Elektrische Hochdrehzahlantriebe- Auslegungsgrundlagen und Beispiele aus der Praxis

Size: px
Start display at page:

Download "Elektrische Hochdrehzahlantriebe- Auslegungsgrundlagen und Beispiele aus der Praxis"

Transcription

1 Elektrische Hochdrehzahlantriebe- Auslegungsgrundlagen und Beispiele aus der Praxis KIT, Karlsruhe, 9 th July 2018 Technische Universität Darmstadt Institut für Elektrische Energiewandlung Andreas Binder abinder@ew.tu-darmstadt.de Rotor of PM synchronous machine with magnetic bearings, 40 kw, 40000/min Source: TU Darmstadt, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 1

2 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 2

3 Basics on High Speed Drives Why High-Speed Drives? Advantages of high rotational speed n: High power P = Low torque M P 2 n M M P /( 2 n) Size of a machine (volume V): Determined by torque density m = M/V V M / m ~ P /( n m) Cut-view: Maglev turbo-compressor rotor Source: Piller, Germany High power P low torque M = low volume V TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 3

4 Motor power determined by speed P ~ n P, p M, V, m Mechanical system = machine : Torque M determines machine volume V via torque density m Small torque M = small machine size V Power determined by speed P ~ n Power density p = P/V P, p M, V, m 0 0 n TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 4

5 Inverter size determined by power V I ~ P Electronic system = feeding inverter: Power from voltage U & current I : S ~ U. I Apparent power S = P /cos determines inverter size (volume V I ) via p Small power S = small inverter size V I p V I P p V I V I p 0 0 P TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 5

6 Why High-Speed E-Machines? Small volume/power V/P ratio advantageous = high power density p = P/V Gearless drive system = reduced maintenance & vibrations Wide rated power/speed -range P N /n N : ( /min), 0.1 kw 3000 /min, 1000 MW Increasing field of applications as pumps, compressors, small gas turbines, direct coupled air-craft generators, high speed cutting drives, TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 6

7 Typical High-Speed Drive Application High-Speed PM generator with single stage turbine Natural gas expansion turbine: Small volume at high power Less mass Gearless direct drive Low maintenance (magnetic bearings) Small single-stage turbine runner for 500 kw at high speed /min! Source: Piller, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 7

8 Torque density m Motor active volume V determined by rotor diameter d & active rotor length l Fe d d LORENTZ-force: F I B l Fe Torque: M z F z I B lfe 2 2 Three-phase winding, N s turns per phase = z conductors: z 3 2N s d z I B l M Fe z I Torque density: m 2 ~ B A B V 2 d l / 4 d Fe m ~ A B Fe Current loading A Air gap flux density B Source: Bohn, T. (Hsg.): El. Energietechnik P 3U I cos TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 8

9 Specific thrust Specific thrust : d z F l Fe d 2 2M l Fe m 2 : Alternative figure of merit to m Fe TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 9

10 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 10

11 Mechanical challenges of High-speed drives Challenge 1: Rotor integrity at high speed due to high centrifugal forces Challenge 2: Rotor vibrations, excited by rotating imbalance forces Elastic vibration behaviour of rotor = rotor dynamics Rotor strength and rotor dynamics dominate the High-speed-machine design! TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 11

12 Challenge 1: What means High-Speed? NOT ONLY: High revolutions per second n! BUT: High rotor circumference speed v v v = d.. n m/s d + n (d: Rotor outer diameter) High mechanical (tangential) stress t due to high centrifugal forces! Stress proportional to mass density and to v! t ~ v 2 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 12

13 Example: Tangential stress t in a thin rotating ring m Lr r Segment of thin rotating ring F f m r( 2n ) 2 F f F t Ring diameter d = 2r Axial length L Mass density Tangential stress t : t Ft Lr Ff / r Lr 2 (2n ) 2 v 2 t v 2 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 13

14 Rotor stress distribution 2 n Rotor model as rotating thick ring: - Tangential and radial stress - General loading: Centrifugal load (), shrink fit load (p, q), thermal expansion stress load (p, q) - At pure centrifugal load: p = 0, q = 0: At p = 0, q = 0 2 t ~ v 2 r ~ v Dominating tangential stress t r Source: Canders, W.-R.: TU Braunschweig, 2014 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 14

15 Example: High-Speed stress t ~ v 2 Yield strength of steel sheet: R p, 0.2 = 350 N/mm 2 ROTATING thin steel ring ( = 7850 kg/m 3 ) at v = 211 m/s R p 0.2 R m Tangential stress reaches yield strength at which ring diameter d? a) At d = 1.3 m: n = /min b) At d = 90 mm: n = /min 0 0 Source: VDI Physik für Ingenieure = l/l (%) BOTH speed levels 3000/min & /min are high-speed cases! TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 15

16 Typical High-Speed limits - Circumferential speed v is the characteristic parameter for rotor strength - High speed means typically: v 100 m/s Typical circumferential speed limits for different E-machine designs: Permanent magnet synchronous machine Permanent magnet synchronous machine Synchronous machine, el. excitation Synchronous machine, el. excitation Induction motor Buried magnets Surface magnets, carbon fibre bandage Salient pole Cylindrical massive rotor Massive cage rotor with end caps 80 m/s 280 m/s 90 m/s 220 m/s 200 m/s TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 16

17 Fixing buried magnets at high speed (1) Segmented magnets No bandage magnets are fixed by rotors sheets Small magnetic air gap Less magnet material in case of flux concentration Segmented magnets per pole with radial iron bridges for higher centrifugal force capability TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 17

18 Fixing buried magnets at high speed (2) Detailed mechanical calculation necessary, requires Finite Element Calculation Max. tensile strength must stay below 0.2%-deformation limit of sheet R p0,2 2D stress distribution Rotor iron sheet: Stress vs. strain R p0,2 R. v. MISES-stress: Equivalent uni-axial stress, calculated from 2D stress distribution Source: VDI Physik für Ingenieure TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 18

19 Fixing of magnets by bandage Surface mounted magnets α e < 1 dangerous! Pre-fabricated CFC bandage, pressed onto rotor PM-Rotor 1 - e - 4-pole rotor - Pole coverage ratio α e = 8/9 < 1 40 kw, 40000/min Magnetic bearings Carbon fiber bandage Outer diameter: ca. 90 mm Source: TU Darmstadt TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 19

20 Example: Damaged Rotor due to Magnet Edge Pressure Breaking of bandage at /min Break length Total active length Different centrifugal forces in magnets and inter-pole gap Magnet edges cut into carbon fiber bandage 4-pole rotor with PM, carbon fiber bandage and magnetic bearings 100% pole coverage ratio recommended α e = 1! Source: TU Darmstadt TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 20

21 PM synchronous rotor, 100% coverage Example: Distributed double-layer integer-slot stator winding, semi-closed stator slots, 4-pole rotor, pole coverage ratio 100% N S Surface mounted radial magnetized segmented magnets low eddy currents Pre-fabricated CF bandage is pressed onto rotor with force PM-Rotor: P N = 40 kw, n N = /min over-speed (OS) 120%: /min S N l Fe = 90 mm Magnetic bearings Carbon fiber bandage Outer rotor diameter: d = 90 mm Source: TU Darmstadt v = 188 m/s (OS: 225 m/s) TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 21

22 Challenge 2: Rotor dynamics: Residual rigid rotor imbalance 1) Static imbalance U S at disk-like rotor (l Fe << L) U leads to imbalance force F S S m r e S F S 2 n m r e S 2 l Fe d S: Center of gravity m r : Rotor mass m, m : Imbalance mass F S : Centrifugal force d 2) Dynamic imbalance M U at long rotor (l Fe ~ L) leads to imbalance torque M = F. l Fe M U m d 2 l Fe M F l Fe m d 2 l Fe 2 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 22

23 Quality class G of rotor imbalance Imbalance forces: Counter-balanced by balancing masses in two rotor planes for static and dynamic imbalance = rotor balancing Residual imbalance after rotor balancing NOT zero Imbalance class G e S Source: Canders, W.-R.: TU Braunschweig, 2014 Orbiting centre of gravity with v S = G: Orbiting circumference velocity S e S G = Quality class of imbalance (ISO 1940) Typical for high speed machines: G = 1 mm/s or 0.4 mm/s v Example: Static imbalance U S : e S 0.24 μm, n /min G 1 mm/s TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 23

24 Rotating imbalance forces excite rotor vibrations (1) The rotating residual imbalance forces excite rotor vibrations with rotational speed n, because a) the bearings are not rigid, but elastic, b) the rotor is elastic and allows bending deformation y M d TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 24

25 Rotating imbalance forces excite rotor vibrations (2) Different additional vibration excitations exist: - Misaligned coupling, - Anisotropic rotor stiffness, - Rotor eccentricity e: Source: Wiedemann, E.; Kellenberger, W.; Springer-Verlag, 1968 (i) Static and (ii) dynamic (-depending) rotor eccentricity value e; In combination with single-sided unbalanced magnetic pull! Rotor bending line Rotor t Rotor Half turn Anisotropic rotor stiffness Flux line Rotor eccentricity e TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 25

26 Rigid rotor vibrates in elastic bearings: Rigid body mode vibration Elastic bearings are represented by spring constant c B0 Two vibration modes Common mode vibration Differential mode vibration y x z 1 c 1 L c B0 fb, d. m. fb, c. m. 2 2 J B0 fb, c. m. 2 mr x Source: Parkus Mechanik fester Körper, Springer, Vienna J x : Angular momentum around x-axis TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 26

27 Bending of elastic rotor in rigid bearings Simplified approach: Rotor (shaft) considered as elastic cylindrical beam: Diameter d, length L between bearings, mass density, Young s modulus E Bending vibrations with eigen -frequencies f b (at rigid bearings): 2 fb, i i 1 i 2 L E d 4 1,2,3,... mode number i L d 2 / 4 Example: m r i = 1: 703 Hz i = 2: = 2812 Hz i = 3: = 6327 Hz r a) Real frequencies are lower! b) Exciting n below 0.7. f b,1 : Rotor behaves rigid! TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 27

28 Example: Natural bending vibration modes of a milling spindle rotor 2-pole High-Speed Aluminum-squirrel cage rotor: 2 radial & 1 axial magnetic bearing n N = /min, P N = 30 kw k = 1: 703 Hz k = 2: 1758 Hz k = 3: 2990 Hz Radial sensor 1 Aux. bearing Radial bearing 1 Cage induction motor Radial bearing 2 Axial bearing Radial sensor 2 Axial sensor Aux. bearing Tool Bearing 1 Bearing 2 Tool Source: Schweitzer, G. et al.: Active magnetic bearings n max Hz / min TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 28

29 Influence on rotor bending frequencies Bigger (longer) rotors have lower bending frequencies Real rotor geometry more complicated f b -calculation Equivalent Young s modulus of stacked rotor iron: How to determine? Mainly be experiment! f b ~ d / L 2 Finite stiffness of rotor bearings c B0 a) reduces bending frequencies and b) shifts nodes of bending modes Unbalanced magnetic pull reduces c B < c B0 Reduction of bending frequency Rotor gyroscopic effect Rotor swirls in a) forward swirling mode (fw) b) backward swirling mode (bw) Bending frequency splits up into two eigen-frequencies per bending mode i f b, i fb, fw, i and fb, bw, i TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 29

30 Forward and backward swirling Forward Backward f b, fw,1 f b,bw,1 Source: Canders, W.-R.: TU Braunschweig, 2014 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 30

31 Example: Campbell diagram PMSM, laminated rotor yoke, surface magnets, carbon fibre bandage: P N = 60 kw, d = 86 mm, v = 180 m/s, l Fe = 90 mm f b,fw,2 f b,bw,2 n N = /min i = 2 Frequency f (Hz) n f b,fw,1 f b,bw,1 i = 1 rigid rotor Rotational speed n Bending resonance at 17000/min = 1 st critical speed Source: Canders, W.-R.: TU Braunschweig, 2014 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 31

32 Elastic rotor balancing If rotational speed n above e.g. second bending frequency f b,2, an elastic rotor balancing in two additional rotor planes is necessary Elastic balancing needed to minimize rotor bending amplitude y M at the resonance points n = f b,1 and n = f b,2 At smaller rated power the rotor length L is small enough, so that the bending natural frequencies are higher than the maximum operation speed n max n f max b,1 If possible, keep n max below 0.7. f b,1 Rotor behaves as rigid body! TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 32

33 Mechanical limits for rotor volume V ~ l Fe. d 2 at high-speed and rigid rotor Max. surface velocity v max at rated speed n N determines max. rotor diameter d max : d max vmax /( n N ) ~ ( max / ) / n N Rotor diameter-length ratio ( slimness ): 1 st Rotor bending frequency limits the length: f n Limit for rotor active volume V: V d max dmax lfe ~ max E / l Fe / ~ n The higher the speed n N and mass density, the lower the maximum admissible rotor volume V max at given maximum stress max TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 33 E 3 N d max ~ v max N max b, 1 Lmax ~ 4 ~ lfe,max max lfe,max / 0.7 nn d max

34 Limits for rotor volume V ~ l Fe. d 2 at high-speed and rigid rotor V / V min V ~ 1/ n N V V n N ~ 1 n max ~ max E / / N V 3 max ~ 1/ nn P /( 2 n m) N 2 1 Limit for rotor active volume V n N / n N,max TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 34

35 Reduced maximum speed n with increased rated power P N n N = n max + Overview of some built High Speed E-Machines: + Perm. magnet and synchronous machines PM / SM Cage induction machines IM Homo-polar machines HM Switched Reluctance Machines SR Based on a literature survey on built high speed drives IM PM SM P N TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 35

36 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 36

37 Types of High Speed Motors PM synchronous machines Rotor magnet fixation essential Electrically excited synchronous machines At higher rated power of interest (MW-range) Cage induction machines (e.g. with massive iron rotor) Cage centrifugal forces needs end caps Cage-less massive rotor induction machines Robust rotor, but slip-dependent losses big in massive iron Homo-polar machines Special machine design, additional losses in massive rotor iron Switched Reluctance Machines Rotor cog-wheel losses, additional iron losses in rotor TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 37

38 Cage induction machine with laminated rotor Example: 4-pole rotor - Squirrel cage rotor winding - Retaining caps for end rings - Laminated rotor for low additional losses - P N = 30 kw, n N = /min (OS: 120%) - Spindle ball bearings - Outer rotor diameter d = 90 mm, v = 113 m/s OS: 136 m/s Caps for cage end rings l Fe = 90 mm Source: TU Darmstadt, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 38

39 Cage-less massive rotor induction machine Example: 2-pole massive slit rotor with copper end rings, n max = 29000/min, d = l Fe = 90 mm, low power factor, high rotor slip-dependent losses special rotor cooling needed for P N = 24 kw, spindle bearings Stator 140 C Rotor shaft 330 C Max. tangential stress: 128 N/mm 2 at 120% overspeed 34800/min Source: TU Darmstadt, Germany Rotor solid core Rotor slits Model of solid slit rotor Temperature distribution: Max. temperature in the air-cooled rotor due to the big rotor losses TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 39

40 Homo-polar synchronous machine (ARCO) Example: Three-phase electrically excited synchronous machine: 4-pole massive rotor with stator-side DC excitation Central ring coil DC excitation 3-phase AC winding Specially toothed rotor N S S N Two-halves stator - No winding or magnet in the rotor - Variable DC excitation or PM axial excitation - No slip rings - Massive rotor: additional surface eddy current losses due to stator slotting - Low iron saturation needed! Source: H. Kleinrath, Stromrichtergespeiste Drehfeldmaschinen, Springer, Wien, 1980 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 40

41 Homo-polar synchronous machine (ARCO) rotor Radial air gap flux density B (I f ) at no-load (I s = 0): a) Rotor half A-A: Homo-polar positive field 0.4 T 0.5 T The fundamental wave of the AC air gap field component B,AC induces the stator 3-phase winding with the back EMF U p (I f ) like in conventional synchronous machines A-A: B 1.0 T B = 0.4 T.AC 0.2 T 0 p p x b) Rotor half B-B: Homo-polar negative field B-B: B 0 B.AC = 0.4 T p p -0.2 T x Source: H. Kleinrath, Stromrichtergespeiste Drehfeldmaschinen, Springer, Wien, T The modulation of the air-gap field B by the rotor reluctance yields an AC air gap field component B,AC, which for both motor halves A-A, B-B is IN PHASE TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 41

42 Switched Reluctance Machines Example: 2-pole laminated rotor with 4-phase stator AC excitation, Q r = 6 rotor teeth Stepwise uni-polar current feeding: i 0 Phase 4 Phase 1 Half-H-Bridge inverter per phase Stator tooth coils - Inter-tooth rotor gaps should be filled to reduce windage losses Phase 2 Phase 3 - Rather high stator frequency f s = n. Q r needed - Rotor iron losses Source: E. Hopper, MACCON, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 42

43 Stator frequency and pole count El. excited synchronous & induction machines: Low pole count 2p low electrical frequency f s low iron losses & low inverter frequency: 2p = 2 poles e.g. n max = /min, 2p = 2 poles, f s = 667 Hz PM synchronous machines: Pole count 2 or better 4 poles Limit by rotor PM demagnetization due to stator field e.g. n max = /min, 2p = 4 poles, f s = 1.33 khz f s n p Switched reluctance machines: Rotor tooth count Q r : SRM behaves like a synchronous machine with 2Q r poles e.g. n max = /min, Q r = 4, f s = 2.66 khz f n s Q r TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 43

44 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 44

45 Different bearing types (Selection) Oil-lubricated high-speed ball bearings (spindle bearings): Highest stiffness, but mechanical speed limit Oil-lubricated sleeve bearings, at high rotor mass: Coupling of vertical and horizontal vibration movement Upper speed limit due to bearing instability Air cushion sleeve bearings, at low rotor mass: Reduced stiffness, bearing instabilities Magnetic bearings (MB): No mechanical friction and wear Controlled MB: Lower dynamic stiffness due to controller delay Self-stable MB: Limited magnetic forces Low static stiffness TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 45

46 Bearings for high speed operation Active magnetic bearings Mechanical bearings a) smaller machines: Ball bearings b) big machines: Oil sleeve bearings Air bearings from published data TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 46

47 Ball bearings vs. active magnetic bearings High-Speed Spindle ball bearings: - More, but small balls = low centrifugal force per ball - Minimum oil lubrication = minimum friction - Hybrid bearings = Ceramic balls = higher stiffness Circumference velocity v B ~ d m n : (1 2) mm/min d m : Average bearing diameter n: Rot. speed Active magnetic bearings (AMB): Plus: + No contact + No lubricant + No maintenance + Same high speed v as motor Need: - DC-Chopper & DC-Control, - Position sensors & auxiliary bearings Usually longer machine with AMB - Bearing actuators TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 47

48 Active radial magnetic bearings for High-Speed Source: TU Darmstadt, Germany Radial magnetic bearing: gap 0.4 mm Auxiliary bearing gap: 0.2 mm 40 kw, 40000/min Two radial magnetic bearings, PM rotor Motor air gap: 0.7 mm Bearing force vs. weight force: 600 % TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 48

49 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 49

50 Loss components in High Speed E-Machines Dominating loss components in high-speed motors: - Iron losses P Fe = Eddy current & hysteresis losses in iron sheets - Air friction losses P fr - Additional losses (= eddy current losses) P ad in massive, conductive parts I 2 R-losses P Cu,s are usually less decisive! Low loss iron sheets may reduce iron losses e.g.: 2 W/kg losses at 1.5 T, 50 Hz such as HF-sheets (0.1 mm thickness) Twisted litz wires may reduce eddy current losses in slot conductors Segmented, insulated rotor magnets reduce there eddy currents Slot-less stator windings (= air-gap winding ) approximates sine-wave air-gap field distribution reduces rotor eddy current losses Stator AC currents should have minimum ripple due to inverter switching TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 50

51 Loss components in PM Synchronous High Speed E-Machines No-load losses: 2 x 2 x a) Stator iron losses: PFe, s ~ B fs ~ B n x = ca. 1.8, considering eddy-current and hysteresis losses b) Friction losses at the rotor surface: fr w air Fe Depending on rotor and stator surface condition & bearings: y = Load losses: c) Armature winding losses (I 2 R- losses): 4 3, ~ d l n d) Additional losses PM Fe, r f ( n, current shape) ~ I s n - In stator winding: P ad,s due to eddy currents of high frequency current - In rotor magnets and rotor iron P M+Fe,r, z = ca , depending on rotor geometry and stator current wave shape P P 2 Cu, s 3 Rs I s 2 z P fr, b ~ d m n y B : Air-gap flux density amplitude, I s : Stator phase current rms, f s : Stator frequency, R s : Stator ohmic winding resistance per phase TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 51

52 Inverter Operation for High Speed Voltage: Ui ~ n N s kw d lfe B high n low N s ~ 1/n N s : Number of turns per phase, k w ( 0.9) fundamental winding factor High fundamental frequency: e. g. n = /min, two-pole motor: f s = 3.3 khz = n high switching frequency f T 5f s (e.g khz) Motor stator inductance L d per phase rather small: Current ripple amplitude I T rather big: (U T : Switching voltage harmonic amplitude) Ld ~ 0 N I ~ U /( f L ) ~ f T T T d s 2 s l Fe Need: Low current harmonics I T to reduce additional losses Solutions: a) Very high switching frequency f T b) 3-level-inverter c) (Active) output sine wave filter TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 52

53 Torque density m at High-Speed Increased iron, friction and additional losses at high speed P Fe+fr+ad! P Fe+fr+ad must be limited Reduction of A and B necessary Reduction of A and B leads to certain reduction of m: P / V 2 n M / V 2 n N N N m m nn Note: If torque density m decreases inverse with raising rated speed n N : m ~ 1/n N then high speed drives would have no benefit from increased power per volume P/V at elevated speed! BUT: With special high speed technology B and A may be kept at reasonable high values! TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 53

54 Design features of High Speed E-Machines Necessary at high speed: Low loss iron sheets: (e.g. 0.1 mm HF sheets): Reduction of B 2 less than 1/n! B ( n) 1/ n Special stator windings for low additional losses (e.g. twisted litz wire): Reduction of A 2 ~ I s2 less than 1/n! A ( n) 1/ n Increased power density P/V Less volume V Increased loss density P d /V Improved cooling system necessary! e.g. Stator water jacket cooling: Increased heat transfer coefficient temperature rise kept within limits! Cu, s Pd / ~ Cu,s lim TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 54

55 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 55

56 Examples for High-Speed drives Permanent-magnet synchronous machines a) with different rotor magnet fixation, b) different power & speed rating, c) different cooling system and motor utilization, d) different bearing systems, e) different stator winding technology TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 56

57 High-Speed PM Synchronous Machine Ultra high-speed motor for a meso-scale gas turbine 100 W, /min Torque M N 2 mnm Phase voltage U N 11 V Current I N 3 A Frequency f N 8.3 khz Rotor diameter d 6 mm P 2 n M m d 2 l 5 M Fe N 2 10 N 3 100W 0.5 N/cm / 4 2 Stack length l Fe 15 mm Source: ETH Zurich, Switzerland - Two-pole PM motor, six-step voltage feeding - Titanium rotor sleeve - Circumference speed: 157 m/s - Mechanical bearings n 6 d m 2 10 mm/min TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 57

58 High-Speed PM Synchronous Machine Two-pole PM synchronous motor with buried magnets (1) PM rotor N Shaft 20 mm N Rotor stack S S f s = 2083 Hz Non-magnetic magnetic Non-magnetic n = /min Source: Schiefer, M.: Antriebssysteme 2017, VDE/Karlsruhe, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 58

59 High-Speed PM Synchronous Machine Two-pole PM synchronous motor with buried magnets (2) High slot fill factor 65% Water jacket cooling 50 C High current loading high m-value A = 688 A/cm Rated power P N (Th. Cl. F) 15.7 kw Rated phase current I s,n 45 A Rated DC link voltage U d,n 600 V Speed /min Rotor diameter d = 20 mm Active iron length l Fe = 50 mm Rotor mass Ca. 2 kg Max. efficiency 95% v d n 130 m/s A m d 2 l M Fe N 7.6 N/cm / N s I d s A cm Source: Schiefer, M.: Antriebssysteme 2017, VDE/Karlsruhe, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 59

60 High-Speed PM Synchronous Machine 4-pole PM synchronous machine with carbon fibre bandage Surface magnets (Sm 2 Co 17 ), 16 magnet segments / pole, carbon fiber bandage, radial magnetic bearings P N = 40 kw n N = min -1 d = 88.6 mm rotor diameter, l Fe = 90 mm v max = 222 m/s rotor surface velocity at 120% over-speed m d 2 l M Fe 1.8 N/cm N 2 / 4 stator with water jacket cooling " Magnetic bearing stator Magnetic bearing Rotor d m " 60 mm : d m nd m mm/min Source: TU Darmstadt Radial distance sensors (eddy current principle) Rotor with CFC-bandage TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 60

61 High-Speed PM Synchronous Machine PM 4-pole synchronous generator for micro gas turbine /min, 2300 Hz, four pole PM-machine Four pole PM-rotor, Carbon fiber bandage Massive rotor iron, special air bearings Stator with four pole three phase winding, fully encapsulated in resin for good heat transfer to iron Source: ABB, Sweden TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 61

62 High-Speed PM Synchronous Machine Bearing-less high-speed PM motor 500 W, /min n N = /min P N = 500 W Two-pole motor: 2p = 2 f s = 1000 Hz v = 100 m/s 4-pole levitation winding Air self-cooling M N m 2 d l / 4 Fe 0.33 N/cm 2 Source: TU Darmstadt, In co-operation with LTI, Lahnau, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 62

63 High-Speed PM Synchronous Machine Bearing-less high-speed PM motor 40 kw, 40000/min n N = 40000/min P N = 40 kw Four-pole: 2p = 4 f s = 1333 Hz v = 167 m/s d = 80 mm l Fe = 90 mm BEARINGLESS concept: Two 3- phase stator windings: Four-pole drive winding 2p 1 = 4 Six-pole levitation winding 2p 2 = 6 Source: TU Darmstadt, In co-operation with LTI, Lahnau, Germany m d 2 l M Fe N 2.2 N/cm / 4 - Rotor successfully tested at 44000/min (185 m/s) - Water-jacket cooling 2 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 63

64 Examples for High-Speed drives Homo-polar synchronous machine Massive rotor cage induction machine Cylindrical rotor synchronous machine TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 64

65 Homo-polar generator for flywheel 10 kw, /min Vacuum operation 0.21 Pa! Auxiliary bearing HTSC magnetic bearing Carbon fibre fly-wheel disc 4-pole homo-polar synchronous generator Carbon-fibre fly-wheel disc HTSC magnetic bearing Auxiliary bearing Source: FSZ Karlsruhe, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 65

66 Cage induction machines with massive rotor Operation above 2 nd bending eigen-frequency Air-water cooler Example: 2-pole rotor, 15000/min, 4 MW - Gas pipe line compressor motor series Source: Siemens AG, Dynamowerk, Berlin, Germany - Motor series 4 MW / 15000/min / 2.5 knm 16 MW / 6000 /min / 25.5 knm - Copper cage, 2-pole motors, solid iron rotor, ca. 240 m/s circumferential speed - 2 radial Active Magnetic Bearings; axial magnetic bearing at compressor wheel - Medium voltage IGBT-PWM-voltage source converter TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 66

67 Two-pole electrically excited high-speed solid steel rotor Motor operation at thyristor synchronous converter with block current wave form 17 MW, 6100/min, high speed converter-fed synchronous motor as compressor drive, oil sleeve bearings: Operation between 1 st and 2 nd bending frequency End caps Conducting rotor slot wedges as damper bars Source: Siemens AG, Dynamowerk, Berlin, Germany Highest mechanical stress here Milled rotor slots prior to mounting of rotor DC excitation winding TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 67

68 Selected Examples of High-Speed Machines Largest High-Speed Machines are Two-Pole Turbine Generators Example: f s = 50 Hz: Largest possible power: 1 GW at 50 Hz, n = 3000/min Rotor diameter: d = 1.25 m: v = 188 m/s = 676 km/h at 2p = 2, l Fe = 8 m m 32.4 N/cm Bigger rotor diameters not possible due to limited strength of steel Longer rotors not possible due to strong rotor bending: 5 balancing planes 2 Winding zone Slip ring shaft Pole zone Solid rotor End cap 2 exciter slip rings Manufacturing of Hydrogen gas-cooled two-pole Rotor, 1 GW, Lippendorf/Germany Source: Alstom Power Generation, Mannheim TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 68

69 PM synchronous High-speed machines Source: Schiefer, M.: Antriebssysteme 2017, VDE/Karlsruhe, Germany TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 69

70 Specific thrust = m/2 ( ~ torque density m) vs. circumference velocity v ~ of high-speed machines Specific thrust = Torque density/2 = m/2 N/cm 2 CFC bandage Circumference velocity v Source: Schiefer, M.: Antriebssysteme 2017, VDE/Karlsruhe, Germany /min, 15.7 kw, at overload 30 kw 40000/min, 40 kw Bearingless motor /min, 0.1 kw 3000/min, 1000 MW Lippendorf Generator Inconel bandage Example 280 TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 70

71 Example: Experts only High-Speed PM generator with single stage turbine 500 kw, 32000/ min, d 167 mm : v d n Outer motor diameter (with water 280 m/s jacket) : d so 320 mm, l Total rotor length (overall) : L 520 mm M 2 M 149 Nm, m 3.4 N/cm 2 d l Fe / 4 A 6 N s I s B 0.7 T, m ~ A B A 377 N s I s 3300 A cm d Ui Ui 2 n N s kw d lfe B 50.4 V N s U Check : Power (at cos 1) : 3U s I s 3Ui I s 3 N e.g. : N s 6, U i V, I s 550 A i s N Fe Based on: Source: Piller, Germany s I s 200 mm Fundamental winding factor k W kw TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 71

72 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Contents Basics on High-speed Drives Mechanical challenges of High-speed drives Which type of E-machine for high speed? Mechanical integrity at high speed Bearing concepts for high speed Electromagnetic design for High-Speed Examples for High-Speed drives Conclusions TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 72

73 Conclusions High speed = high circumference speed m/s Small volume/power ratio & gearless drive system Wide rated power/speed -range: ( )/min, 0.1 kw 3000 /min, MW Different bearing systems PM & electrically excited synchronous machines, induction, homo-polar synchronous & switched reluctance machines Inverter fundamental frequency several khz; output filters / three-level voltage source / elevated switching frequency Wide field of applications: Increasing numbers of high-speed drives expected in the future TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 73

74 Elektrische Hochdrehzahlantriebe - Auslegungsgrundlagen & Beispiele aus der Praxis (Electric high-speed drives design & examples) Thank you for your attention! pdf-down-load at: Lehre Vorträge & Kurse TU Darmstadt, Institut für Elektrische Energiewandlung Prof. Dr.-Ing. habil. Dr. h.c. A. Binder Seite 74

1.4 Linear PM machines

1.4 Linear PM machines 1. Permanent magnet synchronous machines as brushless DC drives 1.4 Linear PM machines Source: Oswald, Miltenberg, Germany 1.4/1 Linear PM machine principle Unrolling rotating machine yields linear machine

More information

Tutorial 1 (EMD) Rotary field winding

Tutorial 1 (EMD) Rotary field winding Tutorial 1 (EMD) Rotary field winding The unchorded two-layer three-phase winding of a small synchronous fan drive for a computer has the following parameters: number of slots per pole and phase q = 1,

More information

Energy Converters. CAD and System Dynamics

Energy Converters. CAD and System Dynamics Institut für Elektrische Energiewandlung Energy Converters CAD and System Dynamics - Tutorials - Issue 2017/2018 M.Sc. Sascha Neusüs / M.Sc. Marcel Lehr Professor Dr.-Ing. habil. Dr. h.c. Andreas Binder

More information

Basics of Permanent Magnet - Machines

Basics of Permanent Magnet - Machines Basics of Permanent Magnet - Machines 1.1 Principles of energy conversion, force & torque 1.2 Basic design elements 1.3 Selection of PM-Machine topologies 1.4 Evaluation and Comparison Permanent Magnet

More information

Basics of rotordynamics 2

Basics of rotordynamics 2 Basics of rotordynamics Jeffcott rotor 3 M A O a rigid rotor disk rotates at angular frequency W massless shaft acts as a spring restoring displacements disk can move only in the plane defined by axes

More information

UNIT I INTRODUCTION Part A- Two marks questions

UNIT I INTRODUCTION Part A- Two marks questions ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic

More information

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling Analysis of Electromagnetic Behavior of Permanent Magnetized Electrical Machines in Fault Modes M. U. Hassan 1, R. Nilssen 1, A. Røkke 2 1. Department of Electrical Power Engineering, Norwegian University

More information

Christian Doppler Labor, TU Graz 12. Dezember 2007

Christian Doppler Labor, TU Graz 12. Dezember 2007 Christian Doppler Labor, TU Graz 12. Dezember 2007 Verlustberechnung und experimentelle Validierung bei hochausgenützten Permanentmagnet-Synchronmaschinen mit Zahnspulenwicklungen und Feldschwächbetrieb

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS 38 CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS 3.1 INTRODUCTION The electric submersible-pump unit consists of a pump, powered by

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

Development and analysis of radial force waves in electrical rotating machines

Development and analysis of radial force waves in electrical rotating machines DOI: 10.24352/UB.OVGU-2017-098 TECHNISCHE MECHANIK, 37, 2-5, (2017), 218 225 submitted: June 20, 2017 Development and analysis of radial force waves in electrical rotating machines S. Haas, K. Ellermann

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

More information

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco Thermal Analysis of Electric Machines Motivation Thermal challenges

More information

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines

Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Design and analysis of Axial Flux Permanent Magnet Generator for Direct-Driven Wind Turbines Sung-An Kim, Jian Li, Da-Woon Choi, Yun-Hyun Cho Dep. of Electrical Engineering 37, Nakdongdae-ro, 55beon-gil,

More information

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II) Chapter # 4 Three-Phase Induction Machines 1- Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Thermal and Mechanical Analysis of PM Assisted Synchronous Reluctance Motor for Washing Machines

Thermal and Mechanical Analysis of PM Assisted Synchronous Reluctance Motor for Washing Machines Thermal and Mechanical Analysis of PM Assisted Synchronous Reluctance Motor for Washing Machines Liridon Xheladini, Alper Tap, Murat Imeryuz, Tasdemir Asan, Murat Yilmaz, Lale T. Ergene Electrical Engineering

More information

Analytical and numerical computation of the no-load magnetic field in induction motors

Analytical and numerical computation of the no-load magnetic field in induction motors Analytical and numerical computation of the no-load induction motors Dan M. Ionel University of Glasgow, Glasgow, Scotland, UK and Mihai V. Cistelecan Research Institute for Electrical Machines, Bucharest

More information

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star Measurements of a 37 kw induction motor Rated values Voltage 4 V Current 72 A Frequency 5 Hz Power 37 kw Connection Star Losses of a loaded machine Voltage, current and power P = P -w T loss in Torque

More information

Loss Investigation of Slotless Bearingless Disk Drives

Loss Investigation of Slotless Bearingless Disk Drives 25 IEEE Proceedings of the IEEE Energy Conversion Congress & Expo (ECCE USA 25), Montreal, Canada, September 2-24, 25 Loss Investigation of Slotless Bearingless Disk Drives D. Steinert, I. Kovacevic-Badstübner,

More information

Publication P Institute of Electrical and Electronics Engineers (IEEE)

Publication P Institute of Electrical and Electronics Engineers (IEEE) Publication P2 Jere Kolehmainen and Jouni Ikäheimo. 2008. Motors with buried magnets for medium-speed applications. IEEE Transactions on Energy Conversion, volume 23, number 1, pages 86-91. 2008 Institute

More information

Induction Motors. The single-phase induction motor is the most frequently used motor in the world

Induction Motors. The single-phase induction motor is the most frequently used motor in the world Induction Motor The single-phase induction motor is the most frequently used motor in the world Most appliances, such as washing machines and refrigerators, use a single-phase induction machine Highly

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor

Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Loss Minimization Design Using Magnetic Equivalent Circuit for a Permanent Magnet Synchronous Motor Daisuke Sato Department of Electrical Engineering Nagaoka University of Technology Nagaoka, Niigata,

More information

Analysis of Hybrid Magnetic Bearing for High Speed. Spindle

Analysis of Hybrid Magnetic Bearing for High Speed. Spindle www.ijaser.com Copyright 2013 - Integrated Publishing Association editorial@ijaser.com Research article ISSN 2277 8442 Analysis of Hybrid Magnetic Bearing for High Speed Spindle Shahir Rasheed RP 1. R.

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor I.A. Viorel 1, I. Husain 2, Ioana Chişu 1, H.C. Hedeşiu 1, G. Madescu 3 and L. Szabó 1 1 Dept. of Electrical Machines, Technical

More information

6 Chapter 6 Testing and Evaluation

6 Chapter 6 Testing and Evaluation 6 Chapter 6 Testing and Evaluation n this chapter the results obtained during the testing of the LS PMSM prototype are provided. The test results are compared with Weg s LS PMSM machine, WQuattro. The

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1

Chapter 6: Efficiency and Heating. 9/18/2003 Electromechanical Dynamics 1 Chapter 6: Efficiency and Heating 9/18/2003 Electromechanical Dynamics 1 Losses As a machine transforms energy from one form to another there is always a certain power loss the loss is expressed as heat,

More information

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en T20WN Torque transducers Data Sheet Special features - Nominal (rated) torques 0.1 N m, 0.2 N m, 0. N m, 1 N m, 2 N m, N m, 10 N m, 20 N m, 0 N m, 100 N m, 200 N m - Accuracy class: 0.2 - Contactless transmission

More information

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA

CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 31 CHAPTER 3 ENERGY EFFICIENT DESIGN OF INDUCTION MOTOR USNG GA 3.1 INTRODUCTION Electric motors consume over half of the electrical energy produced by power stations, almost the three-quarters of the

More information

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS A. Parviainen, J. Pyrhönen, M. Niemelä Lappeenranta University of Technology, Department of Electrical Engineering

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor

Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor Design of the Forced Water Cooling System for a Claw Pole Transverse Flux Permanent Magnet Synchronous Motor Ahmad Darabi 1, Ali Sarreshtehdari 2, and Hamed Tahanian 1 1 Faculty of Electrical and Robotic

More information

Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor

Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor Eddy-Current Loss Analysis of Copper-Bar Windings of Ultra High-Speed PM Motor Toshihiko Noguchi IEEE Senior Member Shizuoka University 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, Japan E-Mail: ttnogut@ipc.shizuoka.ac.jp

More information

Third harmonic current injection into highly saturated multi-phase machines

Third harmonic current injection into highly saturated multi-phase machines ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(1), pp. 179-187 (017) DOI 10.1515/aee-017-001 Third harmonic current injection into highly saturated multi-phase machines FELIX KLUTE, TORBEN JONSKY Ostermeyerstraße

More information

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

IEEE Transactions on Applied Superconductivity. Copyright IEEE. Title Loss analysis of permanent magnet hybrid brushless machines with and without HTS field windings Author(s) Liu, C; Chau, KT; Li, W Citation The 21st International Conference on Magnet Technology,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor

Influence of different rotor magnetic circuit structure on the performance. permanent magnet synchronous motor ARCHIVES OF ELECTRICAL ENGINEERING VOL. 66(3), pp. 583-594 (2017) DOI 10.1515/aee-2017-0044 Influence of different rotor magnetic circuit structure on the performance of permanent magnet synchronous motor

More information

Finite Element Method based investigation of IPMSM losses

Finite Element Method based investigation of IPMSM losses Finite Element Method based investigation of IPMSM losses Martin Schmidtner 1, Prof. Dr. -Ing. Carsten Markgraf 1, Prof. Dr. -Ing. Alexander Frey 1 1. Augsburg University of Applied Sciences, Augsburg,

More information

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00 Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko FSD3020xxx-x_01-00 1 Content Introduction Vibration problems in EDGs Sources of excitation 2 Introduction Goal of this

More information

Unified Torque Expressions of AC Machines. Qian Wu

Unified Torque Expressions of AC Machines. Qian Wu Unified Torque Expressions of AC Machines Qian Wu Outline 1. Review of torque calculation methods. 2. Interaction between two magnetic fields. 3. Unified torque expression for AC machines. Permanent Magnet

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

An approach for modelling quasi-stationary magnetic circuits

An approach for modelling quasi-stationary magnetic circuits An approach for modelling quasi-stationary magnetic circuits Nick Raabe Sterling Industry Consult GmbH Lindenstraße 170, 25524 Itzehoe, Germany nick.raabe@sterlingsihi.de Abstract For the design of electrical

More information

3.4 High speed trains with magnetic levitation

3.4 High speed trains with magnetic levitation New technologies of electric energy converters 3.4 High speed trains with magnetic levitation 3.4.1 Active magnetically levitated high-speed train TRANSRAPID 3.4.2 Japanese electro-dynamically levitated

More information

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Performance analysis of variable speed multiphase induction motor with pole phase modulation ARCHIVES OF ELECTRICAL ENGINEERING VOL. 65(3), pp. 425-436 (2016) DOI 10.1515/aee-2016-0031 Performance analysis of variable speed multiphase induction motor with pole phase modulation HUIJUAN LIU, JUN

More information

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR Henneberger, G. 1 Viorel, I. A. Blissenbach, R. 1 Popan, A.D. 1 Department of Electrical Machines, RWTH Aachen, Schinkelstrasse 4,

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 8 Balancing Lecture - 1 Introduce To Rigid Rotor Balancing Till

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR Łukasz DR ZIKOWSKI Włodzimierz KOCZARA Institute of Control and Industrial Electronics Warsaw University of Technology, Warsaw,

More information

Design and Experimental Evaluation of the Flywheel Energy Storage System

Design and Experimental Evaluation of the Flywheel Energy Storage System Research article Design and Experimental Evaluation of the Flywheel Energy Storage System Jun-Ho Lee *, Byeong-Song Lee * * orea Railroad Research Institute #176, Cheoldo bangmulgwan-ro, Uiwang, Gyeonggi-Do,

More information

2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary Integrated Simulation Environment for Electric Machine Design Scott Stanton Technical Director Advanced Technology Initiatives ANSYS Inc. 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

More information

Flux: Examples of Devices

Flux: Examples of Devices Flux: Examples of Devices xxx Philippe Wendling philippe.wendling@magsoft-flux.com Create, Design, Engineer! www.magsoft-flux.com www.cedrat.com Solenoid 2 1 The Domain Axisymmetry Open Boundary 3 Mesh

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Motor Info on the WWW Motorola Motors DC motor»   /MOTORDCTUT. Motor Info on the WWW Motorola Motors DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material /MOTORDCTUT.html Brushless DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material

More information

Rotating Machine Insulation Systems p. 1 Types of Rotating Machines p. 1 AC Motors p. 2 Synchronous Generators p. 4 Classification by Cooling p.

Rotating Machine Insulation Systems p. 1 Types of Rotating Machines p. 1 AC Motors p. 2 Synchronous Generators p. 4 Classification by Cooling p. Preface p. xvii Rotating Machine Insulation Systems p. 1 Types of Rotating Machines p. 1 AC Motors p. 2 Synchronous Generators p. 4 Classification by Cooling p. 6 Purpose of Windings p. 7 Stator Winding

More information

Jens Otto CADFEM GmbH

Jens Otto CADFEM GmbH Titelmasterformat Simulation of Electric durch Machines Klicken with bearbeiten ANSYS Jens Otto CADFEM GmbH 1 Why Simulation with ANSYS? Challenges for electric machines Electromagnetic Design: Rated power/

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Development of axial flux HTS induction motors

Development of axial flux HTS induction motors Available online at www.sciencedirect.com Procedia Engineering 35 (01 ) 4 13 International Meeting of Electrical Engineering Research ENIINVIE-01 Development of axial flux HTS induction motors A. González-Parada

More information

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach Adeeb Ahmed Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC, USA aahmed4@ncsu.edu

More information

Vehicular Suspension and Propulsion Using Double Sided Linear Induction Machines

Vehicular Suspension and Propulsion Using Double Sided Linear Induction Machines Vehicular Suspension and Propulsion Using Double Sided Linear Induction Machines Tom Cox Power Electronics Machines and Control Group The University of Nottingham Nottingham, UK t.cox@nottingham.ac.uk

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Research Report BVAL35-001083 Customer: TEKES/SMART VIBRATION RESPONSE OF AN ELECTRIC GENERATOR Paul Klinge, Antti Hynninen Espoo, Finland 27 December, 2001 1 (12) Title A B Work report Public research

More information

3 Chapter 3 Machine design

3 Chapter 3 Machine design 3 Chapter 3 Machine design This chapter is divided into three sections. In the first section the detailed design plan for the prototype is given. The second section contains the stator design as well as

More information

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength Journal of Magnetics 18(2), 125-129 (2013) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2013.18.2.125 Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Arumugam, Puvaneswaran and Dusek, Jiri and Mezani, Smail and Hamiti, Tahar and Gerada, C. (2015) Modeling and analysis of eddy current losses in permanent magnet machines with multi-stranded bundle conductors.

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data GOGA CVETKOVSKI LIDIJA PETKOVSKA Faculty of Electrical Engineering Ss. Cyril and Methodius University Karpos II b.b. P.O. Box

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

EE ELECTRICAL ENGINEERING DRAWING

EE ELECTRICAL ENGINEERING DRAWING EE09 605 ELECTRICAL ENGINEERING DRAWING Akhil A. Balakrishnan 1 1 Department of Electrical & Electronics Engineering Jyothi Engineering College, Cheruthuruthy As on February 24, 2014 Akhil A. Balakrishnan

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Electronics & Communication Engineering QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING -15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 - 1 - Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 In version 4.3 nonlinear rolling element bearings can be considered for transient analyses. The nonlinear forces are calculated with a

More information

338 Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nano Materials

338 Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nano Materials Materials Science Forum Online: 2014-08-11 ISSN: 1662-9752, Vol. 792, pp 337-342 doi:10.4028/www.scientific.net/msf.792.337 2014 Trans Tech Publications, Switzerland Torque Characteristic Analysis of an

More information

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit IJR International Journal of Railway Vol. 3, No. 1 / March 2010, pp. 14-18 The Korean Society for Railway Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Stability Analysis and Research of Permanent Magnet Synchronous Linear Motor

Stability Analysis and Research of Permanent Magnet Synchronous Linear Motor Stability Analysis and Research of Permanent Magnet Synchronous Linear Motor Abstract Rudong Du a, Huan Liu b School of Mechanical and Electronic Engineering, Shandong University of Science and Technology,

More information

Cogging Torque Reduction for Interior Permanent Magnet Synchronous Motors. Master Thesis Miquel Tost Candel M. Sc. Electrical Engineering

Cogging Torque Reduction for Interior Permanent Magnet Synchronous Motors. Master Thesis Miquel Tost Candel M. Sc. Electrical Engineering Cogging Torque Reduction for Interior Permanent Magnet Synchronous Motors Master Thesis Miquel Tost Candel 2293132 M. Sc. Electrical Engineering ii Miquel Tost Candel Matriculation number: 2293132 M. Sc.

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2 International Conference on Electromechanical Control Technology and Transportation (ICECTT 2015) Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1,

More information

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES TECHNICAL TRAINING TTR01 ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES 1 OBJECTIVES The objectives of the technical training are the followings: understand the phenomenon

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives Prof. Dr. Ing. Joachim Böcker Test Examination: Mechatronics and Electrical Drives 8.1.214 First Name: Student number: Last Name: Course of Study: Exercise: 1 2 3 Total (Points) (2) (2) (2) (6) Duration:

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

Design of low electromagnetic Noise, Vibration, Harshness (NVH) electrical machines using FEMAG and MANATEE software

Design of low electromagnetic Noise, Vibration, Harshness (NVH) electrical machines using FEMAG and MANATEE software FEMAG Anwendertreffen 2017, 2/3 November 2017 Design of low electromagnetic Noise, Vibration, Harshness (NVH) electrical machines using FEMAG and MANATEE software Pierre BONNEEL Emile DEVILLERS Jean LE

More information