Chapter 2 Homework Solutions

Size: px
Start display at page:

Download "Chapter 2 Homework Solutions"

Transcription

1 . Cl - 3 translations + rotations + vibration Chapter Homework Solutions (a) Um(rigid) = (3/)R + (/)R = (5/)R Hm(rigid) = (7/)R Cpm(rigid) = (7/)R = 9. J/mol-K (b) Um(vib) = (3/)R + (/)R + R = (7/)R Hm(vib) = (9/)R Cpm(vib) = (9/)R = 37.4 J/mol-K. C6H6 (N=) - 3 translations + 3 rotations + (3x-6) = 30 vibrations (a) Um(rigid) = (3/)R + (3/)R = 3R Hm(rigid) = 4R Cpm(rigid) = 4R = 33. J/mol-K (b) Um(vib) = (3/)R + (3/)R + 30R = 33R Hm(vib) = 34R Cpm(vib) = 34R = 8.5 J/mol-K.3 CO (N=3) - 3 translations + rotations + (3x3-5) = 4 vibrations (a) Um(rigid) = (3/)R + (/)R = (5/)R Hm(rigid) = (7/)R Cpm(rigid) = (7/)R = 9. J/mol-K (b) Um(vib) = (3/)R + (/)R + 4R = (3/)R Hm(vib) = (5/)R Cpm(vib) = (5/)R = 6.3 J/mol-K.4 =.4 L = 44.8 L = 73 K (constant) n =.00 mol (a) Reversible U = nc = H = nc = 0 m 0 pm w = nr ln( / ) = mol(8.3 J / mol K)(73 K)ln(44.8 /.4) = 570 J q = U - w = +570 J nr ( mol)(8.3 kpa L / mol K)(73 K) (b) Constant p (final pressure): p = = = 50.6 kpa 44.8 L U = H = 0 w = p( ) = 50.6 kpa(44.8 L.4 L) = 30kPa L = 30 J q = U - w = +30 J

2 (c) p = 0 U = H = 0 w= p ( ) = 0 q = U - w = kPa p =.00 atm = 0.3kPa atm = 300 K = 400 K p p 400 = p = p = 0.3kPa = 35.kPa U = ncm = n R = (.0 mol)(.50)(8.3 J / mol K)(400 K 300 K) = 50 J =.5kJ w = 0 (because = constant) q = U-w = U =.5 kj.6 n =. mol = 00 o C = 373 K vaph = 40.7 kj/mol w = -P(liq - gas) +Pgas = nr = (.0 mol)(8.3 J/mol-K)(373 K) = +300 J = +3.0 kj q = H = n condh = n(- vaph) = ( mol)(-40.7 kj/mol) = kj U = q + w = kj kj = kj.7 = 5 o C = 98 K p =.00 atm Reaction: Mg(s) + HCl(aq) MgCl(aq) + H(g) mol Mg mol H We will need n(h) below: n( H ) = 5 g Mg = 0.67 mol H 4.3 g Mg mol Mg { } { } { } w= p = p = p + p prod rct H MgCl Mg HCl H Simplificaion above because volumes of liquids/solids are negligible compared to volumes of gases. { } H H w = p = p = n R = (0.67 mol)(8.3 J / mol K)(98 K) = 530 J.5kJ.8 mol of W(s) requires mol W x 6 mol CO/ mol W = mol of CO(g). = 50 o C = 43 K w = -P - = +P = +P prod rct rct CO [Consider only gas phase reactants or products] w = -P = -n R = - mol(8.3j / mol K)(43K) = 400 J = +4. kj CO CO

3 .9 n = mol = 5 o C = 98 K = 00 o C = 473 K Cpm = a + b a = 0.7 J/mol-K b = 0.37 J/mol-K (a) Constant Pressure [q = H] q = H = nc pm d = n ( a + b ) d = na[ ] + nb ( K ) 473 (98 K) = ( mol)(0.7 J / mol K)(473 K 98 K) + ( mol(0.37 J / mol K ) = 3530 J J = 8490 J 8.5kJ w = p = p + p = nr + nr = nr( ) = ( mol)(8.3 J / mol K)(473 K 98 K) = 450 J.5kJ U = q + w = 8490 J +(-450 J) =7040 J 7.0 kj (b) Constant olume [q = U and w = 0] For a Perfect Gas U and H depend only upon temperature. herefore the values of U and H are the same as in part (a): U = 7040 J 7.0 kj H = 8490 J 8.5 kj Because = constant w = 0 q = U = 7040 J 7.0 kj.0 Cm = Cpm - R = = 8.8 J/mol-K. mol n =.45 g = 0.056mol 44 g = 7 o C = 300 K = 500 cm 3 = 0.50 L = 3.00 L Let's calculate for an adiabatic expansion. We'll need R/Cm = 8.3/8.8 = 0.89 = R C m R 0.89 C m = = (300 K) = 79 K Adiabatic Expansion: q = 0 w = U w = U = ncm = (0.056 mol)(8.8 J / mol K)(79 K 300 K) = 95 J

4 . n = 3.0 mol = 60 K = 85 K Cpm = 9.4 J/mol-K Let's calculate Cm: Cm = Cpm - R = J/mol-K Because p = constant q = H q = H = nc pm = (3.0 mol)(9.4 J / mol K)(85 K 60 K) = 05 J. kj U = ncm = (3.0 mol)(. J / mol K)(85 K 60 K) = 580 J.6 kj. n =.00 mol Cm = 0.8 J/mol-K = 30 K p = 3.5 atm p =.50 atm γ nr (.0 mol)(0.08 L atm / mol K)(30 K) = = = p 3.5atm C C + R C C 0.8 pm m = = = = m m 7.8 L γ γ γ p γ 3.5 p = p = = 7.8 = 3.06 = p.50 /.40 = (3.06) = 9.4L = p (.50)(9.4) = 87 ()(0.08) = K nr Adiabatic: q = 0 w = U = ncm [ ] = ( mol)(0.8 J / mol K)(87 K 30 K) = 480 J 0.5kJ.3 n = 0.50 mol = 50 K vaph o = 6.0 kj/mol p = const (phase transition). herefore q = H q = H = n H o = (0.50 mol)(6.0 kj / mol) = 3.0kJ vap w = p( ) p = nr = (0.50 mol)(8.3 J / mol K)(50 K) gas liq gas = 040 J.0kJ U = q + w = =.0 kj

5 .4 C6H5CH5(l) + (/) O(g) 8 CO(g) + 5 HO(l) o o o o combh = 8 f H ( CO) + 5 f H ( HO) f H ( C6H5CH5) + (/ ) 0 = 8( 393.5) + 5( 85.8) (.5) = kj / mol [ ]. 5 For N(g) a =.35 L -atm/mol b = L/mol n = mol = 98 K =.00 L = 4.8 L Internal Energy ( U) U π = = na U na U = d = = = d n a n a U = ( mol).35 L atm / mol.00 / 4.8 / L mol L mol 0J = 5.8 L atm = 53. J L atm Work (w) na p + ( nb) = nr nr p = nb n a = = nr n a = + w pd d nr d n a d nb nb ln ln nb nb [ ] w = nr b + n a = nr + n a w = ( mol)(8.3 J / mol K)(98 K)ln (.35 / ) mol L atm mol L L 0J = 6 90 J / mol + (5.40 L atm / mol) = 690 J J L atm = J 5.7 kj / mol Note: Observe that the work is less negative than it would be if there were no attractive forces (i.e. if a = 0). his is because some of the work energy released in the expansion must be used to pull the attractive molecules further from each other.

6 Heat (q) U = +53 J/mol w = J/mol q = U - w = +53 -(-5745) = +668 J/mol +6.3 kj/mol P (.0 atm)(.4 L).6 = 73 K nr = ( mol)(0.08 L atm / mol K) = P (.0 atm)(44.8 L) = 546 K nr = ( mol)(0.08 L atm / mol K) = P 3 3 (0.50 atm)(44.8 L) = 3 73 K nr = ( mol)(0.08 L atm / mol K) = Cm = (3 / ) R =.5(8.3 J / mol K) =.5 J / mol K C pm = Cm + R = = 0.8 J / mol K Step (Constant Pressure) 0J w = p( ) = (.0 atm)(44.8l.4 L) =.4 L atm = 60 J L atm U = ncm = ( mol)(.5 J / mol K)(546 K 73 K) =+ 340 J q = H = nc pm = ( mol)(0.8 J / mol K)(546 K 73 K) = J Step 3 (Constant olume) w = 0 q = U = ncm ( 3 ) = ( mol)(.5 J / mol K)(73K 546 K) = 340 J H = nc pm 3 = ( mol)(0.8 J / mol K)(73K 546 K) = 5680 J Step 3 (Isothermal) otals: U = H = 0 w = nr3ln( / 3) = ( mol)(8.3 J / mol K)(73 K)ln(.4 / 44.8) =+ 570 J q = -w = -570 J Utot = U + U 3 + U3 = = 0 J Htot = H + H 3 + H3 = = 0 J wtot = w + w 3 + w3 = = -690 J qtot = q + q 3 + q3 = = +700 J

7 Note: As expected Utot = Htot = 0 around the cycle. U and H are State Functions However qtot 0 and wtot 0 around the cycle. q and w are not State Functions o within roundoff error wtot + qtot 0 because qtot + wtot = Utot = 0.7 n =.0 mol Note: he initial temperature and pressure (required for the calculation) was not given in the problem. We ll use = 98 K p =.0 atm. nr ( mol)(0.08 L atm / mol K)(98 K) = = = p.0atm 4.4 L Cpm = (7/)R = (7/)(8.3) = 9. J/mol-K Cm = Cpm - R = = 0.8 J/mol-K Step a: Constant volume heating to p = p = atm p = = = = (98) = 596 K p w = 0 q = U = ncm ( ) = ( mol)(0.8 J / mol K)(596 K 98 K) =+ 690 J H = nc pm = ( mol)(9. J / mol K)(596 K 98 K) = J Step b: Adiabatic Expansion from = 596 K back to 3 = 98 K q = 0 w = U = ncm ( 3 ) = ( mol)(0.8 J / mol K)(98 K 546 K) = 690 J H = nc pm 3 = ( mol)(9. J / mol K)(98 K 546 K) = 8670 J We ll need 3 for last step. 3 = 3 R C m 3 3 C m/ R 0.8/ = = = = 5.66 = 5.66(4.4) = 38.3 L

8 Step c: Isothermal Compression from 3 = 38.3 L to =.4 L otals: U = H = 0 w = nr ln( / 3) = ( mol)(8.3 J / mol K)ln(4.4 /38.3) = J q = -w = J Utot = = 0 Htot = = 0 wtot = = -890 J 0 qtot = = +890 J 0

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

CHEM 5200 FALL Chem 5200: navigate ( Faculty Schwartz Classes)

CHEM 5200 FALL Chem 5200:     navigate ( Faculty Schwartz Classes) CHEM 5200 FALL 2018 Page 1 Lecture: Tues & Thur - 9:30 AM to 10:50 AM: Room: CHEM 252 Instructor: Martin Schwartz Office: Rm 272 Off. Hrs: Tu-Tr 8:30 AM - 9:30 AM + 11:00 AM - 12:00 AM Office Ph.: 565-3542

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING TERM TEST 2 17 MARCH First Year APS 104S UNIERSIY OF ORONO Please mark X to indicate your tutorial section. Failure to do so will result in a deduction of 3 marks. U 0 U 0 FACULY OF APPLIED SCIENCE AND ENGINEERING ERM ES 7 MARCH 05 U 03 U 04

More information

CHEM Exam 3 November 2, Version A. Constants: NA = 6.02x10 23 mol -1 R = L atm/mol K R = 8.31 J/mol K

CHEM Exam 3 November 2, Version A. Constants: NA = 6.02x10 23 mol -1 R = L atm/mol K R = 8.31 J/mol K CHEM 1413.001 - Exam 3 November 2, 2016 - Version A Molar Masses: Mn - 54.9 KClO3-122.6 SO2-64.1 Cl2-71. CO2-44. C2H6-30. NH3-17. H2O - 18. C6H14-86. Na - 23. AgNO3-169.9 C10H8-128. Conversions: 1 atm

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

The Factors that Determine the Equilibrium State

The Factors that Determine the Equilibrium State The Factors that Determine the Equilibrium State The equilibrium state (or the ratio of products to reactants) is determined by two factors: 1. Energy Systems tend to move toward a state of minimum potential

More information

Adiabatic Expansion/Compression

Adiabatic Expansion/Compression Adiabatic Expansion/Compression Calculate the cooling in a the reversible adiabatic expansion of an ideal gas. P P 1, 1, T 1 A du q w First Law: Since the process is adiabatic, q = 0. Also w = -p ex d

More information

CHEM 305 Solutions for assignment #4

CHEM 305 Solutions for assignment #4 CEM 05 Solutions for assignment #4 5. A heat engine based on a Carnot cycle does.50 kj of work per cycle and has an efficiency of 45.0%. What are q and q C for one cycle? Since the engine does work on

More information

Thermodynamics (XI) Assignment(Solution)

Thermodynamics (XI) Assignment(Solution) SYLLABUS CUM COM./XI/03 4 hermodynamics (XI) Assignment(Solution) Comprehension ype Questions aragraph for Question -5 For an ideal gas, an illustration of three different paths A, (B + C) and (D + E)

More information

Chapter 3 Homework Solutions

Chapter 3 Homework Solutions Chapter Hmewrk Slutins. n = ml = 5 C = 98 K = 5 C = 98 K p = atm p = 5 atm. Cpm = (5/)R he entrpy changes fr the heating and cmpressin can e calculated separately and added. Heat at cnstant pressure S

More information

= 1906J/0.872deg = 2186J/deg

= 1906J/0.872deg = 2186J/deg Physical Chemistry 2 2006 Homework assignment 2 Problem 1: he heat of combustion of caffeine was determined by first burning benzoic acid and then caffeine. In both cases the calorimeter was filled with

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

the drink won t rise very high in the straw vacuum straw 1 atm drink

the drink won t rise very high in the straw vacuum straw 1 atm drink vacuum the drink won t rise very high in the straw straw 1 atm drink vacuum the drink won t rise very high in the straw straw 1 atm drink vacuum the drink won t rise very high in the straw straw 0.007

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required?

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? THE SECOND LAW Chapter 3 Outline HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? 1. The Dispersal of Energy YES 2. Entropy YES We won

More information

10th edition 9th edition 8th edition

10th edition 9th edition 8th edition Assigned questions for Lecture 7 are listed below (there are two sets). The questions occur in the following editions of Physical Chemistry by P.W. Atkins: 10th edition 9th edition 8th edition Note: The

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

0 o C. H vap. H evap

0 o C. H vap. H evap Solution. Energy P (00 ) Pν x 0 5 ρ 850,4 J kg - J kg Power kg s 000,4 600 70 W Solution. 00 o C H evap H vap 0 o C H liq 00 t H liq (4. x0 t ) dt 4.t x0 0 40 0 40 kj kg - H evap 40,68 J mol - (From Appendix

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 107 T. Hughbanks Le Châtelier's Principle When a change is imposed on a system at equilibrium, the system will

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCI Fall 2016 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n

p A = X A p A [B] = k p B p A = X Bp A T b = K b m B T f = K f m B = [B]RT G rxn = G rxn + RT ln Q ln K = - G rxn/rt K p = K C (RT) n N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt R = 0.08206 L atm/mol K 1

More information

CHEM Exam 2 - March 3, 2017

CHEM Exam 2 - March 3, 2017 CHEM 3530 - Exam 2 - March 3, 2017 Constants and Conversion Factors NA = 6.02x10 23 mol -1 R = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 bar = 100 kpa = 750 torr 1 kpa = 7.50 torr 1 J = 1 kpa-l 1 kcal = 4.18 kj

More information

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper)

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper) CHEM 5200 - Exam 2 - October 11, 2018 INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors: R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 L-atm = 101

More information

N h (6.02x10 )(6.63x10 )

N h (6.02x10 )(6.63x10 ) CHEM 5200 - Final Exam - December 13, 2018 INFORMATION PAGES (Use for reference and for scratch paper) Constants and Conversion Factors: R = 8.31 J/mol-K = 8.31 kpa-l/mol-k = 0.00831 kj/mol-k 1 L-atm =

More information

Ch 9 Practice Problems

Ch 9 Practice Problems Ch 9 Practice Problems 1. One mole of an ideal gas is expanded from a volume of 1.50 L to a volume of 10.18 L against a constant external pressure of 1.03 atm. Calculate the work. (1 L atm = 101.3 J) A)

More information

UNIT # 06 THERMODYNAMICS EXERCISE # 1. T i. 1. m Zn

UNIT # 06 THERMODYNAMICS EXERCISE # 1. T i. 1. m Zn UNI # 6 HERMODYNMIS EXERISE #. m Zn.S Zn.( f i + m H O.S H O.( f i (6.8 gm (.4 J/g ( f + 8 gm (4. J/g ( f [(6.8 (.4 + 8(4.] f (6.8 (.4 ( + (8 (4. ( (6.8(.4( (8(4.( f 97. (6.8(.4 (8(4.. U q + w heat absorb

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

NCERT THERMODYNAMICS SOLUTION

NCERT THERMODYNAMICS SOLUTION NCERT THERMODYNAMICS SOLUTION 1. Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii) used to determine

More information

Chapter 6 Review. Part 1: Change in Internal Energy

Chapter 6 Review. Part 1: Change in Internal Energy Chapter 6 Review This is my own personal review, this should not be the only thing used to study. You should also study using notes, PowerPoint, homework, ect. I have not seen the exam, so I cannot say

More information

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes

5.2 Energy. N Goalby chemrevise.org Lattice Enthalpy. Definitions of enthalpy changes 5.2 Energy 5.2.1 Lattice Enthalpy Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound

More information

Homework 12 (Key) First, separate into oxidation and reduction half reactions

Homework 12 (Key) First, separate into oxidation and reduction half reactions Homework 12 (Key) 1. Balance the following oxidation/reduction reactions under acidic conditions. a. MnO 4 - + I - I 2 + Mn 2+ First, separate into oxidation and reduction half reactions Oxidation half

More information

Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book)

Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book) Chemistry 1A, Spring 2008 Midterm Exam III, Version A April 14, 2008 (90 min, closed book) Name: KEY SID: A Name: 1.) Write your name on every page of this exam. 2.) his exam has 15 multiple-choice questions

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

Reduction: 2 H + (aq) + 2 e H2(g)

Reduction: 2 H + (aq) + 2 e H2(g) Balancing Redox Reactions Homework Answers page 617 # 1-3, 5, 7-9 Mrs. Giovannone 1. (a) Solution: Step 1: Write the unbalanced equation for the reaction. Mg(s) + HCl(aq) H2(g) + MgCl2(aq) Step 2: Write

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS

HEAT, WORK, AND THE FIRST LAW OF THERMODYNAMICS HET, WORK, ND THE FIRST LW OF THERMODYNMICS 8 EXERCISES Section 8. The First Law of Thermodynamics 5. INTERPRET We identify the system as the water in the insulated container. The problem involves calculating

More information

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions By the end of today, you will have an answer to: How do we determine if a reaction is a redox reaction? Do Now: 1. Which compound has both ionic

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

CO(g) + O2(g) CO2(g) 2 mol 1 mol 2 mol 44.8 L 22.4 L 44.8 L 1.204(10) 24 molecules 6.02(10) 23 molecules 1.204(10) 24 molecules g 32.0 g 88.

CO(g) + O2(g) CO2(g) 2 mol 1 mol 2 mol 44.8 L 22.4 L 44.8 L 1.204(10) 24 molecules 6.02(10) 23 molecules 1.204(10) 24 molecules g 32.0 g 88. Chapter 12 STOICHIOMETRY CO(g) + O2(g) CO2(g) 2 mol 1 mol 2 mol 44.8 L 22.4 L 44.8 L 1.204(10) 24 molecules 6.02(10) 23 molecules 1.204(10) 24 molecules 56.0 g 32.0 g 88.0 g Moles, Liters, and Particles

More information

1) (14.8) How does the entropy of a system change for each of the following processes?

1) (14.8) How does the entropy of a system change for each of the following processes? Problems, Chapter 14 (with solutions) 1) (14.8) How does the entropy of a system change for each of the following processes? a) A solid melts Entropy increases (liquids are more disordered than solids)

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Chemical Thermodynamics

Chemical Thermodynamics Page III-16-1 / Chapter Sixteen Lecture Notes Chemical Thermodynamics Thermodynamics and Kinetics Chapter 16 Chemistry 223 Professor Michael Russell How to predict if a reaction can occur, given enough

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

Chemistry 400: General Chemistry Miller Exam II November 4, 2015 Approximately 150 points

Chemistry 400: General Chemistry Miller Exam II November 4, 2015 Approximately 150 points Chemistry 400: General Chemistry Name: Miller Exam II November 4, 2015 Approximately 150 points Please answer each of the following questions to the best of your ability. If you wish to receive partial

More information

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid Chemistry 163B Thermochemistry Chapter 4 Engel & Reid 3 heats of reactions (constant volume; bomb calorimeter) ΔU V = q V ΔU= U products -U reactants 4 heats of reactions (constant volume; fig 4.3 E&R)

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally.

Heat and Thermodynamics. February. 2, Solution of Recitation 2. Consider the first case when air is allowed to expand isothermally. Heat and Thermodynamics. February., 0 Solution of Recitation Answer : We have given that, Initial volume of air = = 0.4 m 3 Initial pressure of air = P = 04 kpa = 04 0 3 Pa Final pressure of air = P =

More information

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.

H = DATA THAT YOU MAY USE. Units Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1. DATA THAT YOU MAY USE Units Conventional S.I. Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = 1.013 10 5 Pa torr = 133.3 Pa Temperature C 0 C = 73.15 K PV L-atm = 1.013

More information

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm? Real Gases Thought Question: How does the volume of one mole of methane gas (CH4) at 300 Torr and 298 K compare to the volume of one mole of an ideal gas at 300 Torr and 298 K? a) the volume of methane

More information

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds)

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds) Enthalpy (H) Enthalpy (H) is the total energy amount (Epotential + Ekinetic) of a system during a chemical reaction under constant temperature and pressure conditions. Kinetic energy is the energy of motion

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

McCord CH301 Exam 5 Dec 5, 2017

McCord CH301 Exam 5 Dec 5, 2017 425 version last name first name signature McCord CH301 Exam 5 Dec 5, 2017 50070 BUR 106 Tuesday TTh 9:30 am - 11 pm Remember to refer to the Periodic Table handout that is separate from this exam copy.

More information

Ideal Gas Law Stoichiometry

Ideal Gas Law Stoichiometry Assume you had the following, simple, chemical reaction: A B Volume of A (in Liters) Mass of A (in grams) Atoms, Molecules, or Particles of A Divide by Molar Mass Divide by 22.4L/mol Moles of A Divide

More information

Chemistry 400: General Chemistry Miller Fall 2015 Final Exam Part Deux December 14, 2015 Approximately 150 points

Chemistry 400: General Chemistry Miller Fall 2015 Final Exam Part Deux December 14, 2015 Approximately 150 points Chemistry 400: General Chemistry Name: Miller Fall 2015 Final Exam Part Deux December 14, 2015 Approximately 150 points Please answer each of the following questions to the best of your ability. If you

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

THE ZEROTH AND FISRT LAW OF THERMODYNAMICS. Saeda Al-Mhyawi secend Tearm 1435H

THE ZEROTH AND FISRT LAW OF THERMODYNAMICS. Saeda Al-Mhyawi secend Tearm 1435H H ZROH AND FISR LAW OF HRMODYNAMIS Saeda Al-Mhyawi secend earm 435H HAR II H ZROH AND FISR LAW OF HRMODYNAMIS Lecture () Outline Introduction he Zeroth Law of hermodynamics he First Law of hermodynamics

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Chemistry 1105 R11 Fall 2018 Test 3

Chemistry 1105 R11 Fall 2018 Test 3 Chemistry 1105 R11 Fall 2018 Test 3 Friday, November 16, 2018 Name: Time: 1 hour 50 minutes Student #: This test consists of seven pages of questions, the periodic table, and a page containing useful constants

More information

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes

1.8 Thermodynamics. N Goalby chemrevise.org. Definitions of enthalpy changes 1.8 Thermodynamics Definitions of enthalpy changes Enthalpy change of formation The standard enthalpy change of formation of a compound is the energy transferred when 1 mole of the compound is formed from

More information

PUT A SQUARE BOX AROUND ALL ANSWERS

PUT A SQUARE BOX AROUND ALL ANSWERS UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING CHE 112F PHYSICAL CHEMISTRY MID-TERM EXAM, OCTOBER 16 2014 6:10 pm to 8:00 pm EXAMINER P.V. Yaneff 1. Answer all questions. The marks add

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems Chapter 9: The Kinetic Theory of Gases Questions and Example Problems N M V f N M Vo sam n pv nrt Nk T W nrt ln B A molar nmv RT k T rms B p v K k T λ rms avg B V M m πd N/V Q nc T Q nc T C C + R E nc

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

(for tutoring, homework help, or help with online classes) 1.

(for tutoring, homework help, or help with online classes) 1. www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. 2. Consider the following processes used to produce energy. Which does not predominantly use potential energy? 1. Fossil

More information

Thermodynamics: Entropy, Free Energy, and Equilibrium

Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16 Thermodynamics: Entropy, Free Energy, and Equilibrium spontaneous nonspontaneous In this chapter we will determine the direction of a chemical reaction and calculate equilibrium constant using

More information

Molar Specific Heat of Ideal Gases

Molar Specific Heat of Ideal Gases Molar Specific Heat of Ideal Gases Since Q depends on process, C dq/dt also depends on process. Define a) molar specific heat at constant volume: C V (1/n) dq/dt for constant V process. b) molar specific

More information

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings 12A Entropy Entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result in products that

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Chem 152 Final. You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck.

Chem 152 Final. You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck. Chem 152 Final Section: Name: You will have 1 hour and 50 minutes. Do not begin the exam until you are instructed to start. Best of luck. Question 1 /80 Question 2 /20 Question 3 /20 Question 4 /20 Question

More information

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013

Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Chemistry 5350 Advanced Physical Chemistry Fall Semester 2013 Name: Quiz 2: Chapters 3, 4, and 5 September 26, 2013 Constants and Conversion Factors Gas Constants: 8.314 J mol 1 K 1 8.314 Pa m 3 mol 1

More information

Pressure Volume Work 2

Pressure Volume Work 2 ressure olume Work Multi-stage Expansion 1 3 w= 4 5 ( ) + 3( 3 ) + 4( 4 3) + ( ) 1 5 5 4 Reversible Expansion Make steps so small that hen d 0, d 0 δ w= d ( ) = + d d int d int w= dw= d path 1 int For

More information

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics

ENTROPY HEAT HEAT FLOW. Enthalpy 3/24/16. Chemical Thermodynamics. Thermodynamics vs. Kinetics Chemical Thermodynamics The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process. HEAT The energy that flows into or out of system because of a difference in temperature

More information

Quiz B3: Le Chatelier s Principle Block:

Quiz B3: Le Chatelier s Principle Block: Quiz B3: Le Chatelier s Principle Name: Block: 1. Consider the following reaction: 2SO2(g) + O2(g) 2SO3(g) H = -197 kj/mol Which of the following will not shift the equilibrium to the right? A. Adding

More information

Page 1 of 11. Website: Mobile:

Page 1 of 11. Website:    Mobile: Class XI Chapter 6 Thermodynamics Chemistry Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path

More information

Thermodynamics of an Ideal Gas

Thermodynamics of an Ideal Gas Thermodynamics of an Ideal Gas A State Function Does not depend on how the system arrived at its present state; only on the characteristics of the present state. Volume, Pressure, Temperature, ΔE, ΔH State

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Name: INSTRUCTIONS (for the actual Midterm) 1. Enter your student number and name on

More information

Thermochemistry HW. PSI Chemistry

Thermochemistry HW. PSI Chemistry Thermochemistry HW PSI Chemistry Name Energy 1) Objects can possess energy as: (a) endothermic energy (b) potential energy A) a only B) b only C) c only D) a and c E) b and c (c) kinetic energy 2) The

More information

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK

CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK CHEM 1423 Chapter 17 Homework Questions TEXTBOOK HOMEWORK 17.29 At 425 o C, Kp = 4.18x10-9 for the reaction 2HBr(g) H 2 (g) + Br 2 (g) In one experiment, 0.20 atm of HBr(g), 0.010 atm of H 2 (g), and 0.010

More information

Experiment 2 Heat of Combustion: Magnesium

Experiment 2 Heat of Combustion: Magnesium Experiment 2 Heat of Combustion: Magnesium Purpose Hess s Law states that when are going from a particular set of reactants to a particular set of products, the heat of reaction is the same whether the

More information