SUPPLEMENTARY MATERIAL

Size: px
Start display at page:

Download "SUPPLEMENTARY MATERIAL"

Transcription

1 Activity [RLU] Activity [RLU] RAB:TALA TALA:RAB TALB:RAB RAB:TALB RAB:TALB TALB:RAB TALA:RAB RAB:TALA Activity [nrlu] Activity [nrlu] SUPPLEMENTARY MATERIAL a b ng ng c [a]-cmv_fluc [25 ng] e [b]-cmv_fluc [25 ng] d Control Pristinamycin [2 mg/l] Control Erythromycin [2 mg/l] f PIP:RAB [ng] [pir]-p CMV_TALB:RAB [ng] [cb]-p CMV_fLuc [20 ng] E:RAB [ng] [etr]-p CMV_TALA:RAB [ng] [ac]-p CMV_fLuc [20 ng] Supplementary Figure 1 Designed TALE repressors strongly inhibit reporter gene expression. (a,b) TALE-A (a) and TALE-B (b) repressor efficiency and mutual orthogonality were tested using luminometry. N- and C-terminal RAB fusion variants of TALE repressors were tested. Increasing amounts of TALE repressors were co-transfected into HE293T cells along with the firefly luciferase reporter plasmid containing ten copies of appropriate binding sites upstream of the CMV promoter. (c,e) TALE repressors were coupled with pristinamycin- (c) and erythromycin-inducible (e) transcriptional repressors (PIP:RAB and E:RAB, respectively) as indicated in the schematic representation. (d,f) Response to chemical inducers was evaluated using luminometry. The firefly luciferase reporter plasmid with ten copies of appropriate binding sites upstream of the CMV promoter was co-transfected into HE293T cells along with increasing amounts of plasmids encoding TALE repressor constructs and plasmids, encoding the corresponding inducible transcriptional repressor in a 2:3 ratio. Values represent the mean and standard deviation of three replicates.

2 Activity [RLU] Activity [RLU] Activity [RLU] Activity [RLU] a b c [ng] TALA:VP16 TALB :VP16 [a]-min_fluc [25 ng] [ng] TALB:VP16 TALB :VP16 [b]-min_fluc [25 ng] e d f Control Pristinamycin [2 mg/l] Control Erythromycin [2 mg/l] PIP:RAB [ng] [pir]-p CMV_TALA:VP16 [ng] [ac]-p CMV_fLuc [20 ng] PIP:RAB [ng] [pir]-p CMV_TALA:VP16 [ng] [ac]-p min_fluc [20 ng] E:RAB [ng] [etr]-p CMV_TALB:VP16 [ng] [cb]-p CMV_fLuc [20 ng] E:RAB [ng] [etr]-p CMV_TALB:VP16 [ng] [cb]-p min_fluc [20 ng] Supplementary Figure 2 Designed TALE activators display strong activation of a minimal promoter. (a,b) TALE-A (a) and TALE-B (b) activator efficiency and mutual orthogonality were tested using luminometry. Increasing amounts of TALE activators were co-transfected into HE293T cells along with 25 ng of the firefly luciferase reporter plasmid with ten copies of appropriate binding sites upstream of a minimal promoter. (c,e) TALE activators were coupled with pristinamycin- (c) and erythromycin-inducible (e) transcriptional repressors (PIP:RAB and E:RAB, respectively) as indicated in the schematic representation. (d,f) Response to chemical inducers was evaluated using luminometry. Twenty nanograms of a firefly luciferase reporter plasmid containing ten copies of appropriate binding sites upstream of the CMV (left panels) or a minimal promoter (right panels) were co-transfected into HE293T cells along with increasing amounts of plasmids encoding TALE activator constructs and plasmids encoding the corresponding inducible transcriptional repressor in a 2:3 ratio. Values represent the mean and standard deviation of three replicates.

3 Concentration Concentration Concentration Concentration a b c d ER - ER cooperativity 1; leakage 0.00 PI - PI - PI ER - - ER - PI ER Time [hours] cooperativity 1; leakage 0.01 (Pmin); 0.1 (PCMV) PI ER - PI Supplementary Figure 3 Deterministic modeling demonstrates that positive feedback and competitive binding are the key features for achieving bistability with non-cooperative DNA binding elements. Ordinary differential equation (ODE)-based models of the competitive feedback switch with the repression leakage parameter varying from 0% (left panels) to 1% (right panels). To account for the non-cooperative TALE binding, Hill coefficients n i = 1 are assumed. (a,b) Simulations of chemical inducer pulse (PI, ER) and growth in the absence of an inducer (-) demonstrate robustness to incomplete repression in contrast to the mutual repressor switch models (Fig. 1c). Bistability is achieved despite low Hill coefficients and incomplete repression. (c,d) Switching between the two states (PI, ER). Details on the model are available in Supplementary Note 1.

4 mcitrine [FI] mcitrine [FI] mcitrine [FI] mcitrine [FI] a b c mcitrine TagBFP TagBFP [FI] d mcitrine TagBFP TagBFP [FI] mcitrine TagBFP TagBFP [FI] mcitrine TagBFP TagBFP [FI] Supplementary Figure 4 Control experiments for the competitive feedback switch show that all components of the genetic circuit function as expected. (a,b) Excess TALE repressors and activators corresponding to one of the two states induce only that selected state, as depicted in the schematic presentations (upper panels), experimentally determined with confocal microscopy and flow cytometry (lower panels). (c,d) Addition of only one of the chemically inducible repressors (E:RAB or PIP:RAB) in the absence of inducers represses only the selected state, thus inducing the opposite state, as depicted in the schematic presentations (upper panels), confirmed with confocal microscopy and flow cytometry (lower panels). Images and histograms are representative of at least three independent experiments. Scale bar = 50 µm.

5 mcitrine [FI] Cell number [%] mcitrine [FI] Cell number [%] mcitrine mcitrine TagBFP TagBFP a PI added ER added b ER PI 3 days 6 days 9 days c PI ER 3 days 6 days 9 days d Both TagBFP mcitrine e Both TagBFP mcitrine TagBFP [FI] days ER PI TagBFP [FI] days PI ER Supplementary Figure 5 Confocal microscopy and flow cytometry analyses of controlled switching between stable states. (a) A schematic presentation of switching between stable states. (b,c,d,e) Addition of an inducer molecule immediately after transfection causes expression of the selected state. Replacement of the initial inducer molecule with the opposite chemical inducer three days after transfection caused a slow, but clear, transition of the initial state into the opposite state, confirmed with confocal microscopy and flow cytometry (b,d) Erythromycin to pristinamycin; (c,e) pristinamycin to erythromycin. Scale bar = 50 µm. The microscopy and flow cytometry results are representative of at least three independent experiments. The number of cells expressing specific reporters (as obtained from flow cytometry) is presented in the histograms.

6 a b Supplementary Figure 6 The competitive feedback switch based on the minimal promoters toggles faster than the switch based on the constitutive CMV promoters. Simulations of toggling from the (a) pristinamycin- to erythromycin-induced state (PI to ER) and (b) from the erythromycin- to pristinamycininduced state (ER to PI) with the stochastic model. The competitive feedback switch with minimal promoters reaches a stable steady state in significantly shorter time after the introduction of the second inducer. Details of the model are available in Supplementary Note 2.

7 mcitrine mcitrine [FI] mcitrine [FI] Cell number [%] TagBFP mcitrine mcitrine [FI] mcitrine [FI] TagBFP Cell number [%] a PI added ER added b PI ER 3 days 6 days 10 days 13 days c PI (3 d) ER (15 d) 100 PI ER TagBFP [FI] TagBFP [FI] Time [d] d ER PI 3 days 6 days 10 days 13 days e Both TagBFP mcitrine ER (3 d) PI (15 d) 100 ER PI TagBFP [FI] TagBFP [FI] Time [d] Supplementary Figure 7 Toggling between the two stable states by the competitive feedback switch based on minimal promoters. (a) A schematic presentation of switching between stable states. (b,c,d,e) Addition of the inducer molecule promotes expression of the selected state. Replacement of the initial inducer molecule (PI or ER) with the opposite chemical inducer (ER or PI) three days after transfection triggered a transition from the initial state to the opposite state, which was confirmed with confocal microscopy and flow cytometry. (b,c) Switch from pristinamycin to erythromycin (PI to ER); (d,e) switch from erythromycin to pristinamycin (ER to PI). Scale bar = 50 µm. The microscopy and flow cytometry results are representative of at least three independent experiments. The number of cells expressing specific reporters obtained from flow cytometry is presented in the histograms (c and e, right panel).

8 Supplementary Table 1 Plasmids used in the study. Unless stated otherwise, all constructs containing the CMV promoter were inserted in the pcdna3 backbone, and all constructs containing the minimal promoter were inserted in the pgl4.16 backbone. No. Plasmid name and construct illustration Plasmid description [CMV]_l2_TALA:RAB [CMV]_l2_TALB:RAB [CMV]_l2_RAB: TALA [CMV]_l2_RAB: TALB [CMV]_l2_TALA:VP16 [CMV]_l2_TALB:VP16 Plasmid ensures constitutive expression of TAL effector A with 2xNLS signal and RAB repression domain on the C-terminal end (TALA:RAB). Plasmid ensures constitutive expression of TAL effector B with 2xNLS signal and RAB repression domain on the C-terminal end (TALB:RAB). Plasmid ensures constitutive expression of TAL effector A with 2xNLS signal and RAB repression domain on the N-terminal end (RAB:TALA). Plasmid ensures constitutive expression of TAL effector B with 2xNLS signal and RAB repression domain on the N-terminal end (RAB:TALB). Plasmid ensures constitutive expression of TAL effector A with 2xNLS signal and VP16 activation domain (TALA:VP16). Plasmid ensures constitutive expression of TAL effector B with 2xNLS signal and VP16 activation domain (TALB:VP16) x[a]_l4_[CMV]_l2_fLuc 10x[b]_l4_[CMV]_l2_fLuc Plasmid ensures expression of reporter (firefly luciferase) in the absence of TALA:RAB or RAB:TALA. 10 repeats of TALA binding sites [a] are cloned upstream and the reporter gene downstream of a CMV promoter. Plasmid ensures expression of reporter (firefly luciferase) in the absence of TALB:RAB or RAB:TALB. 10 repeats of TALB binding sites [b] are cloned upstream and the reporter gene downstream of a CMV promoter. 10x[a]_l3_[min]_l1_fLuc Plasmid ensures expression of reporter (firefly luciferase) in the presence of TALA:VP repeats of TALA binding sites [a] are cloned upstream and the reporter gene downstream of a minimal promoter. 10x[b]_l3_[min]_l1_fLuc Plasmid ensures expression of reporter (firefly luciferase) in the presence of TALB:VP repeats of TALB binding sites [b] are cloned upstream and the reporter gene downstream of a minimal promoter. 3x[pir]_l4_[CMV]_l2_TALB:RAB 3x[pir]_l4_[CMV]_l2_TALA:VP16 8x[etr]_l4_[CMV]_l2_TALA:RAB 8x[etr]_l4_[CMV]_l2_TALB:VP16 [CMV]_l2_PIP:RAB Plasmid ensures expression of TALB:RAB in the absence of PIP:RAB or in the presence of pristinamycin. 3 repeats of the PIP binding site [pir] are cloned upstream and TALB:RAB downstream of a CMV promoter. Plasmid ensures expression of TALA:VP16 in the absence of PIP:RAB or in the presence of pristinamycin. 3 repeats of the PIP binding site [pir] are cloned upstream and TALA:VP16 downstream of a CMV promoter. Plasmid ensures expression of TALA:RAB in the absence of E:RAB or in the presence of erythromycin. 8 repeats of the E binding site [etr] are cloned upstream and TALA:RAB downstream of a CMV promoter. Plasmid ensures expression of TALB:VP16 in the absence of E:RAB or in the presence of erythromycin. 8 repeats of the E binding site [etr] are cloned upstream and TALB:VP16 downstream of a CMV promoter. Plasmid ensures expression of PIP (pristinamycin inducible protein) with 3xNLS signal and RAB repression domain (PIP:RAB). 16 [CMV]_l2_E:RAB Plasmid ensures expression of E (erithromycin inducible protein) with3x NLS signal and RAB repression domain (E:RAB) x[b]_l4_[CMV]_l2_TALA:RAB:t2A:mCit Plasmid ensures expression of TALA:RAB and mcitrine in the absence of TALB:RAB. 10 repeats of TALB binding sites [b] are cloned upstream and TALA:RAB linked to mcitrine reporter via the t2a sequence downstream of a CMV promoter. 10x[a]_l4_[CMV]_l2_TALB:RAB:t2A:BFP Plasmid ensures expression of TALB:RAB and TagBFP in the absence of TALA:RAB. 10 repeats of TALA binding sites [a] are cloned upstream and TALB:RAB linked to TagBFP reporter via the t2a sequence downstream of a CMV promoter. 10x[a]_l4_[CMV]_l2_TALA:VP16 Plasmid ensures expression of TALA:VP16 in the absence of TALA:RAB. 10 repeats of TALA binding sites [a] are cloned upstream and TALA:VP16 downstream of a CMV promoter x[b]_l4_[CMV]_l2_TALB:VP16 Plasmid ensures expression of TALB:VP16 in the absence of TALB:RAB. 10 repeats of TALB binding sites [b] are cloned upstream and TALB:VP16 downstream of a CMV promoter x[b]_l3_[min]_l1_TALA:RAB:t2A:mCit Plasmid ensures expression of TALA:RAB and mcitrine in the presence of TALB:VP16. 10

9 repeats of TALB binding sites [b] are cloned upstream and TALA:RAB linked to mcitrine via the t2a sequence downstream of a minimal promoter. 10x[a]_l3_[min]_l1_TALB:RAB:t2A:BFP Plasmid ensures expression of TALB:RAB and TagBFP in the presence of TALA:VP repeats of TALA binding sites [a] are cloned upstream and TALB:RAB linked to TagBFP via the t2a sequence downstream of a minimal promoter. 10x[b]_l3_[min]_l1_TALA:RAB:t2A:fLuc 10x[a]_l3_[min]_l1_TALB:RAB:t2A:fLuc Plasmid ensures expression of TALA:RAB and firefly luciferase in the presence of TALB:VP repeats of TALB binding sites [b] are cloned upstream and TALA:RAB linked to firefly luciferase via the t2a sequence downstream of a minimal promoter. Plasmid ensures expression of TALB:RAB and firefly luciferase in the presence of TALA:VP repeats of TALA binding sites [a] are cloned upstream and TALB:RAB linked to firefly luciferase via the t2a sequence downstream of a minimal promoter x[b]_l3_[min]_l1_TALA:RAB 10x[a]_l3_[min]_l1_TALB:RAB 10x[a]_l3_[min]_l1_TALA:VP16 10x[b]_l3_[min]_l1_TALB:VP16 [CMV]_mCherry [CMV]_iRFP670 [T]_rLuc Plasmid ensures expression of TALA:RAB in the presence of TALB:VP repeats of TALB binding sites [b] are cloned upstream and TALA:RAB downstream of a minimal promoter. Plasmid ensures expression of TALB:RAB in the presence of TALA:VP repeats of TALA binding sites [a] are cloned upstream and TALB:RAB downstream of a minimal promoter. Plasmid ensures expression of TALA:VP16 in the presence of TALA:VP repeats of TALA binding sites [a] are cloned upstream and TALA:VP16 downstream of a minimal promoter. Plasmid ensures expression of TALB:VP16 in the presence of TALB:VP repeats of TALB binding sites [b] are cloned upstream and TALB:VP16 downstream of a minimal promoter. pmcherry-c1 (Clontech) with mcherry gene insert. Plasmid ensures constitutive expression of mcherry, and was used to normalize levels of transfection in confocal microscopy experiments. pcdna3with irfp670 gene insert. Plasmid ensures constitutive expression of irfp, and was used to normalize levels of transfection in flow cytometry experiments. phrl-t (Promega) with Renilla luciferase gene insert. Plasmid ensures constitutive expression of Renilla luciferase, and was used to normalize levels of transfection in luciferase assay experiments.

10 Supplementary Table 2 Nucleotide and amino acid sequences of the constructs used in the study. Nucleotide/ amino acid sequence P CMV CMV promoter from plasmid vector pcdna3 acattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctg gctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggactatttacgg taaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgac cttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgact cacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacg caaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctc P min Minimal promoter tagagggtatataatggaagctcgacttccag 10x[a] TALA binding site [a] tttactgctgctcccgct tttactgctgctcccgcttaaagagcagaaactcatgctggcagccggggtaccgcaggcaagtcgctttactgctgctcccgcttaaagagcagaaactcaatgga atcacggcggccgcccgtatctcatcctttactgctgctcccgcttaaagagcagaaactcaaatgcgtcggcgtgcggccgctgccagttgcatttactgctgctc ccgcttaaagagcagaaactcattggctgtcctagggtacctggacgctccttgtttactgctgctcccgcttaaagagcagaaactcatggctggtgccgcaccgg taagcagaactagaggtggcaccggtttgattgcacagctttactgctgctcccgcttaaagagcagaaactcatgctggcagccggggtaccgcaggcaagtcgct ttactgctgctcccgcttaaagagcagaaactcaatggaatcacggcggccgcccgtatctcatcctttactgctgctcccgcttaaagagcagaaactcaaatgcg tcggcgtgcggccgctgccagttgcatttactgctgctcccgcttaaagagcagaaactcattggctgtcctagggtacctggacgctccttgtttactgctgctcc cgcttaaagagcagaaactca 10x[b] TALB binding site [b] tcttccgtttccacatct taaagagcagaaactcatcttccgtttccacatcttgctggcagccggggtaccgcaggcaagtcgctaaagagcagaaactcatcttccgtttccacatctatgga atcacggcggccgcccgtatctcatcctaaagagcagaaactcatcttccgtttccacatctaatgcgtcggcgtgcggccgctgccagttgcataaagagcagaaa ctcatcttccgtttccacatctttggctgtcctagggtacctggacgctccttgtaaagagcagaaactcatcttccgtttccacatcttggctggtgccgcaccgg taagcagaactagaggtggcaccggtttgattgcacagctaaagagcagaaactcatcttccgtttccacatcttgctggcagccggggtaccgcaggcaagtcgct aaagagcagaaactcatcttccgtttccacatctatggaatcacggcggccgcccgtatctcatcctaaagagcagaaactcatcttccgtttccacatctaatgcg tcggcgtgcggccgctgccagttgcataaagagcagaaactcatcttccgtttccacatctttggctgtcctagggtacctggacgctccttgtaaagagcagaaac tcatcttccgtttccacatct l 1 tggctggtgccgcaccggtaagcagaggatct l 2 Sequence between binding sites and Pmin. Sequence between binding sites and PCMV. tggctggtgccgcaccggtaagcagaggatcctgtacgggccagatatacgcgttg l 3 ctcgagggcaatccggtactgttggtaaagccaccgaattc Sequence between Pmin and ozak sequence. l 4 Sequence between PCMV and ozak sequence. aagcttggtaccgagctcggatccactagtaacggccgccagtgtgctggaattc TALA TALEN1257 from aa 2-804; Addgene plasmid gactacaaagaccatgacggtgattataaagatcatgacatcgattacaaggatgacgatgacaagatggcccccaagaagaagaggaaggtgggcattcaccgcgg ggtacctatggtggacttgaggacactcggttattcgcaacagcaacaggagaaaatcaagcctaaggtcaggagcaccgtcgcgcaacaccacgaggcgcttgtgg ggcatggcttcactcatgcgcatattgtcgcgctttcacagcaccctgcggcgcttgggacggtggctgtcaaataccaagatatgattgcggccctgcccgaagcc acgcacgaggcaattgtaggggtcggtaaacagtggtcgggagcgcgagcacttgaggcgctgctgactgtggcgggtgagcttagggggcctccgctccagctcga caccgggcagctgctgaagatcgcgaagagagggggagtaacagcggtagaggcagtgcacgcctggcgcaatgcgctcaccggggcccccttgaacctgaccccag accaggtagtcgcaatcgcgtcaaacggagggggaaagcaagccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaa gtcgtggccattgcaagcaatgggggtggcaaacaggctcttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgt agcgattgcgtcgaacattggagggaaacaagcattggagactgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgcca tcgccagccatgatggcggtaagcaggcgctggaaacagtacagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcg tcaaacggagggggaaagcaagccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcaaataa taacggtggcaaacaggctcttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgtcgcatgacg gagggaaacaagcattggagactgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgcctcgaatggcggcggt aagcaggcgctggaaacagtacagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcgaacaataatgggggaaagca agccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcatcccacgacggtggcaaacaggctc ttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgtccaacggtggagggaaacaagcattggag actgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgccagccatgatggcggtaagcaggcgctggaaacagt acagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcgtcacatgacgggggaaagcaagccctggaaaccgtgcaaa ggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcatcccacgacggtggcaaacaggctcttgagacggttcagagactt ctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgaataacaatggagggaaacaagcattggagactgtccaacggctccttcc cgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgccagccatgatggcggtaagcaggcgctggaaacagtacagcgcctgctgcctgtac tgtgccaggatcatggactgacacccgaacaggtggtcgccattgcttctaatgggggaggacggccagccttggagtccatcgtagcccaattgtccaggcccgat cccgcgttggctgcgttaacgaatgaccatctggtggcgttggcatgtcttggtggacgacccgcgctcgatgcagtcaaaaagggtctgcctcatgctcccgcatt gatcaaaagaaccaaccggcggattcccgagagaacttcccatcgagtcgcgggatcc DYDHDGDYDHDIDYDDDDMAPRVGIHRGVPMVDLRTLGYSQQQQEIPVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVYQDMIAALPEA THEAIVGVGQWSGARALEALLTVAGELRGPPLQLDTGQLLIARGGVTAVEAVHAWRNALTGAPLNLTPDQVVAIASNGGGQALETVQRLLPVLCQDHGLTPEQ VVAIASNGGGQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGQALETVQRLLPVLCQDHGLTPDQVVAIA SNGGGQALETVQRLLPVLCQDHGLTPEQVVAIANNNGGQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGQALETVQRLLPVLCQAHGLTPAQVVAIASNGGG QALETVQRLLPVLCQDHGLTPDQVVAIANNNGGQALETVQRLLPVLCQDHGLTPEQVVAIASHDGGQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGQALE TVQRLLPVLCQAHGLTPAQVVAIASHDGGQALETVQRLLPVLCQDHGLTPDQVVAIASHDGGQALETVQRLLPVLCQDHGLTPEQVVAIASHDGGQALETVQRL LPVLCQAHGLTPDQVVAIANNNGGQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGQALETVQRLLPVLCQDHGLTPEQVVAIASNGGGRPALESIVAQLSRPD PALAALTNDHLVALACLGGRPALDAVGLPHAPALIRTNRRIPERTSHRVAGS TALB TALEN1297 from aa 2-804; Addgene plasmid gactacaaagaccatgacggtgattataaagatcatgacatcgattacaaggatgacgatgacaagatggcccccaagaagaagaggaaggtgggcattcaccgcgg ggtacctatggtggacttgaggacactcggttattcgcaacagcaacaggagaaaatcaagcctaaggtcaggagcaccgtcgcgcaacaccacgaggcgcttgtgg ggcatggcttcactcatgcgcatattgtcgcgctttcacagcaccctgcggcgcttgggacggtggctgtcaaataccaagatatgattgcggccctgcccgaagcc

11 acgcacgaggcaattgtaggggtcggtaaacagtggtcgggagcgcgagcacttgaggcgctgctgactgtggcgggtgagcttagggggcctccgctccagctcga caccgggcagctgctgaagatcgcgaagagagggggagtaacagcggtagaggcagtgcacgcctggcgcaatgcgctcaccggggcccccttgaacctgaccccag accaggtagtcgcaatcgcgtcacatgacgggggaaagcaagccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaa gtcgtggccattgcaagcaatgggggtggcaaacaggctcttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgt agcgattgcgtccaacggtggagggaaacaagcattggagactgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgcca tcgccagccatgatggcggtaagcaggcgctggaaacagtacagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcg tcacatgacgggggaaagcaagccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcaaataa taacggtggcaaacaggctcttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgtccaacggtg gagggaaacaagcattggagactgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgcctcgaatggcggcggt aagcaggcgctggaaacagtacagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcgtcaaacggagggggaaagca agccctggaaaccgtgcaaaggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcatcccacgacggtggcaaacaggctc ttgagacggttcagagacttctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgtcgcatgacggagggaaacaagcattggag actgtccaacggctccttcccgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgcctccaatattggcggtaagcaggcgctggaaacagt acagcgcctgctgcctgtactgtgccaggatcatggactgaccccagaccaggtagtcgcaatcgcgtcacatgacgggggaaagcaagccctggaaaccgtgcaaa ggttgttgccggtcctttgtcaagaccacggccttacaccggagcaagtcgtggccattgcaagcaacatcggtggcaaacaggctcttgagacggttcagagactt ctcccagttctctgtcaagcccacgggctgactcccgatcaagttgtagcgattgcgtccaacggtggagggaaacaagcattggagactgtccaacggctccttcc cgtgttgtgtcaagcccacggtttgacgcctgcacaagtggtcgccatcgccagccatgatggcggtaagcaggcgctggaaacagtacagcgcctgctgcctgtac tgtgccaggatcatggactgacacccgaacaggtggtcgccattgcttctaatgggggaggacggccagccttggagtccatcgtagcccaattgtccaggcccgat cccgcgttggctgcgttaacgaatgaccatctggtggcgttggcatgtcttggtggacgacccgcgctcgatgcagtcaaaaagggtctgcctcatgctcccgcatt gatcaaaagaaccaaccggcggattcccgagagaacttcccatcgagtcgcgggatcc DYDHDGDYDHDIDYDDDDMAPRVGIHRGVPMVDLRTLGYSQQQQEIPVRSTVAQHHEALVGHGFTHAHIVALSQHPAALGTVAVYQDMIAALPEA THEAIVGVGQWSGARALEALLTVAGELRGPPLQLDTGQLLIARGGVTAVEAVHAWRNALTGAPLNLTPDQVVAIASHDGGQALETVQRLLPVLCQDHGLTPEQ VVAIASNGGGQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGQALETVQRLLPVLCQDHGLTPDQVVAIA SHDGGQALETVQRLLPVLCQDHGLTPEQVVAIANNNGGQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGQALETVQRLLPVLCQAHGLTPAQVVAIASNGGG QALETVQRLLPVLCQDHGLTPDQVVAIASNGGGQALETVQRLLPVLCQDHGLTPEQVVAIASHDGGQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGQALE TVQRLLPVLCQAHGLTPAQVVAIASNIGGQALETVQRLLPVLCQDHGLTPDQVVAIASHDGGQALETVQRLLPVLCQDHGLTPEQVVAIASNIGGQALETVQRL LPVLCQAHGLTPDQVVAIASNGGGQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGQALETVQRLLPVLCQDHGLTPEQVVAIASNGGGRPALESIVAQLSRPD PALAALTNDHLVALACLGGRPALDAVGLPHAPALIRTNRRIPERTSHRVAGS RAB Addgene plasmid ggcggtggtgctttgtctcctcagcactctgctgtcactcaaggaagtatcatcaagaacaaggagggcatggatgctaagtcactaactgcctggtcccggacact ggtgaccttcaaggatgtatttgtggacttcaccagggaggagtggaagctgctggacactgctcagcagatcgtgtacagaaatgtgatgctggagaactataaga acctggtttccttgggttatcagcttactaagccagatgtgatcctccggttggagaagggagaagagccctggctggtggagagagaaattcaccaagagacccat cctgattcagagactgcatttgaaatcaaatcatcagtt GGGALSPQHSAVTQGSIINEGMDASLTAWSRTLVTFDVFVDFTREEWLLDTAQQIVYRNVMLENYNLVSLGYQLTPDVILRLEGEEPWLVEREIHQETH PDSETAFEISSV VP16 39 gcacccccgaccgatgtcagcctgggggacgagctccacttagacggcgaggacgtggcgatggcgcatgccgacgcgctagacgatttcgatctggacatgttggg ggacggggattccccgggtccgggatttaccccccacgactccgccccctacggcgctctggatatggccgacttcgagtttgagcagatgtttaccgatgcccttg gaattgacgagtacggtggg APPTDVSLGDELHLDGEDVAMAHADALDDFDLDMLGDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDALGIDEYGG NLS gatccaaaaaagaagagaaaggta DPRV t2a peptide 42 SV40 large T-antigen nuclear localization sequence agagccgaggggagaggaagtcttctgacctgcggagacgtcgaagagaatcctggaccc RAEGRGSLLTCGDVEENPGP mcitrine 40 gtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcga tgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggcctgatgtgcttcg cccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaag acccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagta caactacaacagccacaacgtctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcg ccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaag cgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag VSGEELFTGVVPILVELDGDVNGHFSVSGEGEGDATYGLTLFICTTGLPVPWPTLVTTFGYGLMCFARYPDHMQHDFFSAMPEGYVQERTIFFDDGNY TRAEVFEGDTLVNRIELGIDFEDGNILGHLEYNYNSHNVYIMADQNGIVNFIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSYQSALSDPNE RDHMVLLEFVTAAGITLGMDELY TagBFP ptagbfp-n (Evrogen) agcgagctgattaaggagaacatgcacatgaagctgtacatggagggcaccgtggacaaccatcacttcaagtgcacatccgagggcgaaggcaagccctacgaggg cacccagaccatgagaatcaaggtggtcgagggcggccctctccccttcgccttcgacatcctggctactagcttcctctacggcagcaagaccttcatcaaccaca cccagggcatccccgacttcttcaagcagtccttccctgagggcttcacatgggagagagtcaccacatacgaagacgggggcgtgctgaccgctacccaggacacc agcctccaggacggctgcctcatctacaacgtcaagatcagaggggtgaacttcacatccaacggccctgtgatgcagaagaaaacactcggctgggaggccttcac cgagacgctgtaccccgctgacggcggcctggaaggcagaaacgacatggccctgaagctcgtgggcgggagccatctgatcgcaaacatcaagaccacatatagat ccaagaaacccgctaagaacctcaagatgcctggcgtctactatgtggactacagactggaaagaatcaaggaggccaacaacgagacctacgtcgagcagcacgag gtggcagtggccagatactgcgacctccctagcaaactggggcacaagcttaat SELIENMHMLYMEGTVDNHHFCTSEGEGPYEGTQTMRIVVEGGPLPFAFDILATSFLYGSTFINHTQGIPDFFQSFPEGFTWERVTTYEDGGVLTATQDT SLQDGCLIYNVIRGVNFTSNGPVMQTLGWEAFTETLYPADGGLEGRNDMALLVGGSHLIANITTYRSPANLMPGVYYVDYRLERIEANNETYVEQHE VAVARYCDLPSLGHLN fluc Firefly luciferase from the plasmid vector pgl4.16 gaagatgccaaaaacattaagaagggcccagcgccattctacccactcgaagacgggaccgccggcgagcagctgcacaaagccatgaagcgctacgccctggtgcc cggcaccatcgcctttaccgacgcacatatcgaggtggacattacctacgccgagtacttcgagatgagcgttcggctggcagaagctatgaagcgctatgggctga atacaaaccatcggatcgtggtgtgcagcgagaatagcttgcagttcttcatgcccgtgttgggtgccctgttcatcggtgtggctgtggccccagctaacgacatc tacaacgagcgcgagctgctgaacagcatgggcatcagccagcccaccgtcgtattcgtgagcaagaaagggctgcaaaagatcctcaacgtgcaaaagaagctacc gatcatacaaaagatcatcatcatggatagcaagaccgactaccagggcttccaaagcatgtacaccttcgtgacttcccatttgccacccggcttcaacgagtacg acttcgtgcccgagagcttcgaccgggacaaaaccatcgccctgatcatgaacagtagtggcagtaccggattgcccaagggcgtagccctaccgcaccgcaccgct tgtgtccgattcagtcatgcccgcgaccccatcttcggcaaccagatcatccccgacaccgctatcctcagcgtggtgccatttcaccacggcttcggcatgttcac cacgctgggctacttgatctgcggctttcgggtcgtgctcatgtaccgcttcgaggaggagctattcttgcgcagcttgcaagactataagattcaatctgccctgc tggtgcccacactatttagcttcttcgctaagagcactctcatcgacaagtacgacctaagcaacttgcacgagatcgccagcggcggggcgccgctcagcaaggag

12 gtaggtgaggccgtggccaaacgcttccacctaccaggcatccgccagggctacggcctgacagaaacaaccagcgccattctgatcacccccgaaggggacgacaa gcctggcgcagtaggcaaggtggtgcccttcttcgaggctaaggtggtggacttggacaccggtaagacactgggtgtgaaccagcgcggcgagctgtgcgtccgtg gccccatgatcatgagcggctacgttaacaaccccgaggctacaaacgctctcatcgacaaggacggctggctgcacagcggcgacatcgcctactgggacgaggac gagcacttcttcatcgtggaccggctgaagagcctgatcaaatacaagggctaccaggtagccccagccgaactggagagcatcctgctgcaacaccccaacatctt cgacgccggggtcgccggcctgcccgacgacgatgccggcgagctgcccgccgcagtcgtcgtgctggaacacggtaaaaccatgaccgagaaggagatcgtggact atgtggccagccaggttacaaccgccaagaagctgcgcggtggtgttgtgttcgtggacgaggtgcctaaaggactgaccggcaagttggacgcccgcaagatccgc gagattctcattaaggccaagaagggcggcaagatcgccgtgaattctgcttgcaagaactggttcagtagcttaagccactttgtgatccaccttaacagccacgg cttccctcccgaggtggaggagcaggccgccggcaccctgcccatgagctgcgcccaggagagcggcatggatagacaccctgctgcttgcgccagcgccaggatca acgtc EDANIGPAPFYPLEDGTAGEQLHAMRYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMRYGLNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDI YNERELLNSMGISQPTVVFVSGLQILNVQLPIIQIIIMDSTDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDTIALIMNSSGSTGLPGVALPHRTA CVRFSHARDPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYIQSALLVPTLFSFFASTLIDYDLSNLHEIASGGAPLSE VGEAVARFHLPGIRQGYGLTETTSAILITPEGDDPGAVGVVPFFEAVVDLDTGTLGVNQRGELCVRGPMIMSGYVNNPEATNALIDDGWLHSGDIAYWDED EHFFIVDRLSLIYGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGTMTEEIVDYVASQVTTALRGGVVFVDEVPGLTGLDARIR EILIAGGIAVNSACNWFSSLSHFVIHLNSHGFPPEVEEQAAGTLPMSCAQESGMDRHPAACASARINV E Erythromycin inducible protein 25 ccccgccccaagctcaagtccgatgacgaggtactcgaggccgccaccgtagtgctgaagcgttgcggtcccatagagttcacgctcagcggagtagcaaaggaggt ggggctctcccgcgcagcgttaatccagcgcttcaccaaccgcgatacgctgctggtgaggatgatggagcgcggcgtcgagcaggtgcggcattacctgaatgcga taccgataggcgcagggccgcaagggctctgggaatttttgcaggtgctcgttcggagcatgaacactcgcaacgacttctcggtgaactatctcatctcctggtac gagctccaggtgccggagctacgcacgcttgcgatccagcggaaccgcgcggtggtggaggggatccgcaagcgactgcccccaggtgctcctgcggcagctgagtt gctcctgcactcggtcatcgctggcgcgacgatgcagtgggccgtcgatccggatggtgagctagctgatcatgtgctggctcagatcgctgccatcctgtgtttaa tgtttcccgaacacgacgatttccaactcctccaggcacatgcgtccgcgtacagc PRPLSDDEVLEAATVVLRCGPIEFTLSGVAEVGLSRAALIQRFTNRDTLLVRMMERGVEQVRHYLNAIPIGAGPQGLWEFLQVLVRSMNTRNDFSVNYLISWY ELQVPELRTLAIQRNRAVVEGIRRLPPGAPAAAELLLHSVIAGATMQWAVDPDGELADHVLAQIAAILCLMFPEHDDFQLLQAHASAYS PIP Pristinamycin inducible protein 26 agtcgaggagaggtgcgcatggcgaaggcagggcgggaggggccgcgggacagcgtgtggctgtcgggggaggggcggcgcggcggtcgccgtggggggcagccgtc cgggctcgaccgggaccggatcaccggggtcaccgtccggctgctggacacggagggcctgacggggttctcgatgcgccgcctggccgccgagctgaacgtcaccg cgatgtccgtgtactggtacgtcgacaccaaggaccagttgctcgagctcgccctggacgccgtcttcggcgagctgcgccacccggacccggacgccgggctcgac tggcgcgaggaactgcgggccctggcccgggagaaccgggcgctgctggtgcgccacccctggtcgtcccggctggtcggcacctacctcaacatcggcccgcactc gctggccttctcccgcgcggtgcagaacgtcgtgcgccgcagcgggctgcccgcgcaccgcctgaccggcgccatctcggccgtcttccagttcgtctacggctacg gcaccatcgagggccgcttcctcgcccgggtggcggacaccgggctgagtccggaggagtacttccaggactcgatgaccgcggtgaccgaggtgccggacaccgcg ggcgtcatcgaggacgcgcaggacatcatggcggcccggggcggcgacaccgtggcggagatgctggaccgggacttcgagttcgccctcgacctgctcgtcgcggg catcgacgcgatggtcgaacaggcctccgcgtacagc SRGEVRMAAGREGPRDSVWLSGEGRRGGRRGGQPSGLDRDRITGVTVRLLDTEGLTGFSMRRLAAELNVTAMSVYWYVDTDQLLELALDAVFGELRHPDPDAGLD WREELRALARENRALLVRHPWSSRLVGTYLNIGPHSLAFSRAVQNVVRRSGLPAHRLTGAISAVFQFVYGYGTIEGRFLARVADTGLSPEEYFQDSMTAVTEVPDTA GVIEDAQDIMAARGGDTVAEMLDRDFEFALDLLVAGIDAMVEQASAYS 8x[etr] E binding site [etr] gattgaatataaccgacgtgactgttacatttagg 25 agcttcgaagtttaaacgattgaatataaccgacgtgactgttacatttagggattgaatataaccgacgtgactgttacatttagggattgaatataaccgacgtg actgttacatttagggattgaatataaccgacgtgactgttacatttagggaaaacgattgaatataaccgacgtgactgttacatttagggattgaatataaccga cgtgactgttacatttagggattgaatataaccgacgtgactgttacatttagggattgaatataaccgacgtgactgttacatttagggatatcctgcagggaatt 3x[pir] PIP binding site [pir] tacggtgtacgggaagatactcgtacaccgtacaagagattcccatacgctgtacagcgctatttcg 26 cctgcagggtacggtgtacgggaagatactcgtacaccgtacaagagattcccatacgctgtacagcgctatttcgtacggtgtacgggaagatactcgtacaccgt acaagagattcccatacgctgtacagcgctatttcgtacggtgtacgggaagatactcgtacaccgtacaagagattcccatacgctgtacagcgctatttcgatcg aatt irfp670 GenBank: AGN atggccagaaaggtggacctgaccagctgcgacagagagcccatccacatccccggcagcatccagccttgtggctgtctgctggcctgtgatgctcaggctgtgcg gatcaccagaatcaccgagaacgctggcgccttcttcggacgggaaacacctagagtgggagagctgctggccgactacttcggcgagacagaagcccacgccctga gaaatgccctggcccagagcagcgaccctaagagacctgccctgatcttcggctggcgggatggactgaccggccggacctttgacatcagcctgcacagacacgac ggcaccagcatcatcgagttcgagcctgccgccgctgagcaggctgacaatcctctgagactgacccggcagatcattgcccggaccaaagagctgaagtccctgga agagatggccgccagagtgcctagatacctccaggccatgctgggctaccacagagtgatgctgtacagattcgccgacgacggcagcggcatggtcatcggagagg ccaagagaagcgacctggaatccttcctgggccagcacttccctgccagcctggtgcctcagcaggccagactgctgtacctgaagaacgccatccgggtggtgtcc gacagcagaggcatcagcagcagaatcgtgcccgagcacgacgccagcggagctgcactggatctgagctttgcccacctgagatccatcagcccttgccacctgga atttctgcggaacatgggcgtgtccgccagcatgtccctgtccatcatcatcgatggcaccctgtggggcctgatcatctgccaccactacgagcccagagccgtgc ccatggctcagagggtggccgccgaaatgttcgccgacttcctgtccctgcacttcacagccgcccaccaccagagataa MARVDLTSCDREPIHIPGSIQPCGCLLACDAQAVRITRITENAGAFFGRETPRVGELLADYFGETEAHALRNALAQSSDPRPALIFGWRDGLTGRTFDISLHRHD GTSIIEFEPAAAEQADNPLRLTRQIIARTELSLEEMAARVPRYLQAMLGYHRVMLYRFADDGSGMVIGEARSDLESFLGQHFPASLVPQQARLLYLNAIRVVS DSRGISSRIVPEHDASGAALDLSFAHLRSISPCHLEFLRNMGVSASMSLSIIIDGTLWGLIICHHYEPRAVPMAQRVAAEMFADFLSLHFTAAHHQR mcherry mcherry fluorescent protein from the plasmid vector pmcherry-c1 (Clontech) atggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgaggg cgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagttcatgt acggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggc ggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaa gaagaccatgggctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacg acgctgaggtcaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacacc atcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaag MVSGEEDNMAIIEFMRFVHMEGSVNGHEFEIEGEGEGRPYEGTQTALVTGGPLPFAWDILSPQFMYGSAYVHPADIPDYLLSFPEGFWERVMNFEDG GVVTVTQDSSLQDGEFIYVLRGTNFPSDGPVMQTMGWEASSERMYPEDGALGEIQRLLDGGHYDAEVTTYAPVQLPGAYNVNILDITSHNEDYT IVEQYERAEGRHSTGGMDELY rluc Renilla luciferase from the plasmid vector phrl-t (Promega) atggcttccaaggtgtacgaccccgagcaacgcaaacgcatgatcactgggcctcagtggtgggctcgctgcaagcaaatgaacgtgctggactccttcatcaacta ctatgattccgagaagcacgccgagaacgccgtgatttttctgcatggtaacgctgcctccagctacctgtggaggcacgtcgtgcctcacatcgagcccgtggcta gatgcatcatccctgatctgatcggaatgggtaagtccggcaagagcgggaatggctcatatcgcctcctggatcactacaagtacctcaccgcttggttcgagctg ctgaaccttccaaagaaaatcatctttgtgggccacgactggggggcttgtctggcctttcactactcctacgagcaccaagacaagatcaaggccatcgtccatgc tgagagtgtcgtggacgtgatcgagtcctgggacgagtggcctgacatcgaggaggatatcgccctgatcaagagcgaagagggcgagaaaatggtgcttgagaata acttcttcgtcgagaccatgctcccaagcaagatcatgcggaaactggagcctgaggagttcgctgcctacctggagccattcaaggagaagggcgaggttagacgg cctaccctctcctggcctcgcgagatccctctcgttaagggaggcaagcccgacgtcgtccagattgtccgcaactacaacgcctaccttcgggccagcgacgatct gcctaagatgttcatcgagtccgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaacaccgagttcgtgaaggtgaagggcctccact tcagccaggaggacgctccagatgaaatgggtaagtacatcaagagcttcgtggagcgcgtgctgaagaacgagcag MASVYDPEQRRMITGPQWWARCQMNVLDSFINYYDSEHAENAVIFLHGNAASSYLWRHVVPHIEPVARCIIPDLIGMGSGSGNGSYRLLDHYYLTAWFEL

13 LNLPIIFVGHDWGACLAFHYSYEHQDIAIVHAESVVDVIESWDEWPDIEEDIALISEEGEMVLENNFFVETMLPSIMRLEPEEFAAYLEPFEGEVRR PTLSWPREIPLVGGPDVVQIVRNYNAYLRASDDLPMFIESDPGFFSNAIVEGAFPNTEFVVGLHFSQEDAPDEMGYISFVERVLNEQ Legend: amino acid sequences are shaded gray; yellow and green shades indicate individual binding sites.

14 Supplementary Table 3 Amount of transfected plasmids for TALE-based genetic switches in each well of the 8, 12, 24 or 96-well plates. For the mutual repressor switch, constructs with CMV promoters were used (Fig. 1), while versions with either the CMV promoter (Fig. 4, Supplementary Fig. 6) or the minimal promoter (Fig. 7, Fig. 8 and Fig. 9) were tested for the competitive feedback switch. In the 96-well plates, two versions (A and B) of the switch with the firefly luciferase reporter were tested to verify the high and low levels of expression of both possible states. The reporters for the confocal microscopy and flow cytometry experiments (8-well and 12- or 24-well plates, respectively) were mcitrine linked to TALA:RAB and TagBFP linked to TALB:RAB. Plasmids Mutual repressor switch 8-well [ng] 8-well [ng] Competitive feedback switch 12-well [ng] 24-well [ng] 96-well [ng] version A 96-well [ng] version B 10x[a]_l 4_[promoter]_l 2_TALB:RAB:t2A:reporter / 15 10x[a]_l 4_[promoter]_l 2_TALB:RAB / / / / 15 / 10x[a]_l 4_[promoter]_l 2_TALA:VP16 / ,5 2,5 10x[b]_l 4_[promoter]_l 2_TALA:RAB:t2A:reporter / 10x[b]_l 4_[promoter]_l 2_TALA:RAB / / / / / 15 10x[b]_l 4_[promoter]_l 2_TALB:VP16 / ,5 2,5 3x[pir]_l 4_[CMV]_l 2_TALB:RAB x[pir]_l 4_[CMV]_l 2_TALA:VP16 / x[etr]_l 4_[CMV]_l 2_TALA:RAB x[etr]_l 4_[CMV]_l 2_TALB:VP16 / [CMV]_l 2_PIP:RAB [CMV]_l 2_E:RAB transfection control [CMV]_mCherry / / / / transfection control [CMV]_iRFP670 / / / / transfection control [T]_rLuc / / / / 5 5

15 Supplementary Table 4 Labels and descriptions of chemical species used in deterministic and stochastic models. Label T T V T T A T AV T A T CV T B T BV T B T DV BFP mct PIP E PI ER PI_PIP ER_E PMIN T _PMIN T V _PMIN T V _T V _PMIN T _T _PMIN T _T V _PMIN PCMV T _PCMV T V _PCMV T V _T V _PCMV T_T_PCMV T _T _PCMV T _T V _PCMV T _T_PCMV PIP _PCMV PIP (PCMV PIP ) E _PCMV E (PCMV E ) Chemical species TALE repressor TALE activator TALE DNA binding domain TALA:RAB repressor TALA:VP16 activator TALA DNA binding domain TALC:VP16 activator TALB:RAB repressor TALB:VP16 activator TALB DNA binding domain TALD:VP16 activator TagBFP fluorescent protein reporter mcitrine fluorescent protein reporter pristinamycin-inducible repressor (PIP:RAB) erythromycin-inducible repressor (E:RAB) pristinamycin inducer molecule erythromycin inducer molecule PIP-pristinamycin complex E-erythromycin complex minimal promoter minimal promoter (TALE repressor bound) minimal promoter (TALE activator bound) minimal promoter (two TALE activators bound) minimal promoter (two TALE repressors bound) minimal promoter (combination of a bound TALE repressor and a bound TALE activator) CMV promoter CMV promoter (TALE repressor bound) CMV promoter (TALE activator bound) CMV promoter (two TALE activators bound) CMV promoter (two TALE DNA binding domains bound) CMV promoter (two TALE repressors bound) CMV promoter (combination of a bound TALE repressor and a bound TALE activator) CMV promoter (combination of a bound TALE repressor and a bound TALE DNA binding domain) CMV promoter (PIP:RAB bound) CMV promoter (E:RAB bound)

16 Supplementary Table 5 Parameter values used by the deterministic ODE model in the mutual repressor switch simulations. The k b values were chosen depending on the percentage of incomplete repression (0% or 5%) in individual simulations (Fig. 1c). Initial protein concentrations in all simulations are equal to zero. Parameter label Parameter description Value n 1, n 2, n 3, n 4 Hill coefficients 1.0 or 2.0 1, 2, 3, 4 association constants 1 k BFP, k mct protein production rates of fluorescent reporters 100 h -1 k bbfp, k bmct protein production rates of fluorescent reporters on account of incomplete repression 0 or 5 h -1 k 1BR, k 2AR protein production rates of TALE repressors from constructs No. 17 and No. 18 (Supplementary Table 1) 180 h -1 k b1br, k b2ar protein production rates of TALE repressors from constructs No. 17 and No. 18 (Supplementary Table 1) on account of incomplete repression 0 or 9 h -1 k 3BR, k 4AR protein production of TALE repressors from constructs No. 11 and No. 13 (Supplementary Table 1) 30 h -1 k b3br, k b4ar protein production of TALE repressors from constructs No. 11 and No. 13 (Supplementary Table 1) on account of incomplete repression 0 or 1.5 h -1 k PIP, k E protein production rates of PIP:RAB and E:RAB inducible repressors 150 h -1 q i protein degradation rates 0.1 h -1

17 Supplementary Table 6 Values used by the deterministic ODE model in the competitive feedback switch simulations. The k b values were chosen depending on the percentage of incomplete repression or unprompted activation (0% or 1%) in individual simulations (Supplementary Fig. 3). Initial protein concentrations in all simulations are equal to zero. Parameter label Parameter description Value 1, 2, 3, 4, 5, 6 association constants 1 k BFP, k mct protein production rates of fluorescent reporters 100 h -1 k bbfp, k bmct protein production rates of fluorescent reporters on account of incomplete repression 0 or 1 h -1 k 1BR, k 2AR protein production rates of TALE repressors from constructs No. 21 and No. 22 (Supplementary Table 1) 180 h -1 k b1br, k b2ar protein production rates of TALE repressors from constructs No. 21 and No. 22 (Supplementary Table 1) on account of incomplete repression 0 or 1.8 h -1 k 1AVP, k 2BVP protein production rates of TALE activators from constructs No. 27 and No. 28 (Supplementary Table 1) 30 h -1 k b1avp, k b2bvp protein production rates of TALE activators from constructs No. 27 and No. 28 (Supplementary Table 1) on account of incomplete repression 0 or 0.3 h -1 k 3BR, k 4AR protein production rates of TALE repressors from constructs No. 11 and No. 13 (Supplementary Table 1) 60 h -1 k b3br, k b4ar protein production rates of TALE repressors from constructs No. 11 and No. 13 (Supplementary Table 1) on account of incomplete repression 0 or 6 h -1 k 3AVP, k 4BVP protein production rates of TALE activators from constructs No. 12 and No. 14 (Supplementary Table 1) 60 h -1 k b3avp, k b4bvp protein production rates of TALE activators from constructs No. 12 and No. 14 (Supplementary Table 1) on account of incomplete repression 0 or 6 h -1 k PIP, k E protein production rates of PIP and E inducible repressors 150 h -1 q i protein degradation rates 0.1 h -1

18 Supplementary Table 7 Parameters used in the stochastic models and their respective values and references. The parameter values are consistent for the comparison of the switch topology models. The estimate of the parameter order of magnitude is based on 3, p. 6, Table 2.1 and normalized to 1 nmol/s. N/A indicates unitless parameters. Parameter label Parameter description Value Unit Reference protein production constant for CMV promoters r CMV 10-4 nmol/s 3 (including mrna nuclear export) protein production constant for minimal promoters with r VV 10-4 nmol/s 3 two bound activators protein production constant for minimal promoters with a r V 10-6 nmol/s 3 bound activator and a repressor N/A estimated from V CMV CMV promoter activation constant for bound activators 10.0 experimental data CMV promoter activation constant for a bound activator N/A estimated from V CMV 2.0 and a repressor experimental data leakage percentage (incomplete repression of the CMV N/A estimated from l CMV 0.01 promoter) experimental data 3 k PI pristinamycin-pip binding constant 1.0 nmol/s 3 k ER erythromycin-e binding constant 1.0 nmol/s 3 k T TALE regulator-dna binding constant 1.0 nmol/s weighing factor for stronger effect of repression over N/A estimated from α T 3.05 activation experimental data 3 k PIP PIP-DNA binding constant 1.0 nmol/s 3 k E E-DNA binding constant 1.0 nmol/s k T TALE-DNA association constant 1.0 nmol/s 3 q T TALE-DNA dissociation constant nmol/s q PIP PIP-DNA dissociation constant 10-4 nmol/s equal to q T q E E-DNA dissociation constant 10-4 nmol/s equal to q T d T TALE regulator degradation constant nmol/s d PIP PIP:RAB degradation constant 10-5 nmol/s equal to d T d E E.RAB degradation constant 10-5 nmol/s equal to d T d mct mcitrine fluorescent protein degradation constant 10-5 nmol/s equal to d T d BFP Blue fluorescent protein degradation constant 10-5 nmol/s equal to d T d RFP Red fluorescent protein degradation constant 10-5 nmol/s equal to d T RLU/ estimated from f RLU Reporter concentration-rlu conversion factor nmol experimental data

19 Supplementary Table 8 Constructs included in the stochastic model of the competitive feedback switch topology based on constitutive promoters. Construct label Construct name Construct description PCMV A0 [a]_[cmv]_talb:rab:t2a:bfp Supplementary Table 1; No. 18 PCMV A1 [a]_[cmv]_tala:vp16 Supplementary Table 1; No. 19 PCMV B0 [b]_[cmv]_tala:rab:t2a:mcit Supplementary Table 1; No. 17 PCMV B1 [b]_[cmv]_talb:vp16 Supplementary Table 1; No. 20 PCMV PIP0 [pir]_[cmv]_talb:rab Supplementary Table 1; No. 11 PCMV PIP1 [pir]_[cmv]_tala:vp16 Supplementary Table 1; No. 12 PCMV E0 [etr]_[cmv]_tala:rab Supplementary Table 1; No. 13 PCMV E1 [etr]_[cmv]_talb:vp16 Supplementary Table 1; No. 14

20 Supplementary Table 9 Reaction set for the stochastic model of the competitive feedback switch topology based on constitutive promoters. The chemical species used in the model are listed in Supplementary Table 4. The constructs are labeled in the following manner: promoter binding sites_operon. PCMV represents a constitutive CMV promoter. The binding sites annotated A, B represent the TALA and TALB DNA-binding sites, respectively, and the binding sites annotated PIP, E represent the PIP:RAB and E:RAB DNA-binding sites, respectively. Operons with the notation 0 encode the TALE repressors (and optionally reporter proteins), while operons with the notation 1 encode the TALE activators. For a detailed description of the PCMV A0, PCMV A1, PCMV B0, PCMV B1, PCMV PIP0, PCMV PIP1, PCMV E0 and PCMV E1 constructs included in the model, see Supplementary Table 8. Reaction Reaction description PCMV A0 + T A + T A Binding and dissociation of two TALA PCMV A0 + T A + T A qt T A _T A _PCMV A0 repressors to the PCMV A0 construct PCMV A0 + T A + T AV Binding and dissociation of a TALA repressor PCMV A0 + T A + T AV qt T A _T AV _PCMV A0 and a TALA activator to the PCMV A0 construct PCMV A0 + T AV + T AV kt T AV _T AV _PCMV A0 Binding and dissociation of two TALA PCMV A0 + T AV + T AV qt T AV _T AV _PCMV A0 activators to the PCMV A0 construct PCMV A1 + T A + T A Binding and dissociation of two TALA PCMV A1 + T A + T A qt T A _T A _PCMV A1 repressors to the PCMV A1 construct PCMV A1 + T A + T AV Binding and dissociation of a TALA repressor PCMV A1 + T A + T AV qt T A _T AV _PCMV A1 and a TALA activator to the PCMV A1 construct PCMV A1 + T AV + T AV kt T AV _T AV _PCMV A1 Binding and dissociation of two TALA PCMV A1 + T AV + T AV qt T AV _T AV _PCMV A1 activators to the PCMV A1 construct PCMV B0 + T B + T B Binding and dissociation of two TALB PCMV B0 + T B + T B qt T B _T B _PCMV B0 repressors to the PCMV B0 construct PCMV B0 + T B + T BV Binding and dissociation of a TALB repressor PCMV B0 + T B + T BV qt T B _T BV _PCMV B0 and a TALB activator to the PCMV B0 construct PCMV B0 + T BV + T BV kt T BV _T BV _PCMV B0 Binding and dissociation of two TALB PCMV B0 + T BV + T BV qt T BV _T BV _PCMV B0 activators to the PCMV B0 construct PCMV B1 + T B + T B Binding and dissociation of two TALB PCMV B1 + T B + T B qt T B _T B _PCMV B1 repressors to the PCMV B1 construct PCMV B1 + T B + T BV Binding and dissociation of a TALB repressor PCMV B1 + T B + T BV qt T B _T BV _PCMV B1 and a TALB activator to the PCMV B1 construct PCMV B1 + T BV + T BV kt T BV _T BV _PCMV B1 Binding and dissociation of two TALB PCMV B1 + T BV + T BV qt T BV _T BV _PCMV B1 activators to the PCMV B1 construct Production of TALB:RAB and TagBFP from T A _T AV _PCMV A0 CMV T A _T AV _PCMV A0 + T B + BFP the PCMV A0 construct with a bound repressor and a bound activator Production of TALA:VP16 from the PCMV A1 T A _T AV _PCMV A1 CMV T A _T AV _PCMV A1 + T AV construct with a bound repressor and a bound activator T AV _T AV _CMV A0 VCMV T AV _T AV _PCMV A0 + T B + BFP Production of TALB:RAB and TagBFP from the activated PCMV A0 construct T AV _T AV _PCMV A1 VCMV T AV _T AV _PCMV A1 + T AV Production of TALA:VP16 from the activated PCMV A1 construct Production of TALB:RAB and TagBFP from T A _T A _PCMV A0 lcmv T A _T A _PCMV A0 + T B + BFP the repressed PCMV A0 construct on account of incomplete repression Production of TALA:VP16 from the repressed T A _T A _PCMV A1 lcmv T A _T A _PCMV A1 + T AV PCMV A1 construct on account of incomplete repression PCMV A0 PCMV A0 + T B + BFP Production of TALB:RAB and TagBFP from the PCMV A0 construct Production of TALA:VP16 from the PCMV PCMV A1 PCMV A1 + T A1 AV construct Production of TALA:RAB and mcitrine from T B _T BV _PCMV B0 CMV T B _T BV _PCMV B0 + T A + mct the PCMV B0 construct with a bound repressor and a bound activator T B _T BV _PCMV B1 CMV T B _T BV _PCMV B1 + T BV Production of TALB:VP16 from the PCMV B1 construct with a bound repressor and a bound

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Kinetics of Gene Regulation COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 The simplest model of gene expression involves only two steps: the

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

A synthetic oscillatory network of transcriptional regulators

A synthetic oscillatory network of transcriptional regulators A synthetic oscillatory network of transcriptional regulators Michael B. Elowitz & Stanislas Leibler, Nature, 403, 2000 igem Team Heidelberg 2008 Journal Club Andreas Kühne Introduction Networks of interacting

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process https://www.youtube.com/

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to molecular networks Literature overview Noise in genetic networks Origins How to measure and distinguish between the two types of noise (intrinsic vs extrinsic)? What

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

Stem Cell Reprogramming

Stem Cell Reprogramming Stem Cell Reprogramming Colin McDonnell 1 Introduction Since the demonstration of adult cell reprogramming by Yamanaka in 2006, there has been immense research interest in modelling and understanding the

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech Version 1.0b, September 14, 2014 c 2014 by Princeton University Press All rights reserved. This is the electronic edition

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Plasmid diagrams of primary strains used in this work.

Nature Genetics: doi: /ng Supplementary Figure 1. Plasmid diagrams of primary strains used in this work. Supplementary Figure 1 Plasmid diagrams of primary strains used in this work. Refer to Supplementary Table 1 for additional information and full list of strains. Diagrams are not to scale. (a) Strain used

More information

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J)

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J) Problem Set 2 1 Competitive and uncompetitive inhibition (12 points) a. Reversible enzyme inhibitors can bind enzymes reversibly, and slowing down or halting enzymatic reactions. If an inhibitor occupies

More information

APGRU6L2. Control of Prokaryotic (Bacterial) Genes

APGRU6L2. Control of Prokaryotic (Bacterial) Genes APGRU6L2 Control of Prokaryotic (Bacterial) Genes 2007-2008 Bacterial metabolism Bacteria need to respond quickly to changes in their environment STOP u if they have enough of a product, need to stop production

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Supporting information for

Supporting information for Supporting information for Rewiring multi-domain protein switches: transforming a fluorescent Zn 2+ -sensor into a light-responsive Zn 2+ binding protein Stijn J.A. Aper and Maarten Merkx Laboratory of

More information

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon REGULATION OF GENE EXPRESSION Bacterial Genetics Lac and Trp Operon Levels of Metabolic Control The amount of cellular products can be controlled by regulating: Enzyme activity: alters protein function

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/7/345/ra91/dc1 Supplementary Materials for TGF-β induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops Jingyu

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

RNA Synthesis and Processing

RNA Synthesis and Processing RNA Synthesis and Processing Introduction Regulation of gene expression allows cells to adapt to environmental changes and is responsible for the distinct activities of the differentiated cell types that

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy.

4. Why not make all enzymes all the time (even if not needed)? Enzyme synthesis uses a lot of energy. 1 C2005/F2401 '10-- Lecture 15 -- Last Edited: 11/02/10 01:58 PM Copyright 2010 Deborah Mowshowitz and Lawrence Chasin Department of Biological Sciences Columbia University New York, NY. Handouts: 15A

More information

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E

REVIEW SESSION. Wednesday, September 15 5:30 PM SHANTZ 242 E REVIEW SESSION Wednesday, September 15 5:30 PM SHANTZ 242 E Gene Regulation Gene Regulation Gene expression can be turned on, turned off, turned up or turned down! For example, as test time approaches,

More information

56:198:582 Biological Networks Lecture 10

56:198:582 Biological Networks Lecture 10 56:198:582 Biological Networks Lecture 10 Temporal Programs and the Global Structure The single-input module (SIM) network motif The network motifs we have studied so far all had a defined number of nodes.

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Control of Prokaryotic (Bacterial) Gene Expression. AP Biology

Control of Prokaryotic (Bacterial) Gene Expression. AP Biology Control of Prokaryotic (Bacterial) Gene Expression Figure 18.1 How can this fish s eyes see equally well in both air and water? Aka. Quatro ojas Regulation of Gene Expression: Prokaryotes and eukaryotes

More information

Introduction. ECE/CS/BioEn 6760 Modeling and Analysis of Biological Networks. Adventures in Synthetic Biology. Synthetic Biology.

Introduction. ECE/CS/BioEn 6760 Modeling and Analysis of Biological Networks. Adventures in Synthetic Biology. Synthetic Biology. Introduction ECE/CS/BioEn 6760 Modeling and Analysis of Biological Networks Chris J. Myers Lecture 17: Genetic Circuit Design Electrical engineering principles can be applied to understand the behavior

More information

Prokaryotic Regulation

Prokaryotic Regulation Prokaryotic Regulation Control of transcription initiation can be: Positive control increases transcription when activators bind DNA Negative control reduces transcription when repressors bind to DNA regulatory

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Name Period The Control of Gene Expression in Prokaryotes Notes

Name Period The Control of Gene Expression in Prokaryotes Notes Bacterial DNA contains genes that encode for many different proteins (enzymes) so that many processes have the ability to occur -not all processes are carried out at any one time -what allows expression

More information

Slide 1 / 7. Free Response

Slide 1 / 7. Free Response Slide 1 / 7 Free Response Slide 2 / 7 Slide 3 / 7 1 The above diagrams illustrate the experiments carried out by Griffith and Hershey and Chaserespectively. Describe the hypothesis or conclusion that each

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

STOCHASTICITY IN GENE EXPRESSION: FROM THEORIES TO PHENOTYPES

STOCHASTICITY IN GENE EXPRESSION: FROM THEORIES TO PHENOTYPES STOCHASTICITY IN GENE EXPRESSION: FROM THEORIES TO PHENOTYPES Mads Kærn*, Timothy C. Elston, William J. Blake and James J. Collins Abstract Genetically identical cells exposed to the same environmental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2647 Figure S1 Other Rab GTPases do not co-localize with the ER. a, Cos-7 cells cotransfected with an ER luminal marker (either KDEL-venus or mch-kdel) and mch-tagged human Rab5 (mch-rab5,

More information

Molecular Biology (9)

Molecular Biology (9) Molecular Biology (9) Translation Mamoun Ahram, PhD Second semester, 2017-2018 1 Resources This lecture Cooper, Ch. 8 (297-319) 2 General information Protein synthesis involves interactions between three

More information

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON PROKARYOTE GENES: E. COLI LAC OPERON CHAPTER 13 CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON Figure 1. Electron micrograph of growing E. coli. Some show the constriction at the location where daughter

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics

AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics Hyun Youk Delft University of Technology (Dated: February 22, 2018) In this lecture, we will discuss how to model standard gene-regulatory

More information

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes Chapter 16 Lecture Concepts Of Genetics Tenth Edition Regulation of Gene Expression in Prokaryotes Chapter Contents 16.1 Prokaryotes Regulate Gene Expression in Response to Environmental Conditions 16.2

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

GENE REGULATION AND PROBLEMS OF DEVELOPMENT

GENE REGULATION AND PROBLEMS OF DEVELOPMENT GENE REGULATION AND PROBLEMS OF DEVELOPMENT By Surinder Kaur DIET Ropar Surinder_1998@ yahoo.in Mob No 9988530775 GENE REGULATION Gene is a segment of DNA that codes for a unit of function (polypeptide,

More information

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005

Gene regulation II Biochemistry 302. Bob Kelm February 28, 2005 Gene regulation II Biochemistry 302 Bob Kelm February 28, 2005 Catabolic operons: Regulation by multiple signals targeting different TFs Catabolite repression: Activity of lac operon is restricted when

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Warm-Up Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Yesterday s Picture The first cell on Earth (approx. 3.5 billion years ago) was simple and prokaryotic,

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

From Gene to Protein

From Gene to Protein From Gene to Protein Gene Expression Process by which DNA directs the synthesis of a protein 2 stages transcription translation All organisms One gene one protein 1. Transcription of DNA Gene Composed

More information

Tuning an Activator-Repressor Clock Employing Retroactivity

Tuning an Activator-Repressor Clock Employing Retroactivity Tuning an Activator-Repressor Clock Employing Retroactivity Alexander Rosenberg, Shridhar Jayanthi and Domitilla Del Vecchio Electrical Engineering Dept., University of Washington, Seattle WA 9895 Electrical

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

Bi 1x Spring 2014: LacI Titration

Bi 1x Spring 2014: LacI Titration Bi 1x Spring 2014: LacI Titration 1 Overview In this experiment, you will measure the effect of various mutated LacI repressor ribosome binding sites in an E. coli cell by measuring the expression of a

More information

Gene Switches Teacher Information

Gene Switches Teacher Information STO-143 Gene Switches Teacher Information Summary Kit contains How do bacteria turn on and turn off genes? Students model the action of the lac operon that regulates the expression of genes essential for

More information

A Synthetic Oscillatory Network of Transcriptional Regulators

A Synthetic Oscillatory Network of Transcriptional Regulators A Synthetic Oscillatory Network of Transcriptional Regulators Michael Elowitz & Stanislas Leibler Nature, 2000 Presented by Khaled A. Rahman Background Genetic Networks Gene X Operator Operator Gene Y

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells. The role of mrna and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells. Kristian Moss Bendtsen 1, Mogens H. Jensen 1a, Sandeep Krishna 1,2, Szabolcs

More information

Lecture 6: The feed-forward loop (FFL) network motif

Lecture 6: The feed-forward loop (FFL) network motif Lecture 6: The feed-forward loop (FFL) network motif Chapter 4 of Alon x 4. Introduction x z y z y Feed-forward loop (FFL) a= 3-node feedback loop (3Loop) a=3 Fig 4.a The feed-forward loop (FFL) and the

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction Lecture 8: Temporal programs and the global structure of transcription networks Chap 5 of Alon 5. Introduction We will see in this chapter that sensory transcription networks are largely made of just four

More information

Multistability in the lactose utilization network of E. coli. Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J.

Multistability in the lactose utilization network of E. coli. Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Multistability in the lactose utilization network of E. coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Motivation Understanding biological switches in the

More information

Supplementary Information for. Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria

Supplementary Information for. Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria Supplementary Information for Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria Isabella Santi 1 *, Neeraj Dhar 1, Djenet Bousbaine 1, Yuichi Wakamoto, John D.

More information

Engineering of Repressilator

Engineering of Repressilator The Utilization of Monte Carlo Techniques to Simulate the Repressilator: A Cyclic Oscillatory System Seetal Erramilli 1,2 and Joel R. Stiles 1,3,4 1 Bioengineering and Bioinformatics Summer Institute,

More information

Controlling Gene Expression

Controlling Gene Expression Controlling Gene Expression Control Mechanisms Gene regulation involves turning on or off specific genes as required by the cell Determine when to make more proteins and when to stop making more Housekeeping

More information

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant?

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant? Name Date Period AP Exam Review Part 6: Molecular Genetics I. DNA and RNA Basics A. History of finding out what DNA really is 1. What was Griffith s experiment and why was it significant? 1 2. What was

More information

Bacterial Genetics & Operons

Bacterial Genetics & Operons Bacterial Genetics & Operons The Bacterial Genome Because bacteria have simple genomes, they are used most often in molecular genetics studies Most of what we know about bacterial genetics comes from the

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

purpose of this Chapter is to highlight some problems that will likely provide new

purpose of this Chapter is to highlight some problems that will likely provide new 119 Chapter 6 Future Directions Besides our contributions discussed in previous chapters to the problem of developmental pattern formation, this work has also brought new questions that remain unanswered.

More information

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide Name: Period: Date: AP Bio Module 6: Bacterial Genetics and Operons, Student Learning Guide Getting started. Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Control of Prokaryotic (Bacterial) Genes 20072008 Bacterial metabolism n Bacteria need to respond quickly to changes in their environment u if they have enough of a product, need to stop production n why?

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13238 Additional Experimental Results Degradation tag experiments In addition to exploring the effect of variable-length linker (TS repeats) on the phase-shift in module degradation (Supplementary

More information

Gene regulation II Biochemistry 302. February 27, 2006

Gene regulation II Biochemistry 302. February 27, 2006 Gene regulation II Biochemistry 302 February 27, 2006 Molecular basis of inhibition of RNAP by Lac repressor 35 promoter site 10 promoter site CRP/DNA complex 60 Lewis, M. et al. (1996) Science 271:1247

More information

Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach

Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach In Silico Biology 12 (2017) 95 127 DOI 10.3233/ISB-160467 IOS Press 95 Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach Necmettin Yildirim

More information

Stochastic dynamics of small gene regulation networks. Lev Tsimring BioCircuits Institute University of California, San Diego

Stochastic dynamics of small gene regulation networks. Lev Tsimring BioCircuits Institute University of California, San Diego Stochastic dynamics of small gene regulation networks Lev Tsimring BioCircuits Institute University of California, San Diego Nizhni Novgorod, June, 2011 Central dogma Activator Gene mrna Protein Repressor

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

Topic 4: Equilibrium binding and chemical kinetics

Topic 4: Equilibrium binding and chemical kinetics Topic 4: Equilibrium binding and chemical kinetics Outline: Applications, applications, applications use Boltzmann to look at receptor-ligand binding use Boltzmann to look at PolII-DNA binding and gene

More information

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Dr. Ramez Daniel Laboratory of Synthetic Biology & Bioelectronics (LSB 2 ) Biomedical Engineering, Technion May 9, 2016 Cytomorphic

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

ACCGGTTTCGAATTGACAATTAATCATCGGCTCGTATAATGGTACC TGAAATGAGCTGTTGACAATTAATCATCCGGCTCGTATAATGTGTGG AATTGTGAGCGGATAACAATTTCACAGGTACC

ACCGGTTTCGAATTGACAATTAATCATCGGCTCGTATAATGGTACC TGAAATGAGCTGTTGACAATTAATCATCCGGCTCGTATAATGTGTGG AATTGTGAGCGGATAACAATTTCACAGGTACC SUPPLEMENTAL TABLE S1. Promoter and riboswitch sequences used in this study. Predicted transcriptional start sites are bolded and underlined. Riboswitch sequences were obtained from Topp et al., Appl Environ

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Toward in vivo digital synchronous sequential circuits

Toward in vivo digital synchronous sequential circuits Toward in vivo digital synchronous seuential circuits MIHA MOŠON 1, MONIA CIGLIČ 2, NIOLAJ ZIMIC 1 and MIHA MRAZ 1 1 Computer Structures and Systems Laboratory Faculty of Computer and Information Science

More information

Multistability in the lactose utilization network of Escherichia coli

Multistability in the lactose utilization network of Escherichia coli Multistability in the lactose utilization network of Escherichia coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Agenda Motivation Intro to multistability Purpose

More information

Supplementary Figure 1. Confirmation of REF52-hE2F1p::4NLS-d4Venus reporter cells and characterization of E2F dynamics. (a) Alignment of E2F dynamics

Supplementary Figure 1. Confirmation of REF52-hE2F1p::4NLS-d4Venus reporter cells and characterization of E2F dynamics. (a) Alignment of E2F dynamics Supplementary Figure 1. Confirmation of REF52-hE2F1p::4NLS-d4Venus reporter cells and characterization of E2F dynamics. (a) Alignment of E2F dynamics trajectories to endogenous E2F1 mrna expression. Gray

More information

Gene expression in prokaryotic and eukaryotic cells, Plasmids: types, maintenance and functions. Mitesh Shrestha

Gene expression in prokaryotic and eukaryotic cells, Plasmids: types, maintenance and functions. Mitesh Shrestha Gene expression in prokaryotic and eukaryotic cells, Plasmids: types, maintenance and functions. Mitesh Shrestha Plasmids 1. Extrachromosomal DNA, usually circular-parasite 2. Usually encode ancillary

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Development Team. Regulation of gene expression in Prokaryotes: Lac Operon. Molecular Cell Biology. Department of Zoology, University of Delhi

Development Team. Regulation of gene expression in Prokaryotes: Lac Operon. Molecular Cell Biology. Department of Zoology, University of Delhi Paper Module : 15 : 23 Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University

More information

The Making of the Fittest: Evolving Switches, Evolving Bodies

The Making of the Fittest: Evolving Switches, Evolving Bodies INTRODUCTION MODELING THE REGULATORY SWITCHES OF THE PITX1 GENE IN STICKLEBACK FISH The types and amounts of proteins produced by a given cell in the body are very important and carefully regulated. Transcribing

More information

Dynamics of the Mixed Feedback Loop Integrated with MicroRNA

Dynamics of the Mixed Feedback Loop Integrated with MicroRNA The Second International Symposium on Optimization and Systems Biology (OSB 08) Lijiang, China, October 31 November 3, 2008 Copyright 2008 ORSC & APORC, pp. 174 181 Dynamics of the Mixed Feedback Loop

More information

Welcome to Class 21!

Welcome to Class 21! Welcome to Class 21! Introductory Biochemistry! Lecture 21: Outline and Objectives l Regulation of Gene Expression in Prokaryotes! l transcriptional regulation! l principles! l lac operon! l trp attenuation!

More information

Topic 4 - #14 The Lactose Operon

Topic 4 - #14 The Lactose Operon Topic 4 - #14 The Lactose Operon The Lactose Operon The lactose operon is an operon which is responsible for the transport and metabolism of the sugar lactose in E. coli. - Lactose is one of many organic

More information