The ortho-positronium lifetime puzzle & new Physics

Size: px
Start display at page:

Download "The ortho-positronium lifetime puzzle & new Physics"

Transcription

1 The ortho-positronium lifetime puzzle & new Physics P.Crivelli ETH, Zürich, Switzerland Under the supervision of Prof.Andre Rubbia

2 Introduction The Positronium, the bound state of electron and positron, is a pure quantum electrodynamical system. ideal to test of QED calculations for bound states. 2 possible ground states The triplet spin state Ortho-Positronium (o-ps) The singlet spin state Para-Positronium 142ns 125ps Due to odd-parity under C-transformation, o-ps decays in three photons.

3 Decay rate The decay rate of o-ps in vacuum is given by: In matter there is the probability that the bounded positron annihilates in 2γ with an electron which is not is partner electron (so called pick-off annihilation or collisional quenching). In matter the decay rate of o-ps can increase!

4 Positronium formation The positron from a radioactive source interacting with an electron can form positronium. Three different techniques have been used: 1) Gas 2) A vacuum surface interface 3) Low density SiO 2 powder Once o-ps is formed it interacts with the surrounding environment which may increase the decay rate in case of pick-off annihilation or decrease it in case of electric fields. It is necessary to remove these effects to determine the decay rate in vacuum.

5 Principle of lifetime measurements Gas: measurements in different gas densities and then the lifetime is extrapolated to 0 (vacuum). Large systematic error due to unexpected low thermalisation rate of o-ps in gases and non linear dependence of pickoff rate with densities. Cavity: o-ps formed on the cavity surface, it migrates in vacuum, the pick-off is much less compared to gas and powder (just 4 collision/τ ops with the walls ). Powder: The background from the 2γ collisional quenching is measured with a germanium detector and then it is subtracted to obtain the lifetime in vacuum, (extrapol collision/τ ops 0 collisions still open question).

6 History of the o-ps lifetime measurements Recent Adkins et al. calculations up to α 2 (Phys.Lett.2000). Gas measurements Small error dominated by statistic 5σ discrepancy in vacuum experiment Bigger error dominated by the systematic 95 Powder (Corrected 2γ/3γ time dependence) Agreement for measurements in powder

7 Motivation of our experiment 1 The experimental situation is confusing and should be clarified. The long standing 5σ discrepancy between measured and predicted decay rate of ortho-positronium in vacuum led to an extensive search of exotic decays. In fact the discrepancy might be explained by an exotic decay of o-ps if the BR Exotic decay of o-ps in γx,γγx, invisible (but not in vacuum), 2γ, 4γ has been searched and definitely they are not the source of this discrepancy. 1 ETHZ, INR Moscow, CNRS-IN2P3 France

8 Test for old idea of mirror world Left-right world asymmetry is still a great puzzle, why the weak interaction has left handed chirality? Already in 1956 Lee & Yang in their famous nobel-prize-won paper on parity violation, pointed out that the existence of a shadow/mirror world will restore the symmetry. Glashow: o-ps puzzle could be explained by o-ps o-ps M oscillation which results in o-ps invisible decay in vacuum! ( Matter destroy coherence)

9 Other strong motivations to search for o-ps invisible (not in vacuum) Extra-dimensions model of Randall-Sundrum type predicts BR(o-Ps invisible) (see Mod.Phys.Lett.A,Vol.17, No.26, (2002) pp ) Do fractional charged particles exist? Particles with eq 10-3 naturally appears in GUT theories, o-ps could decay apparently invisibly since such particles would mostly penetrate any type of calorimeter without interaction (recent SLAC search could be improved). New light vector X-boson which e.g. may contribute to (g-2) µ (recent (g-2) µ of BNL).

10 Our Plans We started our activity in January and we foresee mainly 2 research lines Search for new physics (Source Exp.) 1)Search for three body decay of o-ps, which could solve the discrepancy.(results published Phys.Lett. B542: 29-34, 2002) 2) Search for invisible decay (not in vacuum) of o-ps with sensitivity of BR < ) CP,CPT test in leptonic syst. o-ps lifetime puzzle (Beam Exp.) 1) Development of a slow positron beam for a precise measurement of the o-ps lifetime in vacuum with systematic differences from Michigan experiment and 2)Search for invisible decay of o-ps in vacuum.

11 Search for the exotic decay of ortho- Positronium (o-ps) + e e (o Ps) γ + X 1 + X 2 Two weak interacting massive particles The signature of such an event will be a single photon detected in a hermetic calorimeter accompanied by no other energy deposition. In this exotic decay the photon has a continuum of energy, thus this search is more difficult than the previous ones which were based on the peak detection arising from the 2 body decay. The second goal was to optimize our calorimeter for the next steps of the experiment, performing a MC simulation based on the acquired data to use

12 Photograph of the calorimeter

13 Front and top view of the calorimeter Region of positronium formation

14 Description of the source + 3 EC(9.4%) This gamma is emitted 3 ps after the positron Na Tagged through scintillating fiber. 90.6% e + (0.543MeV) γ(1.27mev) 0.06% e + (1.830MeV) Ne

15 Positrons tagging The positrons are tagged when the signals from the 2PMT s are in coincidence, then the gate opens. 22 Na source 3.6kBq

16 Target o SiO 2 grains ( A ) After the fiber the positrons enter the Aerogel Positronium can form inside the grain It can migrates in the inter granular space where it decay almost freely e + e (sin glet) γγ τ 125ps (in vacuum) or e + e (triplet) γγγ τ 142ns (in vacuum) Collisional quenching In Aerogel pores filled with nitrogen: τ 132ns

17 Time spectra between tagged positron and photon detected in the calorimeter (with aerogel) Peak from 2γ annihilation Constant background Exponential decay from 3γ

18 Calorimeter 5,2 cm thickness 20 cm length 24 x BGO kindly lend us From Prof. Fetcher (PSI) The resolution of the crystals determined with a fit is about 16% at 1.27Mev (FWHM) Energy spectra

19 Example of signal signature γ from the o-ps decay 1.27MeV γ X 1 X 2

20 Events selection One of the photons with energy between 40 and 700 kev from the decay is asked to be in the trigger BGO. For the same event the 1.27MeV (not more then one) should be present in one of the other crystals. events/20 kev Selection of the 1.27 MeV γ energy, kev

21 o-ps decays selection In order to decrease the background from the 2 photons, we select the 3 photons from the o-ps applying a cut on the time. The lower limit has been set at 160ns, which suppress the 2γ strongly enough, but it doesn t decrease too much statistic. The upper limit is set at 800ns, because then the background from accidentals becomes dominant. events/10 nsec t e+γ, nsec

22 Results After selection, the sum is calculated. E VETO = E1.27 E TriggerBGO all The sum EVETO + ETriggerBGO = 1MeV (Mass of Positronium) Signal region Pile up

23 Signal region: and E VETO 20keV 40keV E γ 400keV E VETO, kev Sensivity of the calorimeter 20keV One event has been observed E TRIG, kev The single photon maximal energy depends on the mass of the two exotic particles. For the 511 kev photons from the 2 photons decay the unhermeticity of the calorimeter is in the order of 10-3.

24 Background estimation The expected background is extrapolated assuming a linear fit (in log scale) of the projected energy in the VETO. events/5 kev c) For E VETO 20keV, 1.6 event (± 0.8) is expected, which is consistent with the measurements. E VETO, kev

25 Calculation of the upper limit BR(o Ps γ + X 1 + X 2 ) ε ε 3γ 1γ N up o Ps γ+ X N 1 o Ps 3γ N up o Ps γ+ X 1 + X 3.8 has been calculated with Poisson 2 = statistic for 1 event observed and 0-background expected (conservatively). Using a Monte-Carlo simulation (assuming phase space) we estimate the different detection efficiencies for a photon from the three photon and from the single photon decay: 3.0<ε γ3 / ε γ1 <3.7 for: 0 M x1 +M x2 900keV The number of o-ps decays in the target is measured from the decay curve, the measured lifetime is 6.6% less than in vacuum, it follows that 5 No Ps 3γ 3.2x10 + X 2

26 Conclusions Branching ratio EXCLUDED + BR(e e (o Ps) γ + X1 + X2 ) m1+m2(kev) 4.4x10-5 at 90% CL It follows that this decay mode can not explain the discrepancy (the limit is 20 times smaller)!

27 Search for invisible decay of o-ps Status of the experiment: Based on a Monte-Carlo simulation in Geant 3 (tuned with the first phase of the experiment) we predicted that we could reach the sensitivity BR < , if we could increase the size of the detector. From our study the geometry should have 98 crystals! 24 crystals (present) 56 crystals 98 crystals Background from 2γ escaping detection 2x x

28 Measurement of the o-ps lifetime and invisible decay of o-ps in vacuum: The first continous beam of positron is expected for the end of the year. SOURCE MODERATOR 4Mbq 22 Na source produced by PSI irradiating a pure 27 Al piece. e- GUN PRE-BUNCHER * ION PUMP e+ BEAM CORRECTOR B Detector e+ FILTER 1 M COILS

Search for heavy neutrinos in kaon decays

Search for heavy neutrinos in kaon decays Search for heavy neutrinos in kaon decays L. Littenberg (work mainly done by A.T.Shaikhiev INR RAS) HQL-2016 Outline Motivation Previous heavy neutrino searches Experiment BNL-E949 Selection criteria Efficiency

More information

First test of O(α 2 ) correction of the orthopositronium decay rate

First test of O(α 2 ) correction of the orthopositronium decay rate ICEPP Report-2008/002 9th September 2008 arxiv:0809.1594v1 [hep-ex] 9 Sep 2008 First test of O(α 2 ) correction of the orthopositronium decay rate Y. Kataoka, S. Asai and T. Kobayashi International Center

More information

Application of positrons in materials research

Application of positrons in materials research Application of positrons in materials research Trapping of positrons at vacancy defects Using positrons, one can get defect information. R. Krause-Rehberg and H. S. Leipner, Positron annihilation in Semiconductors,

More information

Experimental searches for mirror matter

Experimental searches for mirror matter 1 Experimental searches for mirror matter S.N. Gninenko INR Moscow Workshop on origin of P, CP and T violation July 2-5, 2008 Trieste, Italy Plan: 2 mirror matter model searches at low energies - Ps -

More information

Experimental Search for the Decay

Experimental Search for the Decay Experimental Search for the Decay νν K. Mizouchi (Kyoto University) (1) Physics Motivation (2) Detector (3) Selection Criteria (4) Branching Ratio (5) γγ Background Subtraction (6) Conclusions νν : Physics

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Positron-Electron Annihilation

Positron-Electron Annihilation Positron-Electron Annihilation Carl Akerlof September 13, 008 1. Introduction This experiment attempts to explore several features of positron-electron annihilation. One of the attractive aspects of e

More information

Measurement of Positronium hyperfine splitting with quantum oscillation

Measurement of Positronium hyperfine splitting with quantum oscillation Measurement of Positronium hyperfine splitting with quantum oscillation Y.Sasaki a, A.Miyazaki a, A.Ishida a, T.Namba a, S.Asai a, T.Kobayashi a, H.Saito b, K.Tanaka c, and A.Yamamoto c a Department of

More information

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei. Motivation Spins and excited states of double-magic nucleus 16 O Decay spectra are caused by electro-magnetic transitions. g-spectroscopy deals with g-ray detection and is one of the most relevant methods

More information

NA64. Dipanwita Banerjee ETH, Zurich On behalf of the NA64 collaboration

NA64. Dipanwita Banerjee ETH, Zurich On behalf of the NA64 collaboration NA64 Dipanwita Banerjee ETH, Zurich On behalf of the NA64 collaboration NA64 Collaboration NA64: Search for dark sector physics in missing energy events Approved in March 2016 for the A > invisible decay

More information

PRINCIPLES OF POSITRON ANNIHILATION

PRINCIPLES OF POSITRON ANNIHILATION 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Study on positronium Bose-Einstein condensation

Study on positronium Bose-Einstein condensation Study on positronium Bose-Einstein condensation Akira Ishida a,*, K. Shu a, T. Murayoshi a, X. Fan a, T. Namba a,s. Asai a, K. Yoshioka b, M. Kuwata-Gonokami a, N. Oshima c, B. E. O Rourke c, R. Suzuki

More information

The discovery of W ± and Z 0 vector-bosons

The discovery of W ± and Z 0 vector-bosons The discovery of W ± and Z 0 vector-bosons Giulia De Zordo April 15, 2014 Abstract This article is about the discovery of the W ± and Z 0 vector-bosons, the carriers of weak interaction. The discovery

More information

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona LHCb 2000-32, CALO 9 June 2000 Results of a tagged photon test beam for the Scintillator Pad Detector. Llu s Garrido David Gascón Ramon Miquel Daniel Peralta Universitat de Barcelona, ECM department E-08028

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

Positron Annihilation in Material Research

Positron Annihilation in Material Research Positron Annihilation in Material Research Introduction Positron sources, positron beams Interaction of positrons with matter Annihilation channels: Emission of 1, 2 or 3 γ-quanta Annihilation spectroscopies:

More information

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy)

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) LXe (part B) Giovanni Signorelli Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy) PSI, February 2003 1 MEG internal meeting 2 MC: Outline shape-qe

More information

Absolute activity measurement

Absolute activity measurement Absolute activity measurement Gábor Veres, Sándor Lökös Eötvös University, Department of Atomic Physics January 12, 2016 Financed from the financial support ELTE won from the Higher Education Restructuring

More information

Search for a Dark Photon: proposal for the experiment at VEPP 3.

Search for a Dark Photon: proposal for the experiment at VEPP 3. Search for a Dark Photon: proposal for the experiment at VEPP 3. I.Rachek, B.Wojtsekhowski, D.Nikolenko IEBWorkshop Cornell University June 18, 015 I.Rachek dark photon at VEPP-3 June 18, 015 1 Latest

More information

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India. Department of Physics, Techno India Batanagar (Techno India Group), Kolkata 700141, West Bengal, India. Visiting Scientists @ SINP, @VECC, @ IIEST Kolkata, India. nn.mondal2011@gmail.com, nagendra.n.mondal@biemsindia.org

More information

Final Results from the MEG Experiment and the Status of MEG-II

Final Results from the MEG Experiment and the Status of MEG-II Final Results from the MEG Experiment and the Status of MEGII Francesco Renga INFN Roma HQL 2016 Virginia Tech, May 2227 2016 1 Charged Lepton Flavor Violation (clfv) Highlights Charge Lepton Flavor conservation

More information

in NA64 at the CERN SPS. QUARKS-2018 Mai 2018 Valdai Search for a new X-boson and Dark Photons in NA64

in NA64 at the CERN SPS. QUARKS-2018 Mai 2018 Valdai Search for a new X-boson and Dark Photons in NA64 Search for a new X boson and Dark Photons in NA64 at the CERN SPS. QUARKS-2018 Mai 2018 Valdai Mikhail Kirsanov INR RAS Search for a new X-boson and Dark Photons in NA64 QUARKS-2018 Valdai Mai 2018 1 Outline

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER Paul Coleman University of Bath THE FATE OF POSITRONS IN CONDENSED MATTER POSITRON-SURFACE INTERACTIONS positron backscattering BACKSCATTERED

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Searches for New Physics in quarkonium decays at BaBar/Belle

Searches for New Physics in quarkonium decays at BaBar/Belle 1 Searches for New Physics in quarkonium decays at BaBar/Belle Lucas Winstrom University of California Santa Cruz for the BaBar Collaboration Presented at QWG08 in Nara, Japan December 5, 2008 2 Outline

More information

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Proton Decays -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Look for Baryon number violation B number conservation is experimental subject B number conservation

More information

in NA64 at the CERN SPS. DSU-2018 June 2018 Annecy Search for a new X-boson and Dark Photons in NA64

in NA64 at the CERN SPS. DSU-2018 June 2018 Annecy Search for a new X-boson and Dark Photons in NA64 Search for a new X boson and Dark Photons in NA64 at the CERN SPS. DSU-2018 June 2018 Annecy Mikhail Kirsanov INR RAS (Moscow) Search for a new X-boson and Dark Photons in NA64 DSU-2018 Annecy June 2018

More information

Jacopo Pinzino CERN HQL /05/2018

Jacopo Pinzino CERN HQL /05/2018 Search for K + π + ν ν at NA62 Jacopo Pinzino CERN HQL2018 30/05/2018 The NA62 Experiment NA62: High precision fixed-target Kaon experiment at CERN SPS Main goal: measurement of BR(K + π + υ υ) Broader

More information

Status of the Crystal Zero Degree Detector (czdd)

Status of the Crystal Zero Degree Detector (czdd) Status of the Crystal Zero Degree Detector (czdd) Achim Denig1, Peter Drexler1, Brice 1, Leonard Koch2, Wolfgang Kühn2, Sören Lange2, Werner Lauth1, Yutie Liang2, Torben Rathmann1, Christoph Redmer1, Milan

More information

A4 Laser Compton polarimetry

A4 Laser Compton polarimetry A4 Laser Compton polarimetry progress since PAVI06 J. Diefenbach Workshop on Parity Violation 2009, Bar Harbor, Maine - 24.06.2009 Outline Principles of Laser Compton polarimetry Experimental Setup Data

More information

THREE-QUANTA POSITRON ANNIHILATION IN BLOOD SAMPLES OF DIFFERENT OXYGENATION LEVELS

THREE-QUANTA POSITRON ANNIHILATION IN BLOOD SAMPLES OF DIFFERENT OXYGENATION LEVELS THREE-QUANTA POSITRON ANNIHILATION IN BLOOD SAMPLES OF DIFFERENT OXYGENATION LEVELS MARY CHIN & NICHOLAS SPYROU Department of Physics, University of Surrey, Guildford GU2 7XH, UK THREE-QUANTA POSITRON

More information

P3TMA Experimental Projects

P3TMA Experimental Projects P3TMA Experimental Projects 3 credits Take place @ S1 (from end of September to December); Enters in the average of the second semester. Projects currently available : Stern-Gerlach Experiment Quantum

More information

The 46g BGO bolometer

The 46g BGO bolometer Nature, 3 The g BGO bolometer 1 Photograph of the heat [g BGO] and light [Ge; =5 mm] bolometers: see Fig. 1c for description Current events: Amplification gains: 8, (heat channel) &, (light channel). The

More information

Polarization Correlation in the Gamma- Gamma Decay of Positronium

Polarization Correlation in the Gamma- Gamma Decay of Positronium Polarization Correlation in the Gamma- Gamma Decay of Positronium Bin LI Department of Physics & Astronomy, University of Pittsburgh, PA 56, U.S.A April 5, Introduction Positronium is an unstable bound

More information

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

Fundamental Symmetries III Muons. R. Tribble Texas A&M University Fundamental Symmetries III Muons R. Tribble Texas A&M University All about muons Topics: Lifetime MuLAN Normal decay TWIST Exotic decays MEGA, MEG, SINDRUM Anomalous Moment (g-2) Muon Lifetime Determines

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods Application of Positron Annihilation for defects investigations in thin films V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Outlook: Introduction to Positron

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Institute of Radiation Physics http://www.hzdr.de Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Positron Annihilation Spectroscopy

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Lepton Flavour Violation

Lepton Flavour Violation Lepton Flavour Violation Search for e at Paul Scherrer Institut Satoshi Mihara ICEPP, Univ. of Tokyo http://meg.icepp icepp.s..s.u-tokyo.ac.jp, http://meg.psi psi.ch,http://meg.pi.,http://meg.pi.infn.it

More information

Positronium: Old Dog, New Tricks

Positronium: Old Dog, New Tricks Positronium: Old Dog, New Tricks David B. Cassidy Department of Physics and Astronomy, University College London, UK d.cassidy@ucl.ac.uk Ps production further improved using beams (1972) which can interact

More information

Monte Carlo Simulations for Future Geoneutrino Detectors

Monte Carlo Simulations for Future Geoneutrino Detectors Monte Carlo Simulations for Future Geoneutrino Detectors Morgan Askins Abstract The main contribution of heat in the earth s mantle is thought to be the radioactive decays of 238 U, 232 T h, and 40 K.

More information

Positron Annihilation techniques for material defect studies

Positron Annihilation techniques for material defect studies Positron Annihilation techniques for material defect studies H. Schut Section : Neutron and Positron Methods in Materials (NPM 2 ) Department: Radiation, Radionuclides and Reactors (R 3 ) Faculty of Applied

More information

LIQUID XE DETECTOR FOR MU E GAMMA SEARCH

LIQUID XE DETECTOR FOR MU E GAMMA SEARCH LIQUID XE DETECTOR FOR MU E GAMMA SEARCH K. OZONE representing MUEGAMMA collaboration University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN E-mail: ozone@icepp.s.u-tokyo.ac.jp A new type of

More information

Update from the Mu3e Experiment

Update from the Mu3e Experiment Update from the Mu3e Experiment Niklaus Berger Physics Institute, University of Heidelberg Charged Lepton Working Group, February 2013 Overview The Challenge: Finding one in 10 16 muon decays The Technology:

More information

Study on Positronium Bose-Einstein Condensation

Study on Positronium Bose-Einstein Condensation 3rd China-Japan Joint Workshop on Positron Science (JWPS2017) https://doi.org/10.7567/jjapcp.7.011001 Study on Positronium Bose-Einstein Condensation Akira Ishida 1, Kenji Shu 1, Tomoyuki Murayoshi 1,XingFan

More information

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Paolo Privitera 5th Fluorescence Workshop 7 th Air Fluorescence El Escorial Workshop - Madrid, Spain September 22-24,

More information

SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB

SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB SEARCHING FOR DARK PHOTONS WITH POSITRONS AT JEFFERSON LAB Luca Marsicano INFN Genova,Università Di Genova International Workshop on Physics with Positrons at Jefferson Lab September 12-15, 2017 Thomas

More information

Temperature dependence of positronium decay rates in gases

Temperature dependence of positronium decay rates in gases J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 1047 1055. Printed in the UK PII: S0953-4075(00)07324-7 Temperature dependence of positronium decay rates in gases R S Vallery, A E Leanhardt, M Skalsey and D

More information

CLEO Results From Υ Decays

CLEO Results From Υ Decays CLEO Results From Υ Decays V. Credé 1 2 1 Cornell University, Ithaca, NY 2 now at Florida State University Tallahassee, FL Hadron 05 Outline 1 Introduction The Υ System CLEO III Detector CLEO III Υ Data

More information

A Liquid Argon Scintillation Veto for the GERDA Experiment

A Liquid Argon Scintillation Veto for the GERDA Experiment A Liquid Argon Scintillation Veto for the GERDA Experiment for the GERDA Collaboration 2nd European Nuclear Physics Conference Bucharest, 18/09/2012 Institut für Kern- und Teilchenphysik GERDA - GERmanium

More information

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Birgit Schneider Technische Universität Dresden Institut für Kern- und Teilchenphysik DPG-Frühjahrstagung Mainz 25th

More information

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf The EPOS Team and R. Krause-Rehberg Martin-Luther University, Halle-Wittenberg, Dept. of Physics, 06099 Halle / Germany

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei 2. Range of Measured Half-Lives (~10 44 ) 10 16 y > t 1/2 > 10 21 s 3. Why α? a. Proton & Neutron Emission: Q p, Q n are negative

More information

Neutrinos. Why measure them? Why are they difficult to observe?

Neutrinos. Why measure them? Why are they difficult to observe? Outline What is a neutrino? Why do we want to study them? Building a detector to detect the undetectable What does a neutrino detector see? How do you seperate a neutrino signal from the background? Neutrinos

More information

An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum.

An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum. An apparatus to search for mirror dark matter via the invisible decay of orthopositronium in vacuum. A. Badertscher a A.S. Belov b P. Crivelli a M. Felcini a W. Fetscher a S.N. Gninenko b N.A. Golubev

More information

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications The 2nd International Symposium on Physics, Engineering and Technologies for Biomedicine Volume 2018 Conference Paper Positron Lifetime Spectroscopy of Silicon Nanocontainers for Cancer Theranostic Applications

More information

PoS(KAON09)023. Beam Hole Photon Veto For J-PARC K O TO experiment. Yosuke Maeda Kyoto University

PoS(KAON09)023. Beam Hole Photon Veto For J-PARC K O TO experiment. Yosuke Maeda Kyoto University Beam Hole Photon Veto For J-PARC K O TO experiment Kyoto University E-mail: maeda_y@scphys.kyoto-u.ac.jp The Beam Hole Photon Veto counter (BHPV) for the J-PARC K O TO experiment was designed by MC simulation.

More information

A survey of the rare pion and muon decays.

A survey of the rare pion and muon decays. A survey of the rare pion and muon decays. M. Bychkov for the PIBETA Collaboration University of Virginia November 15, 2006 Abstract Our collaboration has used a detector system based on a non-magnetic

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

On the Discovery of Parity Violation

On the Discovery of Parity Violation On the Discovery of Parity Violation Andrew Inwood April 10, 2009 1 Background The power of scientific reasoning is that it forces us to shed ourselves of our bias perceptions of nature as human beings,

More information

arxiv: v1 [physics.ins-det] 3 Sep 2015

arxiv: v1 [physics.ins-det] 3 Sep 2015 Searches for discrete symmetries violation in ortho-positronium decay using the J-PET detector arxiv:1509.01114v1 [physics.ins-det] 3 Sep 2015 D. Kamińska a, T. Bednarski a, P. Białas a, E. Czerwiński

More information

Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY

Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY Florian Bergmann 23.03.2011 1 Reminder: C-parity C-operator: turns particle into antiparticle E.g.: C e = C e C: phase factor Majorana particle:

More information

LAB 4: Gamma-ray coincidence spectrometry (2018)

LAB 4: Gamma-ray coincidence spectrometry (2018) LAB 4: Gamma-ray coincidence spectrometry (2018) As you have seen, in several of the radioactive sources we encountered so far, they typically emit more than one gamma photon per decay or even more than

More information

Basics and Means of Positron Annihilation

Basics and Means of Positron Annihilation Basics and Means of Positron Annihilation Positron history Means of positron annihilation positron lifetime spectroscopy angular correlation Doppler-broadening spectroscopy Near-surface positron experiments:

More information

Searching for dark photons with the PADME experiment at the Frascati Linac Recontres de Blois /05/16

Searching for dark photons with the PADME experiment at the Frascati Linac Recontres de Blois /05/16 Searching for dark photons with the PADME experiment at the Frascati Linac Recontres de Blois 2016 Fabio Ferrarotto (INFN Roma 1) for the PADME experiment 1 Why PADME experiment? Long standing problem

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

GEANT4 Simulation of Pion Detectors for the MOLLER Experiment

GEANT4 Simulation of Pion Detectors for the MOLLER Experiment GEANT4 Simulation of Pion Detectors for the MOLLER Experiment A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Physics from the College of William and

More information

Simulation of triple coincidences in PET

Simulation of triple coincidences in PET 136 Institute of Physics and Engineering in Medicine Physics in Medicine & Biology doi:10.1088/0031-9155/60/1/117 Simulation of triple coincidences in PET J Cal-González 1,4, E Lage 2, E Herranz 1, E Vicente

More information

The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010

The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010 The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD Erik Minges April 23 rd, 2010 Outline Symmetry and conservation Laws Overview and examples PRIMEX physics motivation The

More information

Y2 Neutrino Physics (spring term 2017)

Y2 Neutrino Physics (spring term 2017) Y2 Neutrino Physics (spring term 2017) Lecture 5 Discoveries of the leptons Dr E Goudzovski eg@hep.ph.bham.ac.uk http://epweb2.ph.bham.ac.uk/user/goudzovski/y2neutrino Previous lecture In 1940s, nuclear

More information

Positron theoretical prediction

Positron theoretical prediction Positron theoretical prediction Schrödinger equation: ˆ 2 p x, t Vx, t x, t i 22 m tt non-relativistic equation of motion for electron Erwin Schrödinger 1933 Nobel prize Positron theoretical prediction

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Pulse Shape Analysis

Pulse Shape Analysis Pulse Shape Analysis Fabiana Cossavella Max-Planck Institut für Physik, München 26 March 2011 OUTLINE: motivation description of the procedure results Fabiana Cossavella Pulse Shape Analysis 1/11 Motivation:

More information

Intense Slow Muon Physics

Intense Slow Muon Physics 1 Intense Slow Muon Physics Yoshitaka Kuno a a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan Physics programs with slow muons at a neutrino factory are described. Emphasis is

More information

Introduction into Positron Annihilation

Introduction into Positron Annihilation Introduction into Positron Annihilation Introduction (How to get positrons? What is special about positron annihilation?) The methods of positron annihilation (positron lifetime, Doppler broadening, ACAR...)

More information

Slides by: Prof. Abeer Alharbi

Slides by: Prof. Abeer Alharbi Slides by: Prof. Abeer Alharbi electromagnetic radiation of high energy. They are produced by sub-atomic particle interactions, such as electron-positron annihilation, neutral pion decay, radioactive decay,

More information

Search for B + l + X with hadronic tagging method at Belle Experiment

Search for B + l + X with hadronic tagging method at Belle Experiment Search for + l + X with hadronic tagging method at elle Experiment Chanseok Park Yonsei University cspark@yhep.yonsei.ac.kr Feb 14th 2014 1 High1-2014 KIAS-NCTS Joint workshop Contents Motivation elle

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

Measurement of ortho-positronium lifetime and 2γ to 3γ branching ratio of positronium

Measurement of ortho-positronium lifetime and 2γ to 3γ branching ratio of positronium Measurement of ortho-positronium lifetime and 2γ to 3γ branching ratio of positronium Semester Thesis by Fukuda Yasutaka, Ikeda Tatsuya, Khaw Kim Siang Shimozawa Masaaki, Tanaka Shinichiro Science Faculty,

More information

Discovery of c, b and t quarks and quarkonia Marco Schramm

Discovery of c, b and t quarks and quarkonia Marco Schramm Discovery of c, b and t quarks and quarkonia Marco Schramm 7. November 2013 Marco Schramm 1 Outline Introduction November Revolution / Discovery of the Charm Quark Quarkonium Discovery of the Bottom Quark

More information

positron source EPOS - general concept - timing system - digital lifetime measurement

positron source EPOS - general concept - timing system - digital lifetime measurement The pulsed high-brightness positron source EPOS R. Krause-Rehberg 1, G. Brauer 2, A. Krille 1, M. Jungmann 1, S. Sachert 1, A. Rogov 2, K. Nowak 2 1 Martin-Luther-University Halle, Germany 2 Research Center

More information

Laboratory of Nuclear Solid State Physics, USTC

Laboratory of Nuclear Solid State Physics, USTC IV Laboratory of Nuclear Solid State Physics, USTC 5. e+e e+e- 2 180 180 e+e e+e- 2 CDB CDB, 2D 2D-ACAR ACAR e+ e+-e- CDB CDB 2D 2D-ACAR 1 = x y ρ 2γ z N ( p, p ) ( p) dp γ D ( p ) ρ ( p) dp z = 2 y dp

More information

Positron Annihilation in the Milky Way and beyond

Positron Annihilation in the Milky Way and beyond Positron Annihilation in the Milky Way and beyond Thomas Siegert, MPE Garching R. Diehl, A. C. Vincent, F. Guglielmetti, M. G. H. Krause, C. Boehm Research Area G Science Day, October 20 th 2016 Positron

More information

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Clemens Herlitzius TU München (E12) Prof. Shawn Bishop Clemens Herlitzius,

More information

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes K. Tajiri, T. Shimoda, K. Kura, M. Kazato, M. Suga, A. Takashima, T. Masue, T. Hori, T. Suzuki, T. Fukuchi, A.

More information

Hadron Spectroscopy Lecture 1 Introduction and Motivation

Hadron Spectroscopy Lecture 1 Introduction and Motivation Hadron Spectroscopy Lecture 1 Introduction and Motivation National Nuclear Physics Summer School at MIT Matthew Shepherd Indiana University Outline 1. Overview and Motivation 1.1.Uniue features of QCD

More information

arxiv: v1 [physics.ins-det] 26 Sep 2018

arxiv: v1 [physics.ins-det] 26 Sep 2018 SNSN-???-?? September 27, 2018 Latest Updates from the AlCap Experiment arxiv:1809.10122v1 [physics.ins-det] 26 Sep 2018 Andrew Edmonds on behalf of the AlCap Collaboration Lawrence Berkeley National Laboratory,

More information

Semileptonic Decays at CLEO:

Semileptonic Decays at CLEO: Semileptonic Decays at CLEO: Search for Two Gluon Couplings in D η Richard C. Gray Cornell University Laboratory for Elementary-Particle Physics The η Problem 1997 CLEO Measurements of: B Xη Naïve 97 Expectation:

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

arxiv: v2 [physics.ins-det] 17 Jun 2014

arxiv: v2 [physics.ins-det] 17 Jun 2014 Preprint typeset in JINST style - HYPER VERSION Compton Backscattering for the Calibration of KEDR Tagging System arxiv:146.244v2 [physics.ins-det] 17 Jun 214 V.V. Kaminskiy a,b, N.Yu. Muchnoi a,c, and

More information

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data Harold Rothfuss a,b, Larry Byars c, Michael E. Casey a, Maurizio

More information

new measurements of sin(2) & cos(2) at BaBar

new measurements of sin(2) & cos(2) at BaBar new measurements of sin(2) & cos(2) at BaBar, UC Irvine For the BaBar collaboration ICHEP24 August 16th, Beijing bruinsma@slac.stanford.edu Decay rates of B mesons 2 Time-dependent rates for B (f + ) or

More information