Spin-orbit interaction at interfaces: from Rashba states to chiral spin textures

Size: px
Start display at page:

Download "Spin-orbit interaction at interfaces: from Rashba states to chiral spin textures"

Transcription

1 Spin-orbit interaction at interfaces: from Rashba states to chiral spin textures Stefan Blügel Peter Grünberg Institut and Institute for Advanced Simulation Spetses Spin-Orbit Coupling in Surface or Interface States 08. June 2015

2 Spin-Orbit Coupling v spin-orbit coupling has fascinating realizations and ramifications in solids Examples: o Rashba Effect o Dresselhaus Effect o Topological & Chern Insulator o Magnetic Anisotropy o Dzyaloshinskii-Moriya Interaction o Chiral magnets and skyrmions o Spin-Orbit Torque o Anomalous & Spin Hall Effect & Edelstein Effect o Quantum & Topological Spin Hall Effect o Spin-Relaxation (Elliot-Yafet, Dyakonov-Perel) June 11, 2015 Folie 2

3 Spin-Orbit Coupling v spintronics spin-orbitronics Examples: o Rashba Effect o Dresselhaus Effect o Topological & Chern Insulator o Magnetic Anisotropy o Dzyaloshinskii-Moriya Interaction o Chiral magnets and skyrmions o Spin-Orbit Torque o Anomalous & Spin Hall Effect & Edelstein Effect o Quantum & Topological Spin Hall Effect o Spin-Relaxation (Elliot-Yafet, Dyakonov-Perel) June 11, 2015 Folie 3

4 Outline v Aim: Space inversion asymmetry + Spin-orbit coupling + Lack of time inversion symmetry = chiral spin textures at metal surfaces à topologically protected spin-structures June 11, 2015 Folie 4

5 Mitglied der Helmholtz Gemeinschaft Thanks! Bernd Zimmermann Vasile Caciuc Nicolae Atodiresei Phivos Mavropoulos Gustav Bihlmayer Juba Bouaziz Samir Lounis Eugene Chulkov Pedro Echenique STM groups Frank Freimuth Yuriy Mokrousov PES groups Ø Matthias Bode Ø Oliver Rader Ø Thomas Michely Ø Carlo Carbone Ø Roland Wiesendanger SOCSIS, Spetses, June Ø Philip Hofmann Bertrand Dupé Stefan Heinze June 11, 2015 Folie 5

6 Tiny tiny SOC brings us to Spetses degenerate states k (r) =a k (r) k (r) =a k (r) e ik r e ik r E(k) ν k June 11, 2015 Folie 6

7 Tiny tiny SOC brings us to Spetses degenerate states Usually: k (r) = a k (r) + b k (r) e ik r a 2 1 k (r) = a k(r) b k(r) e +ik r b 2 1 b 2 : Ellio1- Yafet parameter H SOC = (r) L S E F E(k) n n Δ soc Perturba<on theory: b 2 nk = X 0 h nk (L S) "# 0 n0 k i 2 (E n 0 nk E n0 k) Fermi surface hot- spots k June 11, 2015 Folie 7

8 Fermi surface hot spots for Anisotropy of b 2 (ŝ) bcc W (Z=74) hcp Os (Z=76) details matter! B. Zimmermann et al., PRL 109, (2012) June 11, 2015 Folie 8

9 Tiny tiny SOC brings us to Spetses degenerate states Usually: k (r) = a k (r) + b k (r) e ik r a 2 1 k (r) = a k(r) b k(r) e +ik r b 2 1 b 2 : Ellio1- Yafet parameter Additional fun: Lifting degeneracies by breaking time and space inversion symmetry! June 11, 2015 Folie 9

10 Spin-Orbit Coupling: Space Inversion Symmetry Elemental solids (Cu, Si, Al.) For a given band ν the following two states have the same energy Proof: time reversal space inversion June 11, 2015 Folie 10 q.e.d.

11 Space inversion symmetry broken Time reversal + space inversion symmetry: (GaAs, InSb, interfaces, surfaces,...) Time reversal only!, Effective spin-orbit ( magnetic ) field Ω: Time reversal symmetry: I. Zˇuti ć, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004). June 11, 2015 Folie 11

12 The functional forms of Ω(k): Symmetry Analysis J. Fabian June 11, 2015 Folie 12

13 Axis of spin-rotation Spin Splitting at constant E (Energy) k y <110> <110> <110> <110> k y <001> <001> k x k x Rashba type Inversion Asymmetry by surface, interface, heterostructure Dresselhaus type Inversion Asymmetry in crystal structure June 11, 2015 Folie 13

14 1 st evidence: Au(111) Surface Theory PES Experiment surface states E F bulk states Lashell et al., PRL 77, 3419 (1996) Reinert et al., PRB 63, (2001) June 11, 2015 Folie 14

15 Semi-metal Bi(111): Theory Without Spin-Orbit Interaction With Spin-Orbit Interaction Yu.M. Koroteev, G. Bihlmayer, J.E. Gayone, E.V. Chulkov, S. Blügel, P.M. Echenique, and PH. Hofmann, PRL 93, (2004) see Poster Aguilera June 11, 2015 Folie 15

16 La(0001) and Lu(0001) Surface 11L dhcp La(0001) 12L hcp Lu(0001) O. Krupin et al. New J. Phys. 11, (2009) (GGA), all relaxed with SOC position of surface state at Γ in good agreement with experiment no detectable Rashba spin-orbit splitting for these surface states Z(La)=57; Z(Lu)=71; Z(Au)=79 June 11, 2015 Folie 16

17 La & Lu(0001) surface states: charge densities Lu: SS M point Lu: SS Γ La: SS Γ Bandstructure Lu(0001) Without SOC O. Krupin et al. New J. Phys. 11, (2009) Rashba-Spin-Orbit Splitting around point! (at M-point 0 due to symmetry) M June 11, 2015 Folie 17

18 La & Lu(0001) surface states: charge densities Bandstructure Lu(0001) With SOC O. Krupin et al. New J. Phys. 11, (2009) June 11, 2015 Folie 18

19 Magnetic Surface: Gd(0001) Surface state as for La(0001) or Lu(0001) But: Spin-splitted by exchange field (acts as Zeeman) June 11, 2015 Folie 19

20 Rashba-Effect at magnetic surfaces Surface electrons moving in a E field: 1 H = p 2 + α Rσ ( p E ) 2m H R Dispersion relation: 2 ( ) 2 ( ε k = ± α σ ) ( ) k R k E 2m Magnetic Surfaces: Dispersion relation: Exchange splitting 1 ± IM 2 2 (, ) 2 1 ( ε α ( k = ± ± ) M k IM RM k 2m 2 E) June 11, 2015 Folie 20

21 Gd(0001) Surface State Dispersion Exp. hν=36 ev T=80 K Theory Small Rashba-Spin-Orbit splitting at Γ-point (majority spin) Exp: O. Krupin, S. Gorovikov, J.E. Pietro, K. Döbrich, G. Kaindl, and K. Starke PRB 71, (2005) June 11, 2015 Folie 21

22 O on Gd(0001): Surface States Gd-(S) O Gd-(S) Gd-(S-1) June 11, 2015 Folie 22

23 Electrons at Surfaces E k -k June 11, 2015 Folie 23

24 Where does the SOC come from? Example: Rashba effect E k -k Spin-Orbit Strength (Z) Asymmetry of Ψ Orbital (s,p.d ) June 11, 2015 Folie 24

25 Where does the SOC come from? Example: Rashba effect Spin-Orbit Strength (Z) Atom Asymmetry of Ψ Orbital (s,p.d ) V (r) r 1 2mc 2 r V r L S Muffin-Tin Sphere June 11, 2015 Folie 25

26 Where does the SOC come from? Example: Rashba effect Atom V (r) r 1 2mc 2 r V r L S Rashba splitting (% of full value) Rashba splitting as function of radius of the sphere in which SOC is taken into account for Au(111) Sphere radius [a.u.] sphere radius (a.u.) 0.99 Muffin-Tin Sphere June 11, 2015 Folie 26

27 SOC+Inversion-asymmetry Example: Rashba effect Contribution of Individual layer to Rashba splitting Atom V (r) r 1 2mc 2 r V r L S 0 S-0 S-1 S-2 S-3 S-4 S-5 layer (S = surface) S S-1 S-2 S-3 S-4 S-5 Layer (S=Surface) 0% contribution of individual layer contribution of the idividual layers sphere radius (a.u.) 20% June 11, 2015 Folie 27 Rashba splitting (% of total) Rashba splitting (% of full value) 20 40% Au(111) 60 Rashba splitting as function of radius of the sphere in which SOC is taken into account for Au(111) 60% Au(111) 100

28 Rashba-Hamiltonian Electrons moving in a E field: 2D electron gas (in xy-plane) ψ ( ) ( k, r ) = 1 Ω ei k r ( ) > E(k) = 2 2m k 2 June 11, 2015 Folie 28

29 Mitglied der Helmholtz Gemeinschaft STS : Fe on Cu(111) Ill*tlsYOlsl.BlOsssl B 'S- -60 HI% \8~'17 <~ Distance (A) ' 1. (A) Constant otan( A x , current Aimage Fig. Fe adatomi (B) Solid line: average of three cross section Crommie etal, Science 218 ) onof the Fe adatom. the Cu(111) surface (V= 0.02 volt, I the center of the Fe adatom image in (A). Dashed line: na). Thefapparent height through the adatom is -0.9 A. The concentric rings surrounding the Fe adatomr 1 to the Cross section (the datawas fit only up to 18 A from th are standing waves due to the scattering of surface state electrons with of the adatom). = 1.0 sharp drop in di/dv at the surface state band June 11, 2015 Folie 29 shows the dil/dv spectrum measured with for imaging, the Fe adatoms did not

30 Rashba-Hamiltonian Electrons moving in a E field: ψ 2D electron gas (in xy-plane) 1 ik r ( k, r ) = e ( ) > ( ) Ω E Δ R Momentum k Δk x June 11, 2015 Folie 30

31 Mitglied der Helmholtz Gemeinschaft STS : Fe on Cu(111) Ill*tlsYOlsl.BlOsssl B Where 'S- is the second length scale due to spin orbit interaction -60 HI% \8~'17 <~ ? 0 20 Distance (A) ' 1. (A) Constant otan( A x , current Aimage Fig. Fe adatomi (B) Solid line: average of three cross section Crommie etal, Science 218 ) onof the Fe adatom. the Cu(111) surface (V= 0.02 volt, I the center of the Fe adatom image in (A). Dashed line: na). Thefapparent height through the adatom is -0.9 A. The concentric rings surrounding the Fe adatomr 1 to the Cross section (the datawas fit only up to 18 A from th are standing waves due to the scattering of surface state electrons with of the adatom). = 1.0 sharp drop in di/dv at the surface state band June 11, 2015 Folie 31 shows the dil/dv spectrum measured with for imaging, the Fe adatoms did not

32 Standing waves at defect scattering E E B k k -k k -B Incoming states + reflected states June 11, 2015 Folie 32

33 Standing waves at defect scattering Fermi Surface Au(111) Scattering States E Γ M K E Γ June 11, 2015 Folie 33

34 Semi-metal Bi(110): Theory J.I. Pascual, G. Bihlmayer, Yu.M. Koroteev, H.-P. Rust, G. Ceballos, M. Hansmann, K. Horn, E.V. Chulkov, S. Blügel, P.M. Echenique, and Ph. Hofmann, PRL 93, (2004) June 11, 2015 Folie 34

35 Spin-dependent Interference: Bi(110) STM Scan Fourier TransF. J.I. Pascual, G. Bihlmayer, Yu.M. Koroteev, H.-P. Rust, G. Ceballos, M. Hansmann, K. Horn, E.V. Chulkov, S. Blügel, P.M. Echenique, and Ph. Hofmann, PRL 93, (2004) June 11, 2015 Folie 35

36 Scattering theory for magnetic adatom " Rashba Hamiltonian H = 1 2m * P2 + α R (σ x P y σ y P x ) " Dyson eq.: G = G 0 + G 0 tg 0 Surface " Surface Green function G D G 0 = e iβ G ND " Scattering Amplitude t = 1 ( m * e2iδ 1) e iβ G ND G D t = t 0! t 0! t t LDOS = 1 π ImG M = 1 π ImTr σ G June 11, 2015 Folie 36

37 Application: Adatoms on Au(111) surface LDOS(r) = 1 π Im ( (G G + G G )(t + t ) ) D D ND ND M z (r) = 1 π Im ( (G G G G )(t t ) ) D D ND ND STM M r (r) = 2 π Im ( G (t t )G ) D ND M z (r) 1 ( r k 1 cos(2k 1 r) + k 2 cos(2k 2 r) ) Surface June 11, 2015 Folie 37

38 Application: Adatoms on Au(111) surface LDOS(r) = 1 π Im ( (G G + G G )(t + t ) ) D D ND ND M z (r) = 1 π Im ( (G G G G )(t t ) ) D D ND ND STM M r (r) = 2 π Im ( G (t t )G ) D ND M r (r) 1 ( r k 1 sin(2k 1 r) k 2 sin(2k 2 r) ) Surface June 11, 2015 Folie 38

39 Mitglied der Helmholtz Gemeinschaft Three-dimensional Spin texture E=EF=410 mev Lounis, Bringer, Blügel, PRL108, (2012) June 11, 2015 Folie 39

40 Skyrmionic spin texture E=E F =410 mev high Result at E F Radius~70Å low June 11, 2015 Folie 40

41 Mitglied der Helmholtz Gemeinschaft Skyrmionic spin texture Bogdanov, Hubert, JMMM 195, 182 (1999) Rößler et al. Nature 442, 797 (2006) Mühlbauer et al. Science 323, 929 (2008) high Radius~70Å low June 11, 2015 Folie 41

42 Mitglied der Helmholtz Gemeinschaft Complex Skyrmionic spin texture Bogdanov, Hubert, JMMM 195, 182 (1999) Rößler et al. Nature 442, 797 (2006) Mühlbauer et al. Science 323, 929 (2008) high Radius~70Å low June 11, 2015 Folie 42

43 Asymptotic behavior Distance from the adatom (Å) First nodes: wave length ~ 20 Å cos(2k F R) and λ = 2π = λ F 2k F 2 ~ 40 2 node Phase switch: ~ 60 Å cos(2k so R) λ and λ = so 2 ~ 120 Å 2 Å June 11, 2015 Folie 43

44 Interference of two skyrmionic waves M total = M k1 + M k Distance from the adatom (Å) M k1 k 1 ( cos(2k 1 r), sin(2k 1 r),0) k 1 = k + k so k 2 = k k so M k2 k 2 ( cos(2k 2 R),sin(2k 2 R),0) June 11, 2015 Folie 44

45 Scattering at two adatoms (Heisenberg) A. Fert & P. M. Levy, PRL 44, 1538 (1980). June 11, 2015 Folie 45

46 Rashba scattering at two adatoms Structure inversion asymmetric magnetism (SIA) E B k (Heisenberg) A. Fert & P. M. Levy, PRL 44, 1538 (1980). June 11, 2015 Folie 46

47 Dzyaloshinskii-Moriya Interaction (DMI): Structure inversion asymmetric magnetism (SIA) E B k (Heisenberg + Dzyaloshinskii-Moriya) June 11, 2015 Folie 47

48 Dzyaloshinskii-Moriya Interaction: Structure inversion asymmetric magnetism (SIA) E B k (Heisenberg) (Heisenberg A. Fert & P. M. + Dzyaloshinskii-Moriya) Levy, PRL 44, 1538 (1980). Example: Au(111) D y 12 (R) = ~ 2 apple sin(2kso R) sin(2k F R) m 2 + k so cos(2k so R)SI(2k F R) R 2R J. Bouaziz, M. d. Santos Dias, A. Ziane,, S. Blügel, S. Lounis June 11, 2015 Folie 48

49 Dzyaloshinskii-Moriya Interaction: Structure inversion asymmetric magnetism (SIA) D y k so k so E B k R x (Heisenberg) (Heisenberg A. Fert & P. M. + Dzyaloshinskii-Moriya) Levy, PRL 44, 1538 (1980). Example: Au(111) D y ~ 2 h sin(2kf R) sin(2k so R) ij = m 2 R 2R i + k so cos(2k so R) SI(2k F R) J. Bouaziz, M. d. Santos Dias, A. Ziane,, S. Blügel, S. Lounis June 11, 2015 Folie 49

50 DMI: Long range interaction DMI due to Rashba effect i R ij j Au(111) 1 1 Au(111) Reinert et al., PRB 63, (2001) Interaction D y ij [mev] R ij [Å] June 11, 2015 Folie 50

51 DMI: Long range interaction DMI due to Rashba effect 1 1 Au(111) Interaction D y ij [mev] R ij [Å] Reinert et al., PRB 63, (2001) D y ij = ~ 2 m 2 R h sin(2kf R) sin(2k so R) 2R June 11, 2015 Folie 51 Bouaziz, Blügel, Lounis i + k so cos(2k so R) SI(2k F R)

52 Real Fermi surface bcc W (Z=74) SOCSIS, Bernd Zimmermann Spetses, June June 11, 2015 Folie 52

53 Exchange and DMI in Pd/Fe/Ir(111) Top view of Fe Fe J 12 = 16.4 mev Ir Pd D 12 = -1.1 mev Bauer, Kiselev, Crum, Schweflinghaus, Bouhassoune, Bouaziz, Lounis, Blügel June 11, 2015 Folie 53

54 Exchange and DMI in 2Pd/Fe/Ir(111) Top view of Fe Fe Pd J 12 = 12.7 mev Ir D 12 = -1.4meV Bauer, Kiselev, Crum, Schweflinghaus, Bouhassoune, Bouaziz, Lounis, Blügel June 11, 2015 Folie 54

55 Dzyaloshinskii-Moriya Interaction o Well-known interaction in many TM oxides, chalcogenides.. Bulk inversion asymmetric (BIA) systems (non-centrosymmetric crystals): e.g. α-fe 2 O 3, MnCO 3, CrF 3. Antiferromagnets show weak ferromagnetism Anisotropic Superexchange Interaction + SOC o Metals : most metals bcc, fcc, hcp.. exceptions: B20 compounds, Spin glasses A. Fert & P. M. Levy, PRL 44, 1538 (1980). June 11, 2015 Folie 55

56 Bulk inversion asymmetric magnets E(c) FM/AFM L> R> c Dzyaloshinskii-Moriya Interaction June 11, 2015 Folie 56

57 Spin textures at surfaces skyrmions magnetism spin-orbit coupling inversion asymmetry chiral spin spirals Dzyaloshinskii-Moriya interaction Nature 465, 901 (2010) Nat. Phys. 7, 713 (2011) chiral domain walls magnon dispersion Nature 447, 190 (2007) PRL 88, (2002) PRB 78, (2008) PRL 102, (2009) PRL 104, (2010) June 11, 2015 Folie 57

58 Spin-Orbit Interaction + Structure Inversion Asymmetry Break of inversion symmetry P(z) P(-z) Magn. Film Substrate with large SOC Dzyaloshinskii-Moriya Interaction But how large?? Which direction (sign)?? What about the metallic systems?? June 11, 2015 Folie 58

59 Skyrmions for Spintronics Chiral magnetism in thin films, but not too thin (min 3 layers) Try find small but not too small skyrmions 3-5 nm Above room temperature and zero magnetic field Fit to the field of spintronics: injection, transport, detection, manipulation at reasonable fields and currents Metallic magnetism Albert Fert, Vincent Cross and João Sampaio, Nature Nanotechnology 8, 152 (2013) June 11, 2015 Folie 59

60 Role of Dzyaloshinskii-Moriya Interaction in Dimensions Micromagnetic energy functional: Z E(m) = A rm 2 + D (rm m)+m K m B m ê z dr 2 R 2 Exchange Dzyaloshinskii-M Anisotropy Ext. Field Stretching transformation: m(r)! m (r) =m( r) 2D: Skyrmion Z apple A E( )= 2 rm 2 + D (rm m)+m K m B m ê 2 z dr 2 R Z 2 E( )= A rm 2 + D (rm m)+ 2 m K m 2 B m ê z dr 2 SOCSIS, R 2 Spetses, June June 11, 2015 Folie 60

61 Role of Dzyaloshinskii-Moriya Interaction in Dimensions Micromagnetic energy functional: Z E(m) = A rm 2 + D (rm m)+m K m B m ê z dr 2 R 2 Exchange Dzyaloshinskii-M Anisotropy Ext. Field Stretching transformation: m(r)! m (r) =m( r) 1D: Domain Wall Z apple A E( )= rm 2 + D (rm m)+ m K m B m ê z dr R Z E( )= A rm 2 + D (rm m)+ 2 m K m 2 B m ê z dr 2 SOCSIS, R 2 Spetses, June June 11, 2015 Folie 61

62 Continuum theory of chiral magnetic skyrmions Theoretical prediction: T. Skyrme: Proc. Roy. Soc. A 260, 127 (1961) A.N. Bogdanov & D. A.Yablonski: Sov. Phys. JETP 68, 101 (1989). A.N. Bogdanov, A. Hubert: JMMM 138, 255 (1994) U. Rössler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006). Micromagnetic energy functional: Z E(m) = A rm 2 + D (rm m)+m K m B m ê z dr 2 R 2 Exchange Dzyaloshinskii-M Anisotropy Ext. Field min E{m} of continuous vector field m with unit sphere S 2 = {m 2 R 3 : m =1} è Topological concepts Smooth Mapping R 2! S 2 June 11, 2015 Folie 62

63 Conclusion Ø Many things are unknown and ready to discover Ø E.g. Manipulation and control of topological solitons by external fields Ø Topological, anomalous and thermal Hall effects in static skyrmion lattices Ø Spin orbit torque and damping in chiral magnets Ø Large Skyrmions we can describe in Berry phase physics and materials parameters for micromagnetic models Ø Small skyrmions we may treat completely from abinitio Ø Medium scale skyrmions not-adiabatic but too large of DFT. June 11, 2015 Folie 63

64 Continuum theory of chiral magnetic skyrmions E(m) = Z Mathematical analysis predicts: R 2 A rm 2 + D (rm m)+m K m B m ê z dr 2 Ø Dzyaloshinskii-Moriya Interaction (DMI) à new valley in topologically non-trivial sector of energy landscape Ø Sectors are separated by an energy barrier (topological protection) Ø Theorem: For D 0, for each (D, A) there is a B-field, B 0.8 D 2 /A, at which an isolated chiral skyrmions stabilizes Ø Diameter: R S A/D Ø Critical T : T c D 2 /A Rößler, Leonov, and Bogdanov, J. Phys.: Conf. Series 303, (2011) Melcher Proc. R. Soc. A 470, 0394 (2014) June 11, 2015 Folie 64

65 Thanks! June 11, 2015 Folie 65

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany Skyrmion à la carte Bertrand Dupé Institute of Physics, Johannes Gutenberg University of Mainz, Germany 1 Acknowledgement Charles Paillard Markus Hoffmann Stephan von Malottki Stefan Heinze Sebastian Meyer

More information

Manipulation of interface-induced Skyrmions studied with STM

Manipulation of interface-induced Skyrmions studied with STM Manipulation of interface-induced Skyrmions studied with STM Kirsten von Bergmann S. Heinze, M. Bode, P. Ferriani, E.Y. Vedmedenko, A. Kubetzka, O. Pietzsch and R. Wiesendanger Institute of Applied Physics,,

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal

Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets Alexey A. Kovalev Utkan Güngördü Rabindra Nepal Outline Discuss possible 2D Dzyaloshinskii-Moriya magnets Study phase diagram

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields L. Schmidt, J. Hagemeister, P.-J. Hsu, A. Kubetzka, K. von Bergmann and R. Wiesendanger Department of Physics, University

More information

Antiferromagnetic Textures

Antiferromagnetic Textures Antiferromagnetic Textures This image cannot currently be displayed. ULRICH K. RÖSSLE IFW DRESDEN SPICE Workshop Antiferromagnetic Spintronics 26.-30/09/2016 Schloss Waldthausen u.roessler@ifw-dresden.de

More information

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) :Syllabus: 1. Introductory description 2. Elliott-Yafet spin relaxation and spin hot spots 3.

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Jung Hoon Han (SungKyunKwanU, Suwon) Su Do Yi SKKU Shigeki Onoda RIKEN Naoto Nagaosa U of Tokyo arxiv:0903.3272v1 Nearly ferromagnetic

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University See also talks online by Tokura, Tchernyshyov Magnetic skyrmions Rembert Duine with Marianne Knoester (UU) Jairo Sinova (Texas A&M, Mainz) ArXiv 1310.2850 Institute for Theoretical Physics Utrecht University

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface Sashi Satpathy Department of Physics University of Missouri, Columbia, USA E Ref: K. V. Shanavas and S. Satpathy, Phys. Rev.

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016

arxiv: v1 [cond-mat.mtrl-sci] 18 Apr 2016 How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy B. Dupé, C. N. Kruse, T. Dornheim and S. Heinze Institute of Theoretical Physics and Astrophysics, arxiv:1604.05030v1

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Skyrmions in quasi-2d chiral magnets

Skyrmions in quasi-2d chiral magnets MRSEC 1 Skyrmions in quasi-2d chiral magnets Mohit Randeria Ohio State University kitp ucsb August 2015 2 James Rowland Sumilan Banerjee (now at Weizmann) Onur Erten (now at Rutgers) * Banerjee, Erten

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 5 Today s Topics 5.1 Spincaloritronics 5.2 Domain walls and skyrmions Spin Caloritronics Basics of thermoelectric effects The gradient

More information

Spin-orbit coupling fields in Fe/GaAs heterostructures

Spin-orbit coupling fields in Fe/GaAs heterostructures Spin-orbit coupling fields in Fe/GaAs heterostructures Outline motivation a simplified model of the Fe/GaAs heterostructure extracting spin-orbit coupling parameters spin-orbit coupling field conclusions

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA) 2013.10.24 Spintronics 2013 @ KITP, UCSB Interfacial spin-orbit coupling and chirality Hyun-Woo Lee (POSTECH, KOREA) COLLABORATORS Kyoung-Whan Kim Postech, Korea Kyung-Jin Lee Korea Univ., Korea Mark Stiles

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals Universität zu Köln collaboration: K. Everschor, B. Binz, A. Rosch Universität zu Köln R. Duine Utrecht University T. Schulz,

More information

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda MINECO ANR ANR MIUR

Tailoring Spin-Orbit effects in graphene for Spin-Orbitronic applications Rodolfo Miranda MINECO ANR ANR MIUR Joint Transnational Call 2015 Tailoring Spin-Orbit effects in for Spin-Orbitronic applications Rodolfo Miranda UMPHY CNRS-THALES IPM srl MINECO ANR ANR MIUR 1 Scientific background, key challenges and

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

Enhanced Rashba spin-orbit splitting in Bi/ Ag 111 and Pb/ Ag 111 surface alloys from first principles

Enhanced Rashba spin-orbit splitting in Bi/ Ag 111 and Pb/ Ag 111 surface alloys from first principles Enhanced Rashba spin-orbit splitting in Bi/ Ag 111 and Pb/ Ag 111 surface alloys from first principles G. Bihlmayer, 1, * S. Blügel, 1 and E. V. Chulkov 2,3 1 Institut für Festkörperforschung, Forschungszentrum

More information

Quantum Spin Liquids and Majorana Metals

Quantum Spin Liquids and Majorana Metals Quantum Spin Liquids and Majorana Metals Maria Hermanns University of Cologne M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arxiv:1506.01379

More information

Spin-orbit coupling effects on electrons, magnetic anisotropy, crystal field effects.

Spin-orbit coupling effects on electrons, magnetic anisotropy, crystal field effects. Spin-orbit coupling effects on electrons, magnetic anisotropy, crystal field effects. Julie Staunton Physics Department, University of Warwick, U. K 1 / 3 Introduction Magnetism in condensed matter: exchange

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Magnetic skyrmions: structure, stability, and transport phenomena

Magnetic skyrmions: structure, stability, and transport phenomena Ψ k Scientific Highlight of the Month No. 139 February 2018 Magnetic skyrmions: structure, stability, and transport phenomena G. Bihlmayer 1,, P. M. Buhl 1, B. Dupé 1,2, I. L. Fernandes 1, F. Freimuth

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2045 Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions Stefan Heinze 1,*, Kirsten von Bergmann 2,*, Matthias Menzel 2,*, Jens Brede 2, André

More information

Magnonics in skyrmion-hosting chiral magnetic materials

Magnonics in skyrmion-hosting chiral magnetic materials Magnonics in skyrmion-hosting chiral magnetic materials TU Dresden Collaboration theory: experimental groups: Johannes Waizner Peter Böni (München) Neutron scattering Achim Rosch (Köln) Dirk Grundler (Lausanne)

More information

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS T. Nattermann University of Cologne * F.Li, TN and V. Pokrovsky Phys. Rev.Lett. 108, 107302 (2012) TN arxiv:1210.1358 Acknowledgments to SFB 608 of DFG.

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H.

Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Application of interface to Wannier90 : anomalous Nernst effect Fumiyuki Ishii Kanazawa Univ. Collaborator: Y. P. Mizuta, H. Sawahata, 스키루미온 Outline 1. Interface to Wannier90 2. Anomalous Nernst effect

More information

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013 Target-skyrmions and skyrmion clusters in nanowires of chiral magnets A. O. Leonov 1, U. K. Rößler 2, and M. Mostovoy 1 1 Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9700AB,

More information

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets Magnetoresistance due to Broken C 4 Symmetry in Cubic B0 Chiral Magnets S. X. Huang 1*,#, Fei Chen 1,3, Jian Kang, Jiadong Zang 1*, G. J. Shu 4, F. C. Chou 4, and C. L. Chien 1* 1 Department of Physics

More information

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014 Magnetism University of Liège eric.bousquet@ulg.ac.be Abinit School, Lyon, France 16/05/2014 Outline Origin of magnetism: Inside an atom Between 2 atoms Interaction with ligands Interaction through ligands

More information

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Paul Wenk, Michael Kammermeier, John Schliemann, Klaus Richter, Roland Winkler SFB Workshop Bernried 30.09.2014

More information

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian Hvar, 4.10.2017 Spin-orbit proximity effects in graphene on TMDCs Jaroslav Fabian Institute for Theoretical Physics University of Regensburg SFB1277 GRK TI SPP 1666 SFB689 GRK1570 SPP 1538 Arbeitsgruppe

More information

A New Look at Rashba-related Phenomena. Multi-orbital Perspective. (Sungkyunkwan U) ( 成均館大 )

A New Look at Rashba-related Phenomena. Multi-orbital Perspective. (Sungkyunkwan U) ( 成均館大 ) A New Look at Rashba-related Phenomena from Multi-orbital Perspective Jung Hoon Han (Sungkyunkwan U) 韓政勳 ( 成均館大 ) Collaboration Choong H. Kim (Cornell) Changyoung Kim (Yonsei) Hyun-Woo Lee (POSTECH) Jin-Hong

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Skyrmions in magnetic materials Download slides from:

Skyrmions in magnetic materials Download slides from: WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN :: Jonathan White :: Laboratory for Neutron Scattering and Imaging (LNS) :: Paul Scherrer Institute (PSI), Switzerland Skyrmions in magnetic materials Download slides

More information

Topological insulator gap in graphene with heavy adatoms

Topological insulator gap in graphene with heavy adatoms Topological insulator gap in graphene with heavy adatoms ES2013, College of William and Mary Ruqian Wu Department of Physics and Astronomy, University of California, Irvine, California 92697 Supported

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Berry Phase Effects on Charge and Spin Transport

Berry Phase Effects on Charge and Spin Transport Berry Phase Effects on Charge and Spin Transport Qian Niu 牛谦 University of Texas at Austin 北京大学 Collaborators: Shengyuan Yang, C.P. Chuu, D. Xiao, W. Yao, D. Culcer, J.R.Shi, Y.G. Yao, G. Sundaram, M.C.

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

arxiv: v1 [cond-mat.mes-hall] 2 Jun 2014

arxiv: v1 [cond-mat.mes-hall] 2 Jun 2014 Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d-5d zig-zag chains: Tight-binding model and ab initio calculations Vikas Kashid Department of Physics, University of Pune, Pune 4117, India Timo

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current

Limitations in the Tunability of the Spin Resonance of 2D Electrons in Si by an Electric Current Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Limitations in the Tunability of the Spin Resonance of 2D Electrons

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr 10.1149/05305.0203ecst The Electrochemical Society Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr Institute for

More information

Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence

Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence Mitglied der Helmholtz-Gemeinschaft Introduction to Reflectometry and Small Angle Scattering under Grazing Incidence E. Kentzinger Jülich Center for Neutron Science and Peter Grünberg Institut Jülich Research

More information

Electronic Properties of Ultimate Nanowires. F. J. Himpsel, S. C. Erwin, I. Barke,

Electronic Properties of Ultimate Nanowires. F. J. Himpsel, S. C. Erwin, I. Barke, Electronic Properties of Ultimate Nanowires F. J. Himpsel, S. C. Erwin, I. Barke, Nanostructures with Atomic Precision Single-Atom Wire, Single Wave Function Ultimate Limits of Electronics, Data Storage

More information

Optically-Controlled Orbitronics on the Triangular Lattice. Vo Tien Phong, Zach Addison, GM, Seongjin Ahn, Hongki Min, Ritesh Agarwal

Optically-Controlled Orbitronics on the Triangular Lattice. Vo Tien Phong, Zach Addison, GM, Seongjin Ahn, Hongki Min, Ritesh Agarwal Optically-Controlled Orbitronics on the Triangular Lattice Vo Tien Phong, Zach Addison, GM, Seongjin Ahn, Hongki Min, Ritesh Agarwal Topics for today Motivation: Cu 2 Si (Feng et al. Nature Comm. 8, 1007

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Electron transport simulations from first principles

Electron transport simulations from first principles Electron transport simulations from first principles Krisztián Palotás Budapest University of Technology and Economics Department of Theoretical Physics Budapest, Hungary Methods Tunneling & ballistic

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Wide-Range Probing of Dzyaloshinskii Moriya Interaction

Wide-Range Probing of Dzyaloshinskii Moriya Interaction Wide-Range Probing of Dzyaloshinskii Moriya Interaction Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of Physics and Institute of Applied Physics,

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmion Dynamics and Topological Transport Phenomena Skyrmion Dynamics and Topological Transport Phenomena Yoshi Tokura RIKEN Center for Emergent Matter Science (CEMS) Department of Applied Physics, University of Tokyo skyrmion, the concept originally introduced

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1700704/dc1 Supplementary Materials for Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies Yaxin Zhai,

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater Neutron scattering from Skyrmions in helimagnets Jonas Kindervater Collaborations TU München - E21 A. Bauer F. Rucker S. Säubert F. Haslbeck G. Benka P. Schmakat G. Brandl A. Chacon P. Böni C. Pfleiderer

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont

Berry-phase Approach to Electric Polarization and Charge Fractionalization. Dennis P. Clougherty Department of Physics University of Vermont Berry-phase Approach to Electric Polarization and Charge Fractionalization Dennis P. Clougherty Department of Physics University of Vermont Outline Quick Review Berry phase in quantum systems adiabatic

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction Oleg Starykh, University of Utah with Dima Pesin, Ethan Lake, Caleb

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

Spintranszport és spindinamika nanorendszerekben Simon Ferenc

Spintranszport és spindinamika nanorendszerekben Simon Ferenc Spintranszport és spindinamika nanorendszerekben Simon Ferenc BME Motivation Outline - Spintronics intro -Experimental methods -The Elliott-Yafet theory -Its generalization -Dessert Spintronics 1996 DARPA

More information

Spintronics: a step closer to the "The Emperor's New Mind" Ferenc Simon

Spintronics: a step closer to the The Emperor's New Mind Ferenc Simon Spintronics: a step closer to the "The Emperor's New Mind" Ferenc Simon TU-Budapest, Institute of Physics Outline -I. Intro, spintronics -II. SOC,spin-relaxation mechanisms -III. The intuitive unified

More information