NumKin, Strasbourg, October 17 th, 2016

Size: px
Start display at page:

Download "NumKin, Strasbourg, October 17 th, 2016"

Transcription

1 F. Palermo 1 A.Biancalani 1, C.Angioni 1, F.Zonca 2, A.Bottino 1, B.Scott 1, G.D.Conway 1, E.Poli 1 1 Max Planck Institut für Plasmaphysik, Garching, Germany 2 ENEA C. R. Frascati - Via E. Fermi 45, CP Frascati, Italy NumKin, Strasbourg, October 17 th, 2016

2 Overview Physical context of Geodesic acoustic mode (GAM) Interest in GAM oscillations State-of-the-Art Investigations of GAM dynamics by means of ORB5 Benchmark between ORB5 and GAM linear theory Global gyrokinetic simulations with realistic values The PL-damping mechanism Applications of the PL-mechanism Conclusions and Perspectives

3 Context: turbulent transport Temperature gradient at the origin of instabilities: ITG, ETG, TEM,TIM Turbulence self-organization Streamers and Turbulence generation Zonal Flow (m,n)=0,0 T 2 T 1 Radial energy turbulent transport Poloidal shear flow localized in the radial direction Diamond P.H. et al 2005 Plasma Phys. Control. Fusion 47 R35 R161 Palermo F. et al 2015 Phys. Plasmas

4 Importance and ubiquity of the zonal flow Zonal Flow in tokamak devices Zonal flows in planetary atmospheres t 1 belt T 2 T 1 t 2 T 1 T 2 t 3 t 4 View of Jupiter from the South Pole Stationary E r with k r Since the Earth s core is believed to be in Zonal Flow is able to shear and distort convective and turbulent cells leading to reduce the transport a turbulent state, it is possible that Zonal flows play a role in the Earth core and in the solar dynamo mechanism.

5 Oscillations of the zonal flow Geophysical and tokamak zonal flow can experience temporal variations and oscillations caused by several mechanisms Low oscillation frequency due to the KH instability characterized by (m 0, n=0) at ~2 khz Ghizzo A. and Palermo F Phys. Plasmas Ghizzo A. and Palermo F Phys. Plasmas Geodesic acoustic modes (GAM) due to the curvature effects in tokamak and characterized by (m,n)=0,0 ~20 khz Winsor N. et al 1968 Phys. Plasmas

6 GAM in tokamak GAM Zonal Flow oscillations P(m,n)=1,0 E r (m,n)=0,0 Stationary zonal flows suppress turbulence efficiently, GAM oscillations make the action of the zonal flow less effective Miyato N. et al 2004 Phys. Plasmas Curvature effects Energy transfer pathway of GAMs goes from the zonal flow to the pressure perturbation linked to the turbulence Scott B Phys. Lett. A Interplay between E r and the perpendicular flux tube compression Particles move between different magnetic field lines transporting charge that acts to reverse the E r GAMs can radially propagate the zonal flows as indicated by experimental observations Ido T. et al 2006 Nucl. Fusion

7 State-of-the-Art of GAMs self-citations Winsor N. et al (1968) Fully forgotten after ~ 2000 ~ 390 citations GAM are an important part in the nonlinear turbulent system InteractionTurbulence/ZF/GAM is an important challenge in tokamak physics Linear behaviour is interesting, in order to be able to judge how the turbulence modifies GAM properties Analytical theory of GAMs: well developed in recent years [Zonca et al (2008), Sugama-Watanabe (2006), Gao et al (2008)...] GAM Linear theory is utilized in benchmarking of various gyrokinetic simulation codes Each theory focus on particular condition (FOW, elongation ) and it is valid in a restricted range of parameter values Several aspects also in linear regime have been not considered: temperature, density gradients

8 Gyrokinetic code ORB5 Particle-in-cell code ORB5 which now includes all extensions made in the NEMORB project The code solves the full-f gyrokinetic Vlasov equation using a particle-in-cell δf method Vlasov equation is coupled to the quasineutrality condition Adiabatic electrons Massively parallelized The time t is normalized to the inverse of ion cyclotron frequency The radial direction is normalized to The potential is normalized with Jolliet S. et al 2007 Comput. Phys Bottino A. et al 2011 Plasma Phys. Control. Fusion

9 GAM theories A detailed gyrokinetic analysis of GAMs with a finite radial wavenumber effect, is utilized in benchmarking ORB5 code. Frequency Landau damping rate from theory Good agreement between theory w/2 order correction and theories with higher order corrections for q<4 At larger values of q, higher order corrections (i.e. accounting for the 4 th harmonic resonance and higher) are necessary for estimating analytically the GAM damping rate.

10 W/2 order dispersion relation for GAM GAM frequency Explicit formula in which k r ρ i effects can be neglected for frequency (but important for damping rates): Landau damping Sugama H. and Watanabe T.-H J. Plasma Phys Sugama H. and Watanabe T.-H J. Plasma Phys

11 W/2 order dispersion relation for GAM GAM frequency Explicit formula in which k r ρ i effects can be neglected for frequency (but important for damping rates): Landau damping Sugama H. and Watanabe T.-H J. Plasma Phys Sugama H. and Watanabe T.-H J. Plasma Phys

12 Benchmark: simulations and theory Sinusoidal potential perturbation that evolves in a linear electrostatic simulations Landau damping rate k r n T q Results of simulations (points) in agreement with the results of the theory (continuous lines) For q=1 all of modes are damped at the same rate For q>1 the high k r modes are damped faster than low k r modes

13 GAM in tokamak device The damping is strong for low values of the safety factor and becomes weaker for large values of the safety factor Generic q profile ~ 5 ~ 1 It is expected that GAMs are prevalent for typical values of parameters at the edge of tokamaks Quasi stationary zonal flows become dominant in the plasma core

14 Benchmark: simulations and theory Results of simulations Theoretical analysis The weak dependency of ω on k r allows us to deduce that the phase velocity and suggests accurate measurements for the group velocity We find that the group velocity is approximately two order of magnitude lower than the phase velocity. This can have important implications in the linear transport of energy by GAM oscillations. As a general remark, we find very good agreement between theory and simulations so that the benchmark can be considered successful Palermo F. et al 2016 Phys. Plasmas (to be submitted)

15 Simulations with realistic ASDEX values GAM behaviour in an equilibrium obtained from realistic values of parameters Parameter values at the edge of Asdex Upgrade for the shot width Principal equilibrium profiles in which GAM evolves Conway G. D. et al 2008 Plasma Phys. Cont. Fusion

16 Gyrokinetic simulations Simulations performed on the basis of the experimental value Potential perturbation with T i =T e Flat q profile Flat density profile Hyperbolic tangent Spatial grid r Two peaks of the electric field associated to localized potential perturbation The oscillations for ak T = 10 are damped faster in time than the oscillations corresponding to ak T = 0

17 GAM behaviour in nonuniform T profile In the absence of Landau damping, the perturbed electric-field oscillates at each radial position with the local GAM continuum frequency Initial value code in the absence of Landau damping t 1 t 2 GAM frequency profile In the case of a nonuniform temperature profile, due to the frequency variation at different radial positions, the initial perturbation will generate finer radial structures by the phase-mixing mechanism F. Zonca et al 2008 Europhys. Lett, 83, 35001

18 Phase mixing of GAM The phase-mixing does not imply a dissipation of energy. In fact, the energy linked to the electric field is proportional to Approximation of the profile ω with a straight line in the middle of radial domain 1 -c c With increasing time, energy is increasingly shifted towards high k r numbers

19 Phase mixing in the simulations ak T =0 ak T =10 We can appreciate for the case ak T =10 the generation of thin structures of E r along the radial direction at t = Moreover, the amplitude of these electric field structures is smaller than that of the case ak T = 0 Radial electric field profiles at t=50000

20 Phase mixing in the Fourier space Range for q and for k r for which the theory of S-W is a good approximation Time evolution of k r modes of E r in the plane (k r,t) for ak T = 0 (left) and for ak T 0 (right) For k T =0, we find several oscillations of GAM with the amplitude of k r that decreases in time due to Landau damping. The k r range is constant in time For k T 0, the k r range is shifted in time and amplitude of the modes decreases faster with respect to the case k T = 0 Palermo F. et al 2016 EPL Palermo F. et al rd EPS P1.046

21 The PL-damping mechanism In the presence of a continuum spectrum the energy of radial wave is shifted in time with k r = (k r0 + βt), in the region in which Landau damping is more and more efficient. The damping rate due to the combined action of phase-mixing and Landau (PL) damping is: Phase mixing Landau damping PL-mechanism This is a particular case of a general mechanism, that we have found, and that can be observed whenever the phase-mixing acts in the presence of a damping effect that depends on the wave number k r This mechanism can play a very important role not only in the plasma fusion domain, but also in other physical contexts Palermo F. et al 2016 EPL Biancalani A., Palermo F. et al 2016 Phys. Plasmas (accepted)

22 Radial monochromatic perturbation By using monochromatic waves we emphasize the difference between the Landau damping and the PL mechanism High constant T Low constant T T i =T e T gradient Equilibrium for the shot r Strong Landau damping PL damping Weak Landau damping Radially monocromatic perturbation Global evolution of monochromatic waves in the (r,t) plane

23 Analytical and numerical evolution of GAM The analytical evolution is then compared with the results of simulations for several values of ak T and k r Landau damping in agreement with SW expression The over-plotted black line is the analytical envelop of E r for the case ak T = 10 Electric field in the middle of the radial domain as a function of the time for ak T = 0 in which only Landau damping acts (green line) and for ak T = 10 (red line) observed in the simulations is a function of the time

24 PL-mechanism: time and damping rate The damping rate is calculated at the characteristic time t PL in which the GAM electric field is half of its initial value PL damping rate as a function of the ak T gradient The PL mechanism can play an important role in the suppression of GAM oscillations in the regions characterized by a strong nonuniform temperature profile such as in the H- and I- modes

25 PL-damping in nonuniform n and q profiles Global evolution of monochromatic waves in the (r, t) plane for k n = 0, k T 0 Global evolution of monochromatic waves in the (r, t) plane for k n 0, k T = 0 Simulations performed with a density gradient different from zero have given results very close to the simulations performed with a flat density profile The gradient of q has a weak influence on the phase-mixing and consequently on γ PL. This aspect has been verified by numerical simulations showing that the main parameter in the PL mechanism is the temperature gradient

26 The PL damping in L- I- H- regimes L-mode low confinement regime I-mode Improvement low regime H-mode High confinement regime H-mode Similar temperature pedestal H-mode L-mode L-mode is the reference regime in tokamak device characterized by profiles that arise from the heating of the plasma core I-mode with good confinement characteristics with a temperature pedestal while the density profile remains similar to that of the L-mode Ryter, F. et al 1998 P. Phys. and Cont. Fusion H-mode with very good confinement provided by a temperature and density pedestal. It is the best regime of interest for ITER Wagner F et al 1982 Phys. Rev. Lett

27 Physics of GAM in I- H-modes GAM can be studied in particular at the tokamak edge At tokamak edge it is possible to find very large gradient of temperature and density due to several confinement regimes I-mode, H-mode L-mode I-mode H-mode Formation of transport barrier (zonal flow), typically with several centimeters wide Suppression of the turbulence Shot with GAM oscillations in the L-I and I-H transition The temporal sequence is not understood: creation of E r, suppression of turbulence, steepening of density and temperature profiles. Their causal relationship helps to identify the mechanism that triggers the H-mode Cziegler I. et al 2013 Phys. Plasmas

28 Time of drive and Time of damping energy energy background GAM GAM background Growing rate Damping rate Zonca F. and Chen L EPL The PL damping rate exceeds the energy transfer rate from the ITG turbulence to the GAM Damping of GAM Amplitude of GAM increases

29 Estimate of the Time of drive The equation of drive for GAM is based on a preferential three-wave interaction that emerges from the ITG turbulence dynamics. This is in agreement with recent experimental observations on H-L-2A. Isotropic turbulence Zonca F. and Chen L EPL Lan T. et al 2008 Plasma Phys. Control. Fusion

30 Parameter values in several regimes Presence of GAM Yes Yes No Table with indicative values of density fluctuations and ratio between temperature and density gradient for the several considered regimes T n Edge T n Edge

31 Characteristic times as a function of k T L-mode I-mode H-mode ηi = 1 ηi = 5 The times are given in sound unit t s = R 0 /v thi with t s Ω i = For the H mode there is a threshold in k T, above which (Damping of GAM) The competition between the two times opens new possible scenarios close the H-mode transition, such as the intermittent behaviour of the GAM characteristic of the prey/predator dynamics. Moving towards lower values of ηi in the respective ranges, the two red t RB curves are slowly shifted towards higher time values leaving unchanged the results. The PL mechanism is consistent with the observed existence or nonexistence of GAMs in the different confinement regimes

32 Conclusions and perspectives A New mechanism able to damp very fast GAM oscillation in the presence of a Temperature gradient has been identified This mechanism is due to the combined action of phase mixing and Landau damping. (PL damping) This is a particular case of a general mechanism, that can be observed whenever the phase-mixing acts in the presence of a damping effect that depends on k r Palermo F. et al 2016 EPL The results here discussed represent a useful piece in the complex important jigsaw puzzle of the L-H/L-I transitions The PL mechanism is consistent with the observed existence or nonexistence of GAMs in the different confinement regimes Nonlinear gyrokinetic simulations finalized to investigate the PL- damping in the interaction Turbulence/ZF/GAM are necessary Experimental campaign finalized to find the PL damping effect in the tokamak devices is going to start

33 Acknowledgements A.Biancalani 1, C.Angioni 1, F.Zonca 2,3, A.Bottino 1, B.Scott 1, G.D.Conway 1, E.Poli 1 P. Manz 1, Z. Qiu 3, R. Bilato 1 and ASDEX Upgrade team and all of you for your attention 1 Max Planck Institut für Plasmaphysik, Garching, Germany 2 ENEA C. R. Frascati - Via E. Fermi 45, CP Frascati, Italy 3 Institute for Fusion Theory and Simulation, Zhejiang University - Hangzhou, PRC Simulations were performed on the IFERC-CSC Helios supercomputer within the framework of the VERIGYRO and the ORBFAST project.

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade.

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. 1 EX/P1-18 Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade. A. Biancalani 1, A. Bottino 1, S. Briguglio 2, G.D. Conway 1, C. Di Troia 2, R. Kleiber

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

Bursty Transport in Tokamaks with Internal Transport Barriers

Bursty Transport in Tokamaks with Internal Transport Barriers Bursty Transport in Tokamaks with Internal Transport Barriers S. Benkadda 1), O. Agullo 1), P. Beyer 1), N. Bian 1), P. H. Diamond 3), C. Figarella 1), X. Garbet 2), P. Ghendrih 2), V. Grandgirard 1),

More information

Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach

Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach Global Nonlinear Simulations of Ion and Electron Turbulence Usintg a Particle-In-Cell Approach S. Jolliet 1), B. F. McMillan 1), T. M. Tran 1), X. Lapillonne 1), L. Villard 1), A. Bottino 2), P. Angelino

More information

Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios

Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios G. Vlad, S. Briguglio, G. Fogaccia and F. Zonca Associazione Euratom-ENEA sulla Fusione, C.R. Frascati C.P.

More information

Geodesic Acoustic and related modes

Geodesic Acoustic and related modes Geodesic Acoustic and related modes A. Smolyakov* Acknowledgements X. Garbet, C. Nguyen (CEA Cadarache) V.I. Ilgisonis, V.P. Lakhin, A.Melnikov (Kurchatov Institute) * University of Saskatchewan, Canada

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA

More information

Spatial, temporal and spectral structure of the turbulence-flow interaction at the L-H transition

Spatial, temporal and spectral structure of the turbulence-flow interaction at the L-H transition Spatial, temporal and spectral structure of the turbulence-flow interaction at the L-H transition T Estrada 1, E. Ascasíbar 1, E. Blanco 1, A. Cappa 1, P. H. Diamond 2, T. Happel 3, C. Hidalgo 1, M. Liniers

More information

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations Max-Planck-Insititut für Plasmaphysik Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations A. Bottino Objectives Develop a numerical tool able to reproduce and predict

More information

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER G. Vlad, S. Briguglio, G. Fogaccia, F. Zonca Associazione Euratom-ENEA sulla Fusione, C.R.

More information

L Aquila, Maggio 2002

L Aquila, Maggio 2002 Nonlinear saturation of Shear Alfvén Modes and energetic ion transports in Tokamak equilibria with hollow-q profiles G. Vlad, S. Briguglio, F. Zonca, G. Fogaccia Associazione Euratom-ENEA sulla Fusione,

More information

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics

Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Relating the L-H Power Threshold Scaling to Edge Turbulence Dynamics Z. Yan 1, G.R. McKee 1, J.A. Boedo 2, D.L. Rudakov 2, P.H. Diamond 2, G. Tynan 2, R.J. Fonck 1, R.J. Groebner 3, T.H. Osborne 3, and

More information

On the physics of shear flows in 3D geometry

On the physics of shear flows in 3D geometry On the physics of shear flows in 3D geometry C. Hidalgo and M.A. Pedrosa Laboratorio Nacional de Fusión, EURATOM-CIEMAT, Madrid, Spain Recent experiments have shown the importance of multi-scale (long-range)

More information

International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence.

International Workshop on the Frontiers of Modern Plasma Physics July On the Nature of Plasma Core Turbulence. 1953-43 International Workshop on the Frontiers of Modern Plasma Physics 14-25 July 2008 On the Nature of Plasma Core Turbulence. F. Jenko Max-Planck Institute fuer Plasmaphysik Garching bei Munchen Germany

More information

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas Frank Jenko Max-Planck-Institut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas 23 rd IAEA Fusion Energy Conference 11-16 October 2010, Daejeon,

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker, J.J. Kohut, Y. Chen, Z. Lin, F.L. Hinton and W.W. Lee Center for Integrated Plasma Studies, University of Colorado,

More information

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Mirjam Schneller, Philipp Lauber, Sergio Briguglio, Antti Snicker Acknowledgement M. Schneller 1, Ph. Lauber 1,

More information

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-1 TOKAMAK PLASMAS V. Vershkov, L.G. Eliseev, S.A. Grashin. A.V. Melnikov, D.A. Shelukhin, S.V. Soldatov, A.O. Urazbaev and T-1 team

More information

Turbulence and geodesic acoustic mode behavioural studies in ASDEX Upgrade using Doppler Reflectometry

Turbulence and geodesic acoustic mode behavioural studies in ASDEX Upgrade using Doppler Reflectometry 1 IAEA-CN-165 / EX / P5-38 Turbulence and geodesic acoustic mode behavioural studies in ASDEX Upgrade using Doppler Reflectometry G.D.Conway 1, C.Tröster 1, J.Schirmer 1, W.Suttrop 1, C.Lechte 2, E.Holzhauer

More information

Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD)

Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD) O-4 12 th IAEA TM on Energetic Particles in Magnetic Confinement Systems, 7-10 Sep, Austin, USA Characteristics of Energetic-Ion-Driven Geodesic Acoustic Modes in the Large Helical Device(LHD) K. Toi,

More information

Interaction between EGAMs and turbulence in full-f gyrokinetic simulations

Interaction between EGAMs and turbulence in full-f gyrokinetic simulations Interaction between EGAMs and turbulence in full-f gyrokinetic simulations David Zarzoso 1 X Garbet 1, Y Sarazin 1, V Grandgirard 1, J Abiteboul 1, A Strugarek 1,2, G Dif-Pradalier 1, R Dumont 1, G Latu

More information

The I-phase and its relation to other phenomena at AUG

The I-phase and its relation to other phenomena at AUG Max-Planck-Institut für Plasmaphysik The I-phase and its relation to other phenomena at AUG G. Birkenmeier, M. Cavedon, G.D. Conway, P. Manz, G. Fuchert, F. M. Laggner, T. Happel, A. Medvedeva, V. Nikolaeva,

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

Gyrokinetic Theory and Dynamics of the Tokamak Edge

Gyrokinetic Theory and Dynamics of the Tokamak Edge ASDEX Upgrade Gyrokinetic Theory and Dynamics of the Tokamak Edge B. Scott Max Planck Institut für Plasmaphysik D-85748 Garching, Germany PET-15, Sep 2015 these slides: basic processes in the dynamics

More information

Optimal design of 2-D and 3-D shaping for linear ITG stability*

Optimal design of 2-D and 3-D shaping for linear ITG stability* Optimal design of 2-D and 3-D shaping for linear ITG stability* Mordechai N. Rorvig1, in collaboration with Chris C. Hegna1, Harry E. Mynick2, Pavlos Xanthopoulos3, and M. J. Pueschel1 1 University of

More information

Nonlinear Simulation of Energetic Particle Modes in JT-60U

Nonlinear Simulation of Energetic Particle Modes in JT-60U TH/P6-7 Nonlinear Simulation of Energetic Particle Modes in JT-6U A.Bierwage,N.Aiba 2, K.Shinohara 2, Y.Todo 3,W.Deng 4,M.Ishikawa 2,G.Matsunaga 2 and M. Yagi Japan Atomic Energy Agency (JAEA), Rokkasho,

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod D. Kwak, A. E. White, J. E. Rice, N. T. Howard, C. Gao, M. L. Reinke, M. Greenwald, C. Angioni, R. M. McDermott, and the C-Mod and ASDEX

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

EX/4-6Rb Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak

EX/4-6Rb Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak Electrostatic fluctuation and fluctuation-induced particle flux during formation of the edge transport barrier in the JFT-2M tokamak T. Ido 1), Y. Miura 2), K. Hoshino 2), Y. Hamada 1), Y. Nagashima 1),

More information

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4

UCIrvine. Gyrokinetic Studies of Turbulence Spreading IAEA-CN-116/TH1-4 AEA-CN-116/TH1-4 Gyrokinetic Studies of Turbulence Spreading T.S. Hahm, Z. Lin, a P.H. Diamond, b G. Rewoldt, W.X. Wang, S. Ethier, O. Gurcan, b W. Lee, and W.M. Tang Princeton University, Plasma Physics

More information

Studies of Turbulence-driven FLOWs:

Studies of Turbulence-driven FLOWs: Studies of Turbulence-driven FLOWs: a) V ", V Competition in a Tube b) Revisiting Zonal Flow Saturation J.C. Li, P.H. Diamond, R. Hong, G. Tynan University of California San Diego, USA This material is

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma

Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma Gyrokinetic simulations including the centrifugal force in a strongly rotating tokamak plasma F.J. Casson, A.G. Peeters, Y. Camenen, W.A. Hornsby, A.P. Snodin, D. Strintzi, G.Szepesi CCFE Turbsim, July

More information

tokamak and stellarator geometry, regarding both its physical character and its interaction

tokamak and stellarator geometry, regarding both its physical character and its interaction THE INFLUENCE OF ZONAL EXB FLOWS ON EDGE TURBULENCE IN TOKAMAKS AND STELLARATORS B. SCOTT, F. JENKO, A. KENDL Max-Planck-Institut fíur Plasmaphysik, Garching, Germany We report on æuid, gyroæuid and gyrokinetic

More information

Gyrokinetic Simulations of Tokamak Microturbulence

Gyrokinetic Simulations of Tokamak Microturbulence Gyrokinetic Simulations of Tokamak Microturbulence W Dorland, Imperial College, London With key contributions from: S C Cowley F Jenko G W Hammett D Mikkelsen B N Rogers C Bourdelle W M Nevins D W Ross

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation J. Plasma Fusion Res. SERIES, Vol. 9 () Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation R. Ganesh Institute for Plasma Research, Bhat Village,

More information

Simulations on the Nonlinear Mode Coupling in Multiple-scale Drift-type Turbulence with Coherent Flow Structures

Simulations on the Nonlinear Mode Coupling in Multiple-scale Drift-type Turbulence with Coherent Flow Structures 1 Simulations on the Nonlinear Mode Coupling in Multiple-scale Drift-type Turbulence with Coherent Flow Structures Jiquan Li 1,), K. Uzawa ), Z. Lin 3), Y. Kishimoto ), N. Miyato 4), T. Matsumoto 4), J.Q.

More information

The role of stochastization in fast MHD phenomena on ASDEX Upgrade

The role of stochastization in fast MHD phenomena on ASDEX Upgrade 1 EX/P9-10 The role of stochastization in fast MHD phenomena on ASDEX Upgrade V. Igochine 1), O.Dumbrajs 2,3), H. Zohm 1), G. Papp 4), G. Por 4), G. Pokol 4), ASDEX Upgrade team 1) 1) MPI für Plasmaphysik,

More information

Tokamak Edge Turbulence background theory and computation

Tokamak Edge Turbulence background theory and computation ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts

More information

Gyrokinetic Turbulence in Tokamaks and Stellarators

Gyrokinetic Turbulence in Tokamaks and Stellarators Gyrokinetic Turbulence in Tokamaks and Stellarators Frank Jenko IPP, Germany Acknowledgements: P. Xanthopoulos, F. Merz, T. Görler, M. Pueschel, D. Told; A. Boozer, G. Hammett, D. Mikkelsen, M. Zarnstorff,

More information

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas

Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas Nonlinear Gyrokinetic Simulations of Ion Turbulence in Impurity Seeded and High Density Toroidal Plasmas R.D. Sydora, J.-N. Leboeuf, J. M. Dawson, V.K. Decyk, M.W. Kissick, C. L. Rettig, T. L. Rhodes,

More information

Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak

Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak 1 EX/P4-31 Short Wavelength Density and Low Frequency MHD Fluctuation Measurements in the STOR-M Tokamak C. Xiao, S. J. Livingstone, A. K. Singh, D. Raju 1, G. St. Germaine, D. Liu, C. Boucher 2, A. Hirose

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

Transport Improvement Near Low Order Rational q Surfaces in DIII D

Transport Improvement Near Low Order Rational q Surfaces in DIII D Transport Improvement Near Low Order Rational q Surfaces in DIII D M.E. Austin 1 With K.H. Burrell 2, R.E. Waltz 2, K.W. Gentle 1, E.J. Doyle 8, P. Gohil 2, C.M. Greenfield 2, R.J. Groebner 2, W.W. Heidbrink

More information

Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions

Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions L. Chen 1,2, W. Deng 1, Z. Lin 1, D. Spong 3, G. Y. Sun 4, X. Wang 2,1, X. Q. Xu 5, H.

More information

Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena

Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena 1 TH/P2-18 Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena S. Satake 1), M. Okamoto 1), N. Nakajima 1), H. Sugama 1), M. Yokoyama 1), and C. D. Beidler 2) 1)

More information

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations Lecture by: P.H. Diamond Notes by: C.J. Lee March 19, 2014 Abstract Toroidal rotation is a key part of the design of ITER

More information

Gyrokinetic theory for particle transport in fusion plasmas

Gyrokinetic theory for particle transport in fusion plasmas Gyrokinetic theory for particle transport in fusion plasmas Matteo Valerio Falessi 1,2, Fulvio Zonca 3 1 INFN - Sezione di Roma Tre, Via della Vasca Navale, 84 (00146) Roma (Roma), Italy 2 Dipartimento

More information

Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island

Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island 1 TH/P3-5 Shear Alfvén Wave Continuous Spectrum in the Presence of a Magnetic Island A. Biancalani 1), L. Chen 2) 3), F. Pegoraro 1), F. Zonca 4), S. V. Annibaldi 5), A. Botrugno 4), P. Buratti 4) and

More information

Triggering Mechanisms for Transport Barriers

Triggering Mechanisms for Transport Barriers Triggering Mechanisms for Transport Barriers O. Dumbrajs, J. Heikkinen 1, S. Karttunen 1, T. Kiviniemi, T. Kurki-Suonio, M. Mantsinen, K. Rantamäki 1, S. Saarelma, R. Salomaa, S. Sipilä, T. Tala 1 Euratom-TEKES

More information

Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of TEXTOR tokamak

Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of TEXTOR tokamak Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of TEXTOR tokamak Y. Xu 1, I. Shesterikov 1, M. Van Schoor 1, M. Vergote 1, R. R. Weynants 1, A. Krämer-Flecken 2,

More information

Doppler Reflectometry Simulations for ASDEX Upgrade

Doppler Reflectometry Simulations for ASDEX Upgrade Doppler Reflectometry Simulations for ASDEX Upgrade C. Lechte IGVP University of Stuttgart Pfaffenwaldring 31, 70569 Stuttgart Germany Phone +49 711 685 62306 Fax +49 711 685 63102 G. D. Conway, T. Görler,

More information

Turbulent Transport due to Kinetic Ballooning Modes in High-Beta Toroidal Plasmas

Turbulent Transport due to Kinetic Ballooning Modes in High-Beta Toroidal Plasmas 1 TH/P-3 Turbulent Transport due to Kinetic allooning Modes in High-eta Toroidal Plasmas A. Ishizawa 1, S. Maeyama, T.-H. Watanabe 1, H. Sugama 1 and N. Nakajima 1 1 National Institute for Fusion Science,

More information

Long Time Simulations of Microturbulence in Fusion Plasmas

Long Time Simulations of Microturbulence in Fusion Plasmas Long Time Simulations of Microturbulence in Fusion Plasmas W. W. Lee, S. Ethier, T. G. Jenkins, W. X. Wang, J. L. V. Lewandowski, G. Rewoldt, and W. M. Tang Princeton Plasma Physics Laboratory, Princeton,

More information

Turbulent Transport Analysis of JET H-mode and Hybrid Plasmas using QuaLiKiz, TGLF and GLF23

Turbulent Transport Analysis of JET H-mode and Hybrid Plasmas using QuaLiKiz, TGLF and GLF23 EFDA JET CP(1)/ B. Baiocchi, J. Garcia, M. Beurkens, C. Bourdelle, F. Crisanti, C. Giroud, J. Hobirk, F. Imbeaux, I. Nunes, EU-ITM ITER Scenario Modelling group and JET EFDA contributors Turbulent Transport

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

Turbulence and Transport The Secrets of Magnetic Confinement

Turbulence and Transport The Secrets of Magnetic Confinement Turbulence and Transport The Secrets of Magnetic Confinement Presented by Martin Greenwald MIT Plasma Science & Fusion Center IAP January 2005 FUSION REACTIONS POWER THE STARS AND PRODUCE THE ELEMENTS

More information

Mechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations

Mechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations Mechanisms of intrinsic toroidal rotation tested against ASDEX Upgrade observations William A. Hornsby C. Angioni, E. Fable, P. Manas, R. McDermott, Z.X. Lu, S. Grosshauser 2, A. G. Peeters 2 and the ASDEX

More information

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows TH/P3-3 High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu

More information

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER C-MOD - OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals

More information

Comparative studies of nonlinear ITG and ETG dynamics

Comparative studies of nonlinear ITG and ETG dynamics 1 I1-S1 Comparative studies of nonlinear ITG and ETG dynamics F. Zonca 1), L. Chen ), Z. Lin ), and R. B. White 3) 1) ENEA C. R. Frascati, C.P. 65, 00044 Frascati, Rome, Italy ) Dept. of Physics and Astronomy,

More information

Stability of a plasma confined in a dipole field

Stability of a plasma confined in a dipole field PHYSICS OF PLASMAS VOLUME 5, NUMBER 10 OCTOBER 1998 Stability of a plasma confined in a dipole field Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received

More information

Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers

Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers Journal of Instrumentation OPEN ACCESS Three dimensional measurements of Geodesic Acoustic Mode with correlation Doppler reflectometers To cite this article: W.L. Zhong et al Related content - Spatiotemporal

More information

Energetics of the interaction between electromagnetic ExB turbulence and zonal flows

Energetics of the interaction between electromagnetic ExB turbulence and zonal flows Energetics of the interaction between electromagnetic ExB turbulence and zonal flows Bruce D Scott Max-Planck-Institut für Plasmaphysik, Euratom Association, D-85748 Garching, Germany E-mail: bds@ipp.mpg.de

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

Critical gradient formula for toroidal electron temperature gradient modes

Critical gradient formula for toroidal electron temperature gradient modes PHYSICS OF PLASMAS VOLUME 8, NUMBER 9 SEPTEMBER 2001 Critical gradient formula for toroidal electron temperature gradient modes F. Jenko, W. Dorland, a) and G. W. Hammett b) Max-Planck-Institut für Plasmaphysik,

More information

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow Home Search Collections Journals About Contact us My IOPscience Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation This article has been downloaded from IOPscience.

More information

Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation

Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation 22 nd IAEA Fusion Energy Conference Geneva, Switzerland, 3-8 October 2008 IAEA-CN-65/TH/P8-39 Role of Zonal Flows in TEM Turbulence through Nonlinear Gyrokinetic Particle and Continuum Simulation D. R.

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

On the Nature of ETG Turbulence and Cross-Scale Coupling

On the Nature of ETG Turbulence and Cross-Scale Coupling J. Plasma Fusion Res. SERIES, Vol. Vol. 6 6 (2004) (2004) 11 16 000 000 On the Nature of ETG Turbulence and Cross-Scale Coupling JENKO Frank Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748

More information

Electron Transport and Improved Confinement on Tore Supra

Electron Transport and Improved Confinement on Tore Supra Electron Transport and Improved Confinement on Tore Supra G. T. Hoang, C. Bourdelle, X. Garbet, T. Aniel, G. Giruzzi, M. Ottaviani. Association EURATOM-CEA. CEA-Cadarache, 38, St Paul-lez-Durance, France

More information

Control of Neo-classical tearing mode (NTM) in advanced scenarios

Control of Neo-classical tearing mode (NTM) in advanced scenarios FIRST CHENGDU THEORY FESTIVAL Control of Neo-classical tearing mode (NTM) in advanced scenarios Zheng-Xiong Wang Dalian University of Technology (DLUT) Dalian, China Chengdu, China, 28 Aug, 2018 Outline

More information

Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas

Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas EX-C/9-3 Long-Range Correlations and Edge Transport Bifurcation in Fusion Plasmas Y. Xu 1, N. Vianello 2, M. Spolaore 2, E. Martines 2, P. Manz 3, M. Ramisch 3, U. Stroth 3, C. Silva 4, M. A. Pedrosa 5,

More information

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI

More information

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas by T.M. Wilks 1 with A. Garofalo 2, K.H. Burrell 2, Xi. Chen 2, P.H. Diamond 3, Z.B. Guo 3, X. Xu

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER. Mirjam Schneller

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER. Mirjam Schneller Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER Mirjam Schneller Acknowledgements Ph. Lauber 1, S. Briguglio 2, A. Snicker 3,1, X. Wang 1 1 Max-Planck-Institut

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,

More information

Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework

Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework 19th IAEA Fusion Energy Conference Tuesday, October 15, 2002 Paper: TH/P1-13 Electromagnetic Turbulence Simulations with Kinetic Electrons from the the Summit Framework Scott Parker and Yang Chen University

More information

Electron temperature barriers in the RFX-mod experiment

Electron temperature barriers in the RFX-mod experiment Electron temperature barriers in the RFX-mod experiment A. Scaggion Consorzio RFX, Padova, Italy Tuesday 5 th October 2010 ADVANCED PHYSICS LESSONS 27/09/2010 07/10/2010 IPP GARCHING JOINT EUROPEAN RESEARCH

More information

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry D. D. Schnack University of Wisconsin Madison Jianhua Cheng, S. E. Parker University of Colorado

More information

Turbulence in Tokamak Plasmas

Turbulence in Tokamak Plasmas ASDEX Upgrade Turbulence in Tokamak Plasmas basic properties and typical results B. Scott Max Planck Institut für Plasmaphysik Euratom Association D-85748 Garching, Germany Uni Innsbruck, Nov 2011 Basics

More information

EX8/3 22nd IAEA Fusion Energy Conference Geneva

EX8/3 22nd IAEA Fusion Energy Conference Geneva P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14 3DB UK EX8/3 22nd IAEA Fusion Energy Conference Geneva P.C. de Vries1, E. Joffrin2,3, M. Brix1, C.D. Challis1, K. Crombé4, B. Esposito5, N.C.

More information

DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni

DPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni Max-Planck-Institut für Plasmaphysik DPG School The Physics of ITER Physikzentrum Bad Honnef, 23.09.2014 Energy Transport, Theory (and Experiment) Clemente Angioni Special acknowledgments for material

More information

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques

Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques Plasma Flow in MST: Effects of Edge Biasing and Momentum Transport from Nonlinear Magnetic Torques J.S. Sarff, A.F. Almagri, J.K. Anderson, B.E. Chapman, D. Craig, C-S. Chiang, N.A. Crocker, D.J. Den Hartog,

More information

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University

More information

Gyrokinetic Turbulence Investigations Involving Ion and Electron Scales

Gyrokinetic Turbulence Investigations Involving Ion and Electron Scales Gyrokinetic Turbulence Investigations Involving Ion and Electron Scales T. Görler, F. Jenko, M.J. Pueschel, D. Told, and H. Lesch Abstract Plasma microinstabilities are one of the key physics problems

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET EFDA JET CP(02)07/03 C. Castaldo, R. Cesario, Y, Andrew, A. Cardinali, V. Kiptly, M. Mantsinen, F. Meo, A. Murari, A. A. Tuccillo, M. Valisa, D. Van Eester, L. Bertalot, D. Bettella, C. Giroud, C. Ingesson,

More information

Gyrokinetic Large Eddy Simulations

Gyrokinetic Large Eddy Simulations Gyrokinetic Large Eddy Simulations A. Bañón Navarro 1, P. Morel 1, M. Albrecht-Marc 1, D. Carati 1, F. Merz 2, T. Görler 2, and F. Jenko 2 1 Laboratoire de Physique Statistique et des Plasmas Université

More information

Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas

Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas The th meeting of study on Plasma Science for Young Scientists, Mar. 7-9 28, JAEA, Naka, Ibaraki, Japan Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory

More information

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges

MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges MHD Analysis of the Tokamak Edge Pedestal in the Low Collisionality Regime Thoughts on the Physics of ELM-free QH and RMP Discharges P.B. Snyder 1 Contributions from: H.R. Wilson 2, D.P. Brennan 1, K.H.

More information

Gyrokinetic simulation of collisionless trapped-electron mode turbulence

Gyrokinetic simulation of collisionless trapped-electron mode turbulence PHYSICS OF PLASMAS 1, 07309 005 Gyrokinetic simulation of collisionless trapped-electron mode turbulence Tilman Dannert a and Frank Jenko Max-Planck Institut für Plasmaphysik, EURATOM Association, 85748

More information

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions

The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions The EPED Pedestal Model: Extensions, Application to ELM-Suppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi

More information