Water-bag reduced gyrokinetic model for the study of the spatial structure of ITG instability linear modes

Size: px
Start display at page:

Download "Water-bag reduced gyrokinetic model for the study of the spatial structure of ITG instability linear modes"

Transcription

1 Water-bag reduced gyrokinetic model for the study of the spatial structure of ITG instability linear modes PhD work directed by N. Besse with invaluable input from P. Bertrand, E. Gravier, P. Morel,R. Klein D. Coulette - Institut Jean Lamour CNRS UMR 7198 March 2010

2 Outline 1 Background 2 Multi-Water-Bag : a class of reduced models 3 From physical model to numerical problem 4 Validation and results 5 conlusions, ongoing work and future perspectives

3 Background The big picture Turbulent transport in magnetic confinement devices steady state fusion energy production requires high energy confinement time. plasma turbulence can be thought responsible for enhanced anomalous transport need to properly characterize physical mechanism, triggering conditions and space-time structure of turbulent flows. Ion Temperature Gradient Instability ( ITG ) Features in brief among the main sources of turbulent transport driven by electrostatic v E B drift strongly anisotropic propagation k k low frequency ω 10 3 Ω CI

4 Background Instability threshold Instability threshold : why ITG? Triggering conditions triggered and fed by radial temperature gradient κ T = d r ln(t ) attenuated by radial density gradient κ n = d r ln(n) threshold determined by η i = d ln(t i) d ln(n i ) = κ T κ n Typical critical values Local slab fluid model : η crit = 2 Local MWB model η crit = 5 10 Density Temperature

5 Background Instability threshold Typical gradient profiles Normalized gradients κ Ratio η i

6 Background Configuration and dynamical model Plasma model cylindrical plasma column radial domain 0.1to10 20ρ s constant axial B field µ = 0 limit. adiabatic electrons. Drift kinetic equation for ions tf + v E f + v zf + q i M i E v f = 0 Quasi-neutrality with polarization drift «ni Z i n i + Z i φ = n e BΩ CI Computational cost is still high 3D space, 1D velocity,1d time, integro-differential system Are further reductions achievable?

7 Multi-Water-Bag : a class of reduced models Multi-Water-Bag reduction Multi-Water-Bag reduction v dependency of distribution function is approached by a sum of constant height Heaviside functions. f (r, v, t) = X A j `H `v v j (r, t) H `v v + j (r, t) j [1;N] Provided the contours stay distinct, this is an exact weak solution of the Vlasov equation.

8 Multi-Water-Bag : a class of reduced models MWB parameters How to set MWB parameters? Moment equivalence : constraints Minimize differences between MWB moments and reference ones. the weights A j must be positive ( to stay on the cautious side) bags contours shouldn t cross on the radial domain k th order MWB moments M MWB k = X j A j v + j k+1 v k+1 j k + 1 A non-linear functionnal optimization problem MWB moments are linear in A j and polynomials in V j : tricky non-linear optimization

9 Multi-Water-Bag : a class of reduced models MWB parameters Local equivalence Exact equivalence in r 0 choose N initial bags values : V j (r 0) > 0. compute even Maxwellian moments up to 2N 2 th order A j are solutions of a linear Vandermonde system. solve system to get Aj. Analytical form is known : fast and stable algorithm. How to insure A j > 0? From the Vandermonde system and Maxwellian moments one gets the condition : ( V 1 < 3T V N > p (2N 1)T

10 Multi-Water-Bag : a class of reduced models MWB parameters Extending equivalence while preserving η profile Radial differentiation method Vandermonde system differentiated in r 0 new Vandermonde system obtained with radial derivatives as unknowns. Compute bags derivatives extension by taylor expansion in r 0 ± h iterate to domain bounds 5 bags example

11 Multi-Water-Bag : a class of reduced models MWB parameters Radial differentiation method : preserved gradients Realtive errors on gradients Relative errors on moments

12 From physical model to numerical problem A generalized Sturm-Liouville problem Sturm-Liouville Problem 1st order linearization. Fourier transform in θ, z : φ(r, θ, z, t) = φ(r)e (mθ+nk z ωt) Radial enveloppe of potential solution of : whence and L = Lφ = 0 1 «d r (rn 0d r ) + m F (ω) rn 0 r 2 Z i T e F (ω) = X j A j n 0 nk m r dr V j ω nk V j = X j Γ j ω α j with Dirichlet boundary conditions φ(r min ) = φ(r max) = 0

13 From physical model to numerical problem A generalized Sturm-Liouville problem Schrödinger form Setting ψ = rn 0φ one gets :» d 2 dr + Q(ω) ψ = Q(ω) = B(r) + F (ω) >< with B(r) = ` m r Z i T e (r) 4 (dr ln(rn0))2 + 1 d 2 2 r ln(rn 0) >: F (ω) = P Γ j ω α j j with ψ(r min ) = ψ(r max) = 0 Main features non-hermitian operator non linear spectral problem presence of poles related to equilibrium contours.

14 From physical model to numerical problem A generalized Sturm-Liouville problem Radial discretization scheme Discretization Uniform sampling of radial domain in N r samples of width h : i = 1... N r : r i = r min + (i 1)h Differential operators sampling 2nd order finite difference scheme d 2 X dr (r i) = X i+1 2X i + X i 1 2 2h 2

15 From physical model to numerical problem A generalized Sturm-Liouville problem Two resolution strategies Dispersion relation approach solve for the potential unique ODE, non linear in ω seek polynomial matrix null space determinnant yields dispersion relation find roots in complex plane get eigenmode by SVD Full eigenproblem approach solve for bags perturbations coupled ODE system, linear in ω full sprectrum and eigenspace is obtained.

16 Validation and results Validation - non ITG Numerical validation String modes ad-hoc form of Schrödinger potential: «2 ωπ Q(ω) = r max r min Purely imaginary eigenvalues Sine eigenvectors Similar numerical problem Collisionnal drif waves Different physical phenomenon Different poles and coefficients for F (ω) Results in adequation with previoulsy obtained ones.

17 Validation and results ITG in cylindrical geometry : results instability Growth rate map (m, n) Large domain (20ρ s)- wide unstable zone (6ρ s) "solution_set.csv" using 1:2:4 4.50E E-03 m E E E E E E-03 (m, n) scan [1 20] [1, 10] Most unstable : (m, n) = (11, 7) Rate γ : Ω CI E n 0.00E+00

18 Validation and results ITG in cylindrical geometry : results Growth rate γ Frequency ω R ,5 Taux de croissance MWB Fluid Partie réelle -7-7,5-8 MWB Fluid 1-8, m 0 m 6-2 Taux de croissance MWB Fluid Partie réelle MWB Fluid n n

19 Validation and results ITG in cylindrical geometry : results Full spectrum Full spectrum - color function of m

20 Validation and results ITG in cylindrical geometry : results Full spectrum - ITG zone Color of points is function of m

21 Validation and results ITG in cylindrical geometry : results Full spectrum - ITG zone Color is function of n

22 Validation and results ITG in cylindrical geometry : results Radial enveloppe structure : modulus Outward shifting and narrowing when m grows

23 Validation and results ITG in cylindrical geometry : results Radial enveloppe structure : phase Flat phase profile in instability region : k r is small

24 Validation and results ITG in cylindrical geometry : results Mode (3, 7) : influence of phase? Let s check Re(phase factor) Real part k r compensated by modulus decay

25 Validation and results A few applications Localization of unstable zone Unstable zone Test case parameters small radial domain r max = 10ρ s narrow unstability zone ρ s Mode selection r 0(ρ s ) n m ω R (10 3 ω CI ) γ(10 3 ω CI ) Enveloppe

26 Validation and results A few applications Comparison with local kinetic code : KINEZERO m "solution_set.csv" using 1:2: n ( C. Bourdelle - CEA - PhD Thesis 2000) MWB model - linear method 8,0E-003 8,0E-003 Most unstable mode Taux de croissance 7,0E-003 6,0E-003 5,0E-003 4,0E-003 3,0E-003 2,0E-003 1,0E-003 0,0E m Taux de croissance 7,0E-003 6,0E-003 5,0E-003 n=1 4,0E-003 n=2 n=3 n=4 3,0E-003 2,0E-003 1,0E-003 0,0E ,5 3 3,5 4 4,5 5 5,5 6 6,5 7 n m=8 m=9 m=10 m=11 Linear MWB model : mode (m, n) = (10, 4) γ MWB = 6, Ω CI KINEZERO : mode (m, n) = (11, 3) γ KINE = 6, Ω CI From V.Grangirard et al, JCP (2006) Local kinetic model - KINEZERO MWB γ map

27 conlusions, ongoing work and future perspectives Conlusions, Ongoing work and future perspectives Conclusions typical kinetic growth rates can be obtained with a low order MWB distribution full eigenstructure can be obtained in decent time ( < 1h) Future work directions in cylindrical geometry compare linear results with N. Besse s non-linear SL code ones more parametric studies, stable modes, gyroaverage corrections. new non-linear code using discontinuous-galerkin method. Ongoing work on Toroidal geometry case coupled set of PDE instead of ODE poloidal coupling concerns with problem size...

28 conlusions, ongoing work and future perspectives Thanks for your attention

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Modeling of ELM Dynamics for ITER

Modeling of ELM Dynamics for ITER Modeling of ELM Dynamics for ITER A.Y. PANKIN 1, G. BATEMAN 1, D.P. BRENNAN 2, A.H. KRITZ 1, S. KRUGER 3, P.B. SNYDER 4 and the NIMROD team 1 Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University

More information

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

Large scale flows and coherent structure phenomena in flute turbulence

Large scale flows and coherent structure phenomena in flute turbulence Large scale flows and coherent structure phenomena in flute turbulence I. Sandberg 1, Zh. N. Andrushcheno, V. P. Pavleno 1 National Technical University of Athens, Association Euratom Hellenic Republic,

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

Global gyrokinetic particle simulations with kinetic electrons

Global gyrokinetic particle simulations with kinetic electrons IOP PUBLISHING Plasma Phys. Control. Fusion 49 (2007) B163 B172 PLASMA PHYSICS AND CONTROLLED FUSION doi:10.1088/0741-3335/49/12b/s15 Global gyrokinetic particle simulations with kinetic electrons Z Lin,

More information

Current-driven instabilities

Current-driven instabilities Current-driven instabilities Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 21 st February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously In the last

More information

arxiv: v1 [physics.plasm-ph] 14 Jan 2009

arxiv: v1 [physics.plasm-ph] 14 Jan 2009 arxiv:0901.2043v1 [physics.plasm-ph] 14 Jan 2009 Effectsofparallel ion motion onzonal flowgeneration in ion-temperature-gradient mode turbulence J. Anderson 1, J. Li, Y. Kishimoto Department of Fundamental

More information

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation J. Plasma Fusion Res. SERIES, Vol. 9 () Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation R. Ganesh Institute for Plasma Research, Bhat Village,

More information

Microturbulence in optimised stellarators

Microturbulence in optimised stellarators Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.

More information

The gyrokinetic turbulence code GENE - Numerics and applications

The gyrokinetic turbulence code GENE - Numerics and applications Contributors: T. Dannert (1), F. Jenko (1),F. Merz (1), D. Told (1), X. Lapillonne (2), S. Brunner (2), and others T. Görler (1) The gyrokinetic turbulence code GENE - Numerics and applications (1) Max-Planck-Institut

More information

Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework

Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework 19th IAEA Fusion Energy Conference Tuesday, October 15, 2002 Paper: TH/P1-13 Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework Scott Parker and Yang Chen University

More information

Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas Institute of Physics Publishing Journal of Physics: Conference Series 16 (25 16 24 doi:1.188/1742-6596/16/1/2 SciDAC 25 Particle-in-cell simulations of electron transport from plasma turbulence: recent

More information

Turbulent Transport due to Kinetic Ballooning Modes in High-Beta Toroidal Plasmas

Turbulent Transport due to Kinetic Ballooning Modes in High-Beta Toroidal Plasmas 1 TH/P-3 Turbulent Transport due to Kinetic allooning Modes in High-eta Toroidal Plasmas A. Ishizawa 1, S. Maeyama, T.-H. Watanabe 1, H. Sugama 1 and N. Nakajima 1 1 National Institute for Fusion Science,

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma F.J. Casson, A.G. Peeters, Y. Camenen, W.A. Hornsby, A.P. Snodin, D. Strintzi, G.Szepesi CCFE Turbsim, July

More information

Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach

Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach S. Jolliet 1), B. F. McMillan 1), T. M. Tran 1), X. Lapillonne 1), L. Villard 1), A. Bottino 2), P. Angelino

More information

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA INTRINSICALLY STEADY STATE TOKAMAKS K.C. SHAING, A.Y. AYDEMIR, R.D. HAZELTINE Institute for Fusion Studies, The University of Texas at Austin, Austin TX 78712 USA W.A. HOULBERG Oak Ridge National Lab.,

More information

Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics

Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics Chapter 4 Epoch Making Simulation Research on Structure Formation of Plasmas Dominated by Multiple Hierarchical Dynamics Group Representative Yasuaki Kishimoto Naka Fusion Research Establishment, Japan

More information

Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation

Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation 22 nd IAEA Fusion Energy Conference Geneva, Switzerland, 3-8 October 2008 IAEA-CN-65/TH/P8-39 Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation D. R.

More information

Microtearing Simulations in the Madison Symmetric Torus

Microtearing Simulations in the Madison Symmetric Torus Microtearing Simulations in the Madison Symmetric Torus D. Carmody, P.W. Terry, M.J. Pueschel - University of Wisconsin - Madison dcarmody@wisc.edu APS DPP 22 Overview PPCD discharges in MST have lower

More information

L Aquila, Maggio 2002

L Aquila, Maggio 2002 Nonlinear saturation of Shear Alfvén Modes and energetic ion transports in Tokamak equilibria with hollow-q profiles G. Vlad, S. Briguglio, F. Zonca, G. Fogaccia Associazione Euratom-ENEA sulla Fusione,

More information

Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma

Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma 1 Impact of diverted geometry on turbulence and transport barrier formation in 3D global simulations of tokamak edge plasma D. Galassi, P. Tamain, H. Bufferand, C. Baudoin, G. Ciraolo, N. Fedorczak, Ph.

More information

ELMs and Constraints on the H-Mode Pedestal:

ELMs and Constraints on the H-Mode Pedestal: ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,

More information

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code George Wilkie (gwilkie@umd.edu) Supervisor: William Dorland (bdorland@umd.edu) October 11, 2011 Abstract Simulations of turbulent plasma in

More information

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Yang Chen and Scott E. Parker University of Colorado at Boulder Gregory Rewoldt Princeton Plasma Physics Laboratory

More information

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016 for Vlasov type for Vlasov type 1 2 ECCOMAS 2016 In collaboration with : Bedros Afeyan, Aurore Back, Fernando Casas, Nicolas Crouseilles, Adila Dodhy, Erwan Faou, Yaman Güclü, Adnane Hamiaz, Guillaume

More information

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations Max-Planck-Insititut für Plasmaphysik Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations A. Bottino Objectives Develop a numerical tool able to reproduce and predict

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Interaction between EGAMs and turbulence in full-f gyrokinetic simulations

Interaction between EGAMs and turbulence in full-f gyrokinetic simulations Interaction between EGAMs and turbulence in full-f gyrokinetic simulations David Zarzoso 1 X Garbet 1, Y Sarazin 1, V Grandgirard 1, J Abiteboul 1, A Strugarek 1,2, G Dif-Pradalier 1, R Dumont 1, G Latu

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Bursty Transport in Tokamaks with Internal Transport Barriers

Bursty Transport in Tokamaks with Internal Transport Barriers Bursty Transport in Tokamaks with Internal Transport Barriers S. Benkadda 1), O. Agullo 1), P. Beyer 1), N. Bian 1), P. H. Diamond 3), C. Figarella 1), X. Garbet 2), P. Ghendrih 2), V. Grandgirard 1),

More information

Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges

Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges Validation Study of gyrokinetic simulation (GYRO) near the edge in Alcator C-Mod ohmic discharges C. Sung, A. E. White, N. T. Howard, D. Mikkelsen, C. Holland, J. Rice, M. Reinke, C. Gao, P. Ennever, M.

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37 Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the Grad-Shafranov equation Collisional

More information

Stability of a plasma confined in a dipole field

Stability of a plasma confined in a dipole field PHYSICS OF PLASMAS VOLUME 5, NUMBER 10 OCTOBER 1998 Stability of a plasma confined in a dipole field Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received

More information

Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities

Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities Overview of Gyrokinetic Theory & Properties of ITG/TEM Instabilities G. W. Hammett Princeton Plasma Physics Lab (PPPL) http://w3.pppl.gov/~hammett AST559: Plasma & Fluid Turbulence Dec. 5, 2011 (based

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Nonlinear hydrid simulations of precessional Fishbone instability

Nonlinear hydrid simulations of precessional Fishbone instability Nonlinear hydrid simulations of precessional Fishbone instability M. Faganello 1, M. Idouakass 1, H. L. Berk 2, X. Garbet 3, S. Benkadda 1 1 Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade.

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. 1 EX/P1-18 Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. A. Biancalani 1, A. Bottino 1, S. Briguglio 2, G.D. Conway 1, C. Di Troia 2, R. Kleiber

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

Advances in stellarator gyrokinetics

Advances in stellarator gyrokinetics Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos 1 Background Wendelstein 7-X will start experiments in 2015 optimised

More information

Hybrid Kinetic-MHD simulations with NIMROD

Hybrid Kinetic-MHD simulations with NIMROD in NIMROD simulations with NIMROD Charlson C. Kim 1 Dylan P. Brennan 2 Yasushi Todo 3 and the NIMROD Team 1 University of Washington, Seattle 2 University of Tulsa 3 NIFS, Toki-Japan December 2&3, 2011

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

Gyrokinetic Simulations of Tokamak Microturbulence

Gyrokinetic Simulations of Tokamak Microturbulence Gyrokinetic Simulations of Tokamak Microturbulence W Dorland, Imperial College, London With key contributions from: S C Cowley F Jenko G W Hammett D Mikkelsen B N Rogers C Bourdelle W M Nevins D W Ross

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

NumKin, Strasbourg, October 17 th, 2016

NumKin, Strasbourg, October 17 th, 2016 F. Palermo 1 A.Biancalani 1, C.Angioni 1, F.Zonca 2, A.Bottino 1, B.Scott 1, G.D.Conway 1, E.Poli 1 1 Max Planck Institut für Plasmaphysik, Garching, Germany 2 ENEA C. R. Frascati - Via E. Fermi 45, CP

More information

Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics

Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics Y. Sarazin, Y. Asahi 2, N. Bouzat, G. Dif-Pradalier, P. Donnel, C. Ehrlacher, C. Emeriau 3, X. Garbet, Ph. Ghendrih, V. Grandgirard,

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

EMAFF: MAgnetic Equations with FreeFem++

EMAFF: MAgnetic Equations with FreeFem++ EMAFF: MAgnetic Equations with FreeFem++ The Grad-Shafranov equation & The Current Hole Erwan DERIAZ Bruno DESPRÉS Gloria FACCANONI š Kirill Pichon GOSTAF Lise-Marie IMBERT-GÉRARD Georges SADAKA Remy

More information

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division

More information

Recent Developments in Theory for W7-X

Recent Developments in Theory for W7-X Recent Developments in Theory for W7-X J. NÜHRENBERG, M. DREVLAK, R. HATZKY, R. KLEIBER, A. KÖNIES, P. MERKEL, D. MONTICELLO +,C.NÜHRENBERG, A. REIMAN +,T.M.TRAN? Max-Planck-Institut für Plasmaphysik,

More information

On the physics of shear flows in 3D geometry

On the physics of shear flows in 3D geometry On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain Recent experiments have shown the importance of multi-scale (long-range)

More information

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows TH/P3-3 High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu

More information

1 EX/P7-12. Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments

1 EX/P7-12. Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments 1 EX/P7-12 Transient and Intermittent Magnetic Reconnection in TS-3 / UTST Merging Startup Experiments Y. Ono 1), R. Imazawa 1), H. Imanaka 1), T. Hayamizu 1), M. Inomoto 1), M. Sato 1), E. Kawamori 1),

More information

Computational Issues in the Continuum Gyrokinetic Code GYRO

Computational Issues in the Continuum Gyrokinetic Code GYRO Computational Issues in the Continuum Gyrokinetic Code GYRO presented by: Eric Bass GSEP SciDAC project at General Atomics CScADS Workshop Snowbird, UT July 19, 2010 About GYRO Purpose: To predict transport

More information

Optimal design of 2-D and 3-D shaping for linear ITG stability*

Optimal design of 2-D and 3-D shaping for linear ITG stability* Optimal design of 2-D and 3-D shaping for linear ITG stability* Mordechai N. Rorvig1, in collaboration with Chris C. Hegna1, Harry E. Mynick2, Pavlos Xanthopoulos3, and M. J. Pueschel1 1 University of

More information

Understanding physics issues of relevance to ITER

Understanding physics issues of relevance to ITER Understanding physics issues of relevance to ITER presented by P. Mantica IFP-CNR, Euratom/ENEA-CNR Association, Milano, Italy on behalf of contributors to the EFDA-JET Work Programme Brief summary of

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

Turbulence in Tokamak Plasmas

Turbulence in Tokamak Plasmas ASDEX Upgrade Turbulence in Tokamak Plasmas basic properties and typical results B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Uni Innsbruck, Nov 2011 Basics

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the C-Mod and ASDEX

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet

What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet M. E. Mauel and the CTX and LDX Experimental Teams Annual Meeting of the Division of Plasma Physics Philadelphia,

More information

Weak turbulence theory and simulation of the gyro-water-bag model

Weak turbulence theory and simulation of the gyro-water-bag model PHYSICAL REVIEW E 77, 564 8 Weak turbulence theory and simulation of the gyro-water-bag model Nicolas Besse,* Pierre Bertrand, Pierre Morel, and Etienne Gravier Laboratoire de Physique des Milieux Ionisés

More information

Innovative Concepts Workshop Austin, Texas February 13-15, 2006

Innovative Concepts Workshop Austin, Texas February 13-15, 2006 Don Spong Oak Ridge National Laboratory Acknowledgements: Jeff Harris, Hideo Sugama, Shin Nishimura, Andrew Ware, Steve Hirshman, Wayne Houlberg, Jim Lyon Innovative Concepts Workshop Austin, Texas February

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5 SOLUTIONS Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 7 August 3, 011 Equation numbers in the Homework set are

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

Energetic Particle Physics in Tokamak Burning Plasmas

Energetic Particle Physics in Tokamak Burning Plasmas Energetic Particle Physics in Tokamak Burning Plasmas presented by C. Z. (Frank) Cheng in collaboration with N. N. Gorelenkov, G. J. Kramer, R. Nazikian, E. Fredrickson, Princeton Plasma Physics Laboratory

More information

arxiv: v1 [physics.plasm-ph] 20 Dec 2018

arxiv: v1 [physics.plasm-ph] 20 Dec 2018 arxiv:181.08566v1 [physics.plasm-ph] 0 Dec 018 The effect of background flow shear on gyrokinetic turbulence in the cold ion limit 1. Introduction Justin Ball 1, Stephan Brunner 1, and Ben F. McMillan

More information

Understanding and Controlling Turbulent Mixing in a Laboratory Magnetosphere

Understanding and Controlling Turbulent Mixing in a Laboratory Magnetosphere Understanding and Controlling Turbulent Mixing in a Laboratory Magnetosphere Mike Mauel Department of Applied Physics and Applied Math, Columbia University, New York, NY USA (Acknowledging the work from

More information

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal MHD spectra pre-history (selected results I MHD spectra pre-history (selected results II Abstract A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to

More information

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA sulla Fusione, C.R.

More information

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018)

AST 553. Plasma Waves and Instabilities. Course Outline. (Dated: December 4, 2018) AST 553. Plasma Waves and Instabilities Course Outline (Dated: December 4, 2018) I. INTRODUCTION Basic concepts Waves in plasmas as EM field oscillations Maxwell s equations, Gauss s laws as initial conditions

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information

Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows

Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows Non-perturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows Johan Anderson 1 and Eun-jin Kim University of Sheffield Department of Applied Mathematics Hicks Building,

More information

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation Center for Turbulence Research Annual Research Briefs 006 363 Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation By S. Fedotov AND S. Abarzhi 1. Motivation

More information

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004

arxiv:physics/ v1 [physics.plasm-ph] 5 Nov 2004 Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento

More information

Parallel transport and profile of boundary plasma with a low recycling wall

Parallel transport and profile of boundary plasma with a low recycling wall 1 TH/P4-16 Parallel transport and profile of boundary plasma with a low recycling wall Xian-Zhu Tang 1 and Zehua Guo 1 1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Electrodynamics of neutron star magnetospheres

Electrodynamics of neutron star magnetospheres of neutron star magnetospheres An example of non-neutral plasma in astrophysics Centre d Étude des Environnements Terrestre et Planétaires - Vélizy, FRANCE Laboratoire de Radio Astronomie, École Normale

More information