical pressures of CO2 The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania Investigation of heat transfer model for horizontal tubes at supercritical pressures of CO2 Tae

More information

Liquid or gas flow through pipes or ducts is commonly used in heating and

Liquid or gas flow through pipes or ducts is commonly used in heating and cen58933_ch08.qxd 9/4/2002 11:29 AM Page 419 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

More information

Research Article Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

Research Article Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank Science and Technology of Nuclear Installations, Article ID 279791, 8 pages http://dx.doi.org/10.1155/2014/279791 Research Article Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo CD-adapco, Trident House, Basil Hill Road, Didcot, OX11 7HJ, UK Multi-Fidelity Computational

More information

Computation of turbulent natural convection at vertical walls using new wall functions

Computation of turbulent natural convection at vertical walls using new wall functions Computation of turbulent natural convection at vertical alls using ne all functions M. Hölling, H. Herig Institute of Thermo-Fluid Dynamics Hamburg University of Technology Denickestraße 17, 2173 Hamburg,

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN Numerical Analysis Of Heat Transfer And Fluid Flow Characteristics In Different V-Shaped Roughness Elements On The Absorber Plate Of Solar Air Heater Duct Jitesh Rana, Anshuman Silori, Rohan Ramola Abstract:

More information

cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating

cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating cen29305_ch08.qxd 11/30/05 3:05 PM Page 451 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Dimensionless Numbers

Dimensionless Numbers 1 06.10.2017, 09:49 Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1.

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1. PROBLEM 8.3 KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions. FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean surface,

More information

External Flows. Dye streak. turbulent. laminar transition

External Flows. Dye streak. turbulent. laminar transition Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Thermal and Fluids in Architectural Engineering

Thermal and Fluids in Architectural Engineering hermal and Fluids in Architectural Engineering 12. Convection heat transfer Jun-Seo Par, Dr. Eng., Prof. Dept. of Architectural Engineering Hanyang Univ. Where do we learn in this chaper 1. Introduction

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numerical simulations of two-phase fluid flow and heat transfer in a condenser A. Bokil, C. Zhang Department of Mechanical and Materials Engineering, University of Windsor, Windsor, Ontario, Canada Abstract

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013672 TITLE: Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Square Duct at Low Reynolds Number DISTRIBUTION:

More information

CFD ANALYSIS OF TURBULENT MIXED CONVECTION UPWARD FLOW OF SUPERCRITICAL WATER IN A VERTICAL TUBE

CFD ANALYSIS OF TURBULENT MIXED CONVECTION UPWARD FLOW OF SUPERCRITICAL WATER IN A VERTICAL TUBE CFD ANALYSIS OF TURBULENT MIXED CONVECTION UPWARD FLOW OF SUPERCRITICAL WATER IN A VERTICAL TUBE ABSTRACT Vladimir Agranat Applied Computational Fluid Dynamics Analysis Thornhill, Ontario, Canada vlad@acfda.org

More information

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015 Heat Transfer Enhancement in a Tube using Elliptical-Cut Twisted Tape Inserts Pratik P. Ganorkar 1, R.M. Warkhedkar 2 1 Heat power Engineering, Department of Mechanical Engineering, Govt. collage of engineering

More information