The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010

Size: px
Start display at page:

Download "The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD. Erik Minges April 23 rd, 2010"

Transcription

1 The PRIMEX Experiment: A Fundamental Test of the Chiral Anomaly Prediction in QCD Erik Minges April 23 rd, 2010

2 Outline Symmetry and conservation Laws Overview and examples PRIMEX physics motivation The Chiral Anomaly Experimental Setup PRIMEX first run results Prototype detector beamtest Energy calibration, shower profile, position resolution Conclusion

3 Symmetry What is it? Generalized to mean invariance A system which remains unchanged under a certain kind of transformation. Rotational symmetry of a pencil Symmetry Breaking Rotational Symmetry

4 Powerful tool in physics Symmetry cont. In 1905, Amalie Noether determined the connection between symmetry and conservation laws Noether s theorem For every continuous mathematical symmetry, there is a corresponding conservation law. it is only slightly overstating that physics is the study of symmetry. Philip Warren Anderson American Physicist and Nobel Laureate Contributions to theories of localization, antiferromagnetism, and high-temperature superconductivity

5 PRIMEX Experiment The PRIMEX experiment at Thomas Jefferson National Lab is to measure the lifetime of the π 0 particle with high precision. This experiment is a very important test of Quantum Chromodynamics (the theory to describe the strong interaction).

6 PRIMEX Physics Motivation Prediction of the 0 decay width in Chiral Anomaly is exact in the Chiral limit. However quarks have mass. Leads to correction in theory. Neutral Pion decay measured to test fundamental prediction of low energy QCD. 0 High precision measurement of decay rate, dominated by axial anomaly.

7 Chiral Anomaly Axial symmetry of the Classical Lagrangian of Quantum Chromodynamics is broken in the Chiral limit. Chiral limit is when the up, down quark masses vanish. This symmetry breaking is of pure Quantum mechanical origin due to quantization. The Lagrangian has continuous symmetry, but no conservation law associated with it i.e. - no conserved current

8 Confirmation of Quark Color In the chiral limit, the predicted decay amplitude A N (3f Where N C 3 is the number of quark colors in QCD and f MeV is the Pion decay constant. Precise predicted decay width C ) Number of quark colors will be directly measured by this experiment Number colors most fundamental parameter in Physics 2 GeV m 1 3 A eV

9 Primakoff Effect Virtual photon from nucleus of target interacts with tagged photon from incident photon beam. Virtual photon and tagged photon create neutral Pi meson Photopion production from Coulomb field of nucleus. Pion decay in forward direction, so need good central resolution. Pi zero has high branching ratio to decay into 2 gamma rays, which HYCAL can detect.

10 Experimental Setup Helium bag less particle interaction than air and cheaper than vacuum Magnet measure pair production to monitor photon flux and sweep out charged particles Electron beam passing through nucleus field and change momentum, produce Bremsstrahlung radiation Physics target (Primakoff) Radiator Measure energy and momentum of scattered electrons yield energy and momentum of gamma produced

11 Status of PRIMEX PrimEx-I () = 7.82eV2.2%2.1% Next toleading Order Chiral Anomaly Leading Order Chiral Anomaly

12 Analysis Results for the 6x6 PbWO 4 Crystal Prototype Detector Beam Test Center Crystals PbWO4 Surrounding Lead Glass

13 My Project for PRIMEX What is the need for an energy calibration? 36 PbWO 4 crystals detect incident beam energy via ADC Meaningful average pulse height signal from ADC requires calibration of each crystal using known incident beam energies How is the incident E beam beam energy found? x-y coordinate detector with 60 scintillating fibers on each axis Detects position of incident electrons. Each fiber approximately 2 mm in diameter e Dipole magnet s field yields incident energy of electrons Incident electron beam energy as a function of X fiber number is X * X * X X e

14 Relative Energy Calibration Alignment Each crystal needs to have the same response Align each individual crystal center Assume all incident energy is deposited at center of crystal Assume no energy is lost due to leakage into surrounding crystals Find mean ADC at center of crystal, divide by known incident energy E beam =A*(mean ADC) adc(1) for run 435 cut at (X=29) and (Y=31) mean ADC = 5413 i.e. For run 435 (centered on crystal 26) E beam = E(29) = (mean ADC) = so A = E-04!!!

15 Global Energy Calibration Absolute scale from 5x5 cluster size Shower interacts in several crystal Sum all deposited energy in surrounding crystals to account for leakage E beam = B*[ A i * (mean ADC) i ] i.e. For run 419 (centered on crystal 15) E beam = E(29) = A i * (mean ADC) I = so B = !!! with σ/e re = Now just take the average value of the four center crystals B avg =

16 Results - Ratio of Energies Deposited in a single module Error bars for (E re /E beam )associated with run 413 Maximum deposited energy is at center of crystal. Minimum deposited energy is at boundary of crystal. (As expected)

17 Results - Energy Resolution of the Prototype Error bars for (σ/e re )associated with run Energy resolution at center is greater than at boundaries of crystal. (As expected)

18 Results - Shower Profile The shower profile measures the dependence of the average pulse-height ratio for different crystal channels 1.) Adjacent Channel ratio A i /A i+1 2.) Adjacent Row ratio A j /A j+1 3.) Separated Channel ratio A i+1 /A i-1

19 Results - Adjacent Channel Ratio Run 435 for E26/E Boundary

20 Results - Adjacent Row Ratio Run 422 E3,9,15/E4,10,16 1 3, 9, 15 4, 10, 16 Boundary

21 Results - Separated Channels Ratio Run 435 for E28/E Center: 27

22 Reconstructed Position Method Center of Gravity Method Weight factor for cell Linear Weight where, Logarithmic Weight ) ( )* ( i N i i i i N i i cal E x E x ) ( i i E T i i i E E E ) ( N i E T E i T i i i E E W E ln 0, max 0 th i

23 Linear - Reconstructed Position 3x3 run 389 3x3 run

24 Linear - Reconstructed Position 5x5 run S shape indicates some systematic shift from the method incorporated.

25 Linear Position Resolution 3x3 run 389 3x3 run

26 Linear Position Resolution 5x5 run Position resolution worst at boundaries and best at center

27 Logarithmic Reconstructed Position ~ %3 error (leakage) 3x3 run 389 3x3 run ~ %3 error (leakage)

28 Logarithmic Reconstructed Position 5x5 run 413 (No systematic shift) 22 21

29 Logarithmic Position Resolution 3% error 3x3 run 389 3x3 run

30 Logarithmic Position Resolution 5x5 run 413 1% error 21 22

31 Linear or Logarithmic Weight? Linear weight - large systematic errors Radial energy fall off of showers is exponential Energy deposited in the module decreases exponentially as a function of the distance from the point of incidence.

32 Logarithmic Weight Ideal weight must employ a logarithmically weighted energy due to the exponential fall off of the shower profile The logarithmically weighting of the deposited energy signals produce the best results Which is what we were expecting from the results

33 Conclusion PRIMEX Experiment provide precision test on Chiral Anomaly prediction. Energy Resolution %1.7 at the center and %2.2 at boundaries Worse at edge of crystals Due to fluctuation of shower and energy leakage Reconstructed Position Center of gravity Linear has large systematic error Logarithmic is almost linear; small systematic shift

34 Thank You PrimEx! and my mentor: Dr. Gan - UNCW

35 Conservation Laws Symmetries in nature lead to conservation laws A particular measurable property of an isolated physical system does not change as the system evolves Corresponds to a conserved physical quantity. Conservation of energy, linear momentum, angular momentum, electric charge, probability, mass, etc. Usually derived from Lagrangian dynamics A reformulation of classical mechanics that combines conservation of momentum with conservation of energy.

36 Lagrangian Dynamics Lagrangian of a system is a classical method to derive Newton s second law of motion, F ma. Forces are hard to find. Lagrangian utilizes conservation of energy L xi, x i T xi, x i, t U xi, t, where is a generalized coordinate system L d L Lagrangian equation of motion: 0 xi dt x i Conservation Law If L x i L 0 x i x i C, where C is a constant.

37 Conservation Law second example Parity Violation Flip either one, or all spatial variable signs. Parity Example A mirror flips the original object by the vertical Parity of mirror = -1. Discontinuous symmetry > No conservation law. ),, ( ),, ( 1, ),, ( ),, ( 1, z y x z y x z y x z y x

38 Cross Section Cross section in particle physics expresses the likelihood of interaction between two particles. d Differential cross section, is the probability to observe a scattered particle per unit solid angle. d d d dns FN d t _ # Particles detected per second (Flux of incident particles)(# target particles)(detector area)

Beam Test Result for a Prototype PbWO 4 Calorimeter. by Matthew Reece

Beam Test Result for a Prototype PbWO 4 Calorimeter. by Matthew Reece Beam Test Result for a Prototype PbWO 4 Calorimeter by Matthew Reece PrimEx experiment The goal of the PrimEx collaboration is to determine the lifetime of the π 0 particle with greater accuracy than ever

More information

The π 0 Lifetime Experiment and Future Plans at JLab

The π 0 Lifetime Experiment and Future Plans at JLab The π 0 Lifetime Experiment and Future Plans at JLab North Carolina A&T State University, Greensboro, NC, USA (for the PrimEx Collaboration at JLab) Outline The PrimEx Experiment at JLab: Physics Motivation

More information

The π 0 Lifetime: Experimental Probe of. Dustin E. McNulty MIT/UMass for the PrimEx Collaboration April 16, 2008

The π 0 Lifetime: Experimental Probe of. Dustin E. McNulty MIT/UMass for the PrimEx Collaboration April 16, 2008 The π Lifetime: Experimental Probe of the QCD Axial Anomaly Dustin E. McNulty MIT/UMass for the mcnulty@jlab.org April 16, 28 The π Lifetime: Experimental Probe of the QCD Axial Anomaly Outline Physics

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

PrimEx Experiments and the Prospects of Rare η Decays at GlueX

PrimEx Experiments and the Prospects of Rare η Decays at GlueX PrimEx Experiments and the Prospects of Rare η Decays at GlueX Outline Liping Gan University of North Carolina Wilmington Challenges in Physics Precision tests of continuous symmetries of confinement QCD

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Search for Gluonic Excitations with GlueX at Jefferson Lab

Search for Gluonic Excitations with GlueX at Jefferson Lab Search for Gluonic Excitations with GlueX at Jefferson Lab Volker Credé Florida State University Tallahassee, FL The Structure and Dynamics of Hadrons Hirschegg, 01/19/2007 Outline 1 2 3 4 Outline 1 2

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

The Determination of Beam Asymmetry from Double Pion Photoproduction

The Determination of Beam Asymmetry from Double Pion Photoproduction The Determination of Beam Asymmetry from Double Pion Photoproduction Charles Hanretty Florida State University On behalf of the CLAS Collaboration Funding provided by DOE APS DNP Conference May 2, 2009

More information

Study of the decays at Wasa-at-COSY. Elisabetta Prencipe on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha

Study of the decays at Wasa-at-COSY. Elisabetta Prencipe on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha Study of the decays at Wasa-at-COSY on behalf of the Wasa Collaboration MesonNet Workshop, 17th -19th June 2013, Praha Outline Introduction The Wasa-at-COSY detector decays in the pd reaction e+e e+e e+e

More information

Status of PRad Experiment

Status of PRad Experiment Status of PRad Experiment Chao Gu Duke University For PRad Collaboration Outline The Proton Charge Radius Experiment Setup Analysis Status and Preliminary Results 2 The Proton Charge Radius Puzzle Proton

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

ABSTRACT OF DISSERTATION. Aram Teymurazyan. The Graduate School. University of Kentucky

ABSTRACT OF DISSERTATION. Aram Teymurazyan. The Graduate School. University of Kentucky ABSTRACT OF DISSERTATION Aram Teymurazyan The Graduate School University of Kentucky 2008 PHOTON FLUX DETERMINATION FOR A PRECISION MEASUREMENT OF THE NEUTRAL PION LIFETIME ABSTRACT OF DISSERTATION A dissertation

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit N. 9 The NA48 ECAL example (LKR) Roberta Arcidiacono R. Arcidiacono Calorimetry 1 Lecture overview The requirements Detector layout & construction Readout

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Sven Schumann. DPG Spring Meeting

Sven Schumann. DPG Spring Meeting Radiative 0 photoproduction with CB / TAPS Overview: Motivation Magnetic dipole moments of baryons (1232) resonance in p p 0 ' reactions Experimental set-up Energy-tagged photon beam Crystal Ball / TAPS

More information

Lucite Hodoscope for SANE

Lucite Hodoscope for SANE Lucite Hodoscope for SANE A. Ahmidouch, S. Danagoulian NC A&T State University Outline Cosmic Ray test of a lucite prototype bar The old result from Monte Carlo Geometry consideration Trigger Electronics

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

Studying η-meson Decays with WASA-at-COSY

Studying η-meson Decays with WASA-at-COSY Studying η-meson Decays with WASA-at-COSY Daniel Lersch 1, for the WASA-at-COSY Collaboration 1 Juelich Research Center, Germany Abstract. The η-meson is a unique tool in a way that it provides access

More information

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions

Lecture 7. both processes have characteristic associated time Consequence strong interactions conserve more quantum numbers then weak interactions Lecture 7 Conserved quantities: energy, momentum, angular momentum Conserved quantum numbers: baryon number, strangeness, Particles can be produced by strong interactions eg. pair of K mesons with opposite

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Meson Physics in Low-Energy QCD Workshop on Meson Transition Form Factors Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Elisabetta Prencipe Johannes Gutenberg University

More information

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005 Introduction to the Standard Model 1. e+e- annihilation and QCD M. E. Peskin PiTP Summer School July 2005 In these lectures, I will describe the phenomenology of the Standard Model of particle physics.

More information

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26 C o l u m n 3 Mukesh Saini Florida State University, Tallahassee, FL, 2010 1 OUTLINE Introduction Meson Spectroscopy Strangeonia Experiment CEBAF & CLAS HyCLAS & g12 Calibrations Analysis Summary 2 QCD

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections. INT Sept, A.M. Bernstein MIT

Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections. INT Sept, A.M. Bernstein MIT Measurement of the π 0 Lifetime: QCD Axial Anomaly and Chiral Corrections INT Sept, 2009 A.M. Bernstein MIT spontaneous chiral symmetry breaking pions π 0 γ γ : axial anomaly, chiral corrections ~m d -m

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

Neutrino Helicity Measurement

Neutrino Helicity Measurement PHYS 851 Introductory Nuclear Physics Instructor: Chary Rangacharyulu University of Saskatchewan Neutrino Helicity Measurement Stefan A. Gärtner stefan.gaertner@gmx.de December 9 th, 2005 2 1 Introduction

More information

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration

Meson spectroscopy at CLAS and CLAS12: the present and the future. Raffaella De Vita INFN Genova for the CLAS Collaboration Meson spectroscopy at CLAS and CLAS12: the present and the future Raffaella De Vita INFN Genova for the CLAS Collaboration Why hadron spectroscopy? QCD is responsible for most of the visible mass in the

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Discovery of charged bottomonium-like Z b states at Belle

Discovery of charged bottomonium-like Z b states at Belle Discovery of charged bottomonium-like Z b states at Belle Antje Peters 1 Christoph Rosenbaum 2 1 Goethe-Universität Frankfurt am Main 2 Justus-Liebig-Universität Giessen HGS-HIRe Lecture Week on Hadron

More information

Correction for PMT temperature dependence of the LHCf calorimeters

Correction for PMT temperature dependence of the LHCf calorimeters Journal of Physics: Conference Series OPEN ACCESS Correction for PMT temperature dependence of the LHCf calorimeters To cite this article: Eri Matsubayashi and the LHCf collaboration 2015 J. Phys.: Conf.

More information

Light-Meson Spectroscopy at Jefferson Lab

Light-Meson Spectroscopy at Jefferson Lab Light-Meson Spectroscopy at Jefferson Lab Volker Credé Florida State University, Tallahassee, Florida PANDA Collaboration Meeting Uppsala, Sweden 06/10/2015 Outline Introduction 1 Introduction 2 Detector

More information

A4 Laser Compton polarimetry

A4 Laser Compton polarimetry A4 Laser Compton polarimetry progress since PAVI06 J. Diefenbach Workshop on Parity Violation 2009, Bar Harbor, Maine - 24.06.2009 Outline Principles of Laser Compton polarimetry Experimental Setup Data

More information

Simulation study of scintillatorbased

Simulation study of scintillatorbased Simulation study of scintillatorbased calorimeter Hiroyuki Matsunaga (Tsukuba) For GLD-CAL & ACFA-SIM-J groups Main contributors: M. C. Chang, K. Fujii, T. Takeshita, S. Yamauchi, A. Nagano, S. Kim Simulation

More information

Parity Violation and Topological Currents

Parity Violation and Topological Currents Parity Violation and Topological Currents James Charbonneau UBC TRU Science Seminar Series Nov 17th 2011 Quantum Field Theory Quantum Field Theory Photons (very tiny particles, see inside circle) Quantum

More information

Highenergy Nuclear Optics of Polarized Particles

Highenergy Nuclear Optics of Polarized Particles Highenergy Nuclear Optics of Polarized Particles Vladimir G. Baryshevsky Research Institute for Nuclear Problems Belarusian State University 1> World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

The Neutral-Particle Spectrometer

The Neutral-Particle Spectrometer The Neutral-Particle Spectrometer White Paper outlining the Science and Path to Realization of the NPS The Neutral-Particle Spectrometer (NPS) Collaboration at Jefferson Lab November 26, 2014 The two-arm

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY

Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY Analysis of the forbidden decay 0 +e + +e with WASA-at-COSY Florian Bergmann 23.03.2011 1 Reminder: C-parity C-operator: turns particle into antiparticle E.g.: C e = C e C: phase factor Majorana particle:

More information

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS ASHOK DAS THOMAS FERBEL University of Rochester JOHN WILEY & SONS, INC. NEW YORK CHICHESTER BRISBANE TORONTO SINGAPORE CONTENTS Preface and Introduction Apologies

More information

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e CLEOc Cornell University June 7, 25 e e cc D D D K,D K e K K e 1 Outline CLEOc experiment and the physics program Some early results D> Absolute hadronic branching fractions Semileptonic decays 2 Testing

More information

NUCLEAR FORCES. Historical perspective

NUCLEAR FORCES. Historical perspective NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are

More information

The Tiny Muon versus the Standard Model. Paul Debevec Physics 403 November 14 th, 2017

The Tiny Muon versus the Standard Model. Paul Debevec Physics 403 November 14 th, 2017 The Tiny Muon versus the Standard Model Paul Debevec Physics 403 November 14 th, 2017 BNL E821 Muon g-2 Collaboration Standard Model of Particle Physics Components of the Standard Model of Particle Physics

More information

P3TMA Experimental Projects

P3TMA Experimental Projects P3TMA Experimental Projects 3 credits Take place @ S1 (from end of September to December); Enters in the average of the second semester. Projects currently available : Stern-Gerlach Experiment Quantum

More information

Particle Identification of the LHCb detector

Particle Identification of the LHCb detector HCP 2005 Particle Identification of the LHCb detector Ann.Van.Lysebetten@cern.ch on behalf of the LHCb collaboration CERN 5th July 2005 The LHCb experiment : introduction precision measurements of CP violation

More information

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly Conclusion This small book presents a description of the results of studies performed over many years by our research group, which, in the best period, included 15 physicists and laboratory assistants

More information

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in

- ~200 times heavier than the e GeV µ travels on average. - does not interact strongly. - does emit bremsstrahlung in Muons M. Swartz 1 Muons: everything you ve ever wanted to know The muon was first observed in cosmic ray tracks in a cloud chamber by Carl Anderson and Seth Neddermeyer in 1937. It was eventually shown

More information

Propagation in the Galaxy 2: electrons, positrons, antiprotons

Propagation in the Galaxy 2: electrons, positrons, antiprotons Propagation in the Galaxy 2: electrons, positrons, antiprotons As we mentioned in the previous lecture the results of the propagation in the Galaxy depend on the particle interaction cross section. If

More information

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range - Introduction Present: Photoproduction of Mesons at ELSA and MAMI CB-ELSA/TAPS Experiment Crystal Ball/TAPS

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

Reconstruction in Collider Experiments (Part IX)

Reconstruction in Collider Experiments (Part IX) Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments (Part IX) Peter Loch University of Arizona Tucson,

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P2 Experiment Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

More information

Adam Para, Fermilab CALOR2010, IHEP, Beijing May 14, 2010 TOTAL ABSORPTION HOMOGENEOUS CALORIMETER WITH DUAL READOUT

Adam Para, Fermilab CALOR2010, IHEP, Beijing May 14, 2010 TOTAL ABSORPTION HOMOGENEOUS CALORIMETER WITH DUAL READOUT Adam Para, Fermilab CALOR2010, IHEP, Beijing May 14, 2010 TOTAL ABSORPTION HOMOGENEOUS CALORIMETER WITH DUAL READOUT Summary Theoretical and experimental foundations of high resolution hadron calorimetry

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Overview of validations at LHC

Overview of validations at LHC G4 Workshop, Bordeaux, 8 November 2005 Overview of validations at LHC Alberto Ribon CERN PH/SFT http://lcgapp.cern.ch/project/simu/validation/ Physics Validation First cycle of electromagnetic physics

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies SciBar and future K2K physics F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies ICRR, 29 th October 2003 Outline Introduction: K2K SciBar detector: Physics goals Design Electron

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Ultrahigh Energy Cosmic Rays propagation I

Ultrahigh Energy Cosmic Rays propagation I Ultrahigh Energy Cosmic Rays propagation I Microwave background Energy loss processes for protons: - photoproduction interactions - pair production interactions - adiabatic loss due to the expansion of

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Weak Interactions I Standard Model of Particle Physics SS 23 ors and Helicity States momentum vector in z direction u R = p, = / 2 u L = p,

More information

Status Report on the Precision Measurement of d n 2

Status Report on the Precision Measurement of d n 2 Status Report on the Precision Measurement of d n 2 Experiment E06-014 Diana Parno (Carnegie Mellon University) David Flay, Matthew Posik (Temple University) December 15, 2009 Diana Parno (Carnegie Mellon)

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

Analysis of Lepton Pair Production at GlueX

Analysis of Lepton Pair Production at GlueX Analysis of Lepton Pair Production at GlueX A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by

More information

CMS ECAL status and performance with the first LHC collisions

CMS ECAL status and performance with the first LHC collisions CMS ECAL status and performance with the first LHC collisions XIV International Conference on Calorimetry in High Energy Physics (Calor 2010) Konstantinos Theofilatos (ETH Zurich) on behalf of CMS ECAL

More information

Hadronic D Decays and the D Meson Decay Constant with CLEO c

Hadronic D Decays and the D Meson Decay Constant with CLEO c Hadronic D Decays and the D Meson Decay Constant with CLEO c representing the CLEO Collaboration presented at the 3nd International Conference on High Energy Physics, Beijing, China, Aug. 16, 004 This

More information

High-t Meson Photoproduction: Experimental Capabilities

High-t Meson Photoproduction: Experimental Capabilities High-t Meson Photoproduction: Experimental Capabilities Yordanka Ilieva University of South Carolina Workshop on Probing Small-Size Configurations in High-t Photo/Electroproduction Jefferson Lab March

More information

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration

Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration High-t Exclusive 0 Photoproduction Moskov Amaryan Old Dominion University On behalf of the CLAS Collaboration Exclusive Meson Production and Short-Range Hadron Structure Workshop Jefferson Lab, Newport

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Vacuum Energy and the cosmological constant puzzle

Vacuum Energy and the cosmological constant puzzle Vacuum Energy and the cosmological constant puzzle Cosmological constant puzzle: Steven Bass Accelerating Universe: believed to be driven by energy of nothing (vacuum) Positive vacuum energy = negative

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Calibration of the CMS Electromagnetic Calorimeter with first LHC data

Calibration of the CMS Electromagnetic Calorimeter with first LHC data IPRD10 Siena, June 7-10 2010 1 Calibration of the CMS Electromagnetic Calorimeter with first LHC data Maria Margherita Obertino (Universita del Piemonte Orientale INFN Torino) On behalf of the CMS Collaboration

More information

Hidden Sector particles at SNS

Hidden Sector particles at SNS Hidden Sector particles at SNS 1 S E N S I T I V I T Y T O A X I O N S A N D A X I O N - L I K E P A R T I C L E S. A T H A N S H A T Z I K O U T E L I S Y U R I E F R E M E N K O U N I V E R S I T Y O

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

The Bohr Model of Hydrogen

The Bohr Model of Hydrogen The Bohr Model of Hydrogen Suppose you wanted to identify and measure the energy high energy photons. One way to do this is to make a calorimeter. The CMS experiment s electromagnetic calorimeter is made

More information

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS History of Elementary Particles THE CLASSICAL ERA (1897-1932) Elementary particle physics was born in 1897 with J.J. Thomson s discovery of the ELECTRONS

More information

The Standard Model of Particle Physics - I

The Standard Model of Particle Physics - I The Standard Model of Particle Physics - I Lecture 3 Quantum Numbers and Spin Symmetries and Conservation Principles Weak Interactions Accelerators and Facilities Eram Rizvi Royal Institution - London

More information

Measurement of the η-mass from the reaction γp pη in threshold region

Measurement of the η-mass from the reaction γp pη in threshold region Measurement of the η-mass from the reaction γp pη in threshold region A. Nikolaev for the Crystal Ball @ MAMI und A collaborations Helmholtz Institut für Strahlen- und Kernphysik, University Bonn 11.07.007

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

Status report on parity violation in the (1232) resonance

Status report on parity violation in the (1232) resonance Status report on parity violation in the (1232) resonance Luigi Capozza A4 Collaboration Institut für Kernphysik Johannes Gutenberg Universität Mainz Institutsseminar - 6.2.2006 Luigi Capozza, Institutsseminar

More information

The Forward Tagger for CLAS12 at Jefferson Laboratory and the MesonEx experiment

The Forward Tagger for CLAS12 at Jefferson Laboratory and the MesonEx experiment The Forward Tagger for CLAS12 at Jefferson Laboratory and the MesonEx experiment A. Celentano, Ciclo XXVI Advisors: External Advisor: Prof. Mauro Taiuti Dott. Marco Battaglieri Prof. Adam Szczepaniak The

More information

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005

Introduction. Tau leptons. SLHC. Summary. Muons. Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Leptons and Photons at the (S)LHC Scott S. Snyder Brookhaven National Laboratory ILC Physics and Detector workshop Snowmass, Aug 2005 Outline: Introduction. e/γ. Muons. Tau leptons. SLHC. Summary. Leptons

More information

Calorimeter for detection of the high-energy photons

Calorimeter for detection of the high-energy photons Calorimeter for detection of the high-energy photons 26.06.2012 1 1. Introduction 2 1. Introduction 2. Theory of Electromagnetic Showers 3. Types of Calorimeters 4. Function Principle of Liquid Noble Gas

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information