Homework 12 (Key) First, separate into oxidation and reduction half reactions

Size: px
Start display at page:

Download "Homework 12 (Key) First, separate into oxidation and reduction half reactions"

Transcription

1 Homework 12 (Key) 1. Balance the following oxidation/reduction reactions under acidic conditions. a. MnO I - I 2 + Mn 2+ First, separate into oxidation and reduction half reactions Oxidation half reaction: I - I2 Reduction half reaction: MnO4 - Mn 2+ Next, balance all atoms except oxygen and hydrogen Oxidation half reaction: 2I - I2 Reduction half reaction: MnO4 - Mn 2+ (already done) Next, balance oxygen using water Oxidation half reaction: 2I - I2 (not necessary) Reduction half reaction: MnO4 - Mn H2O Next, balance hydrogen using H + Oxidation half reaction: 2I - I2 (not necessary) Reduction half reaction: 8H + + MnO4 - Mn H2O Next, balance charges using e - Oxidation half reaction: 2I - I2 + 2e - Reduction half reaction: 5e - + 8H + + MnO4 - Mn H2O Next, balance the number of electrons being transferred. Oxidation half reaction: 10I - 5I2 + 10e - Reduction half reaction: 10e H + + 2MnO4-2Mn H2O Combine both half reactions 10e H + + 2MnO I - 2Mn H2O + 5I2 + 10e - Cancel out anything that appears on both sides 16H + + 2MnO I - 2Mn H2O + 5I2

2 b. PbO 2 + Cl - Pb 2+ + Cl 2 First, separate into oxidation and reduction half reactions Oxidation half reaction: Cl - Cl2 Reduction half reaction: PbO2 Pb 2+ Next, balance all atoms except oxygen and hydrogen Oxidation half reaction: 2Cl - Cl2 Reduction half reaction: PbO2 Pb 2+ (already done) Next, balance oxygen using water Oxidation half reaction: 2Cl - Cl2 (not necessary) Reduction half reaction: PbO2 Pb H2O Next, balance hydrogen using H + Oxidation half reaction: 2Cl - Cl2 (not necessary) Reduction half reaction: 4H + + PbO2 Pb H2O Next, balance charges using e - Oxidation half reaction: 2Cl - Cl2 + 2e - Reduction half reaction: 2e - + 4H + + PbO2 Pb H2O Next, balance the number of electrons being transferred. Already done Combine both half reactions 2e - + 4H + + PbO2 + 2Cl - Pb H2O + Cl2 + 2e - Cancel out anything that appears on both sides 4H + + PbO2 + 2Cl - Pb H2O + Cl2

3 c. Cr 2O NO 2 - Cr 3+ + NO 3 - First, separate into oxidation and reduction half reactions Oxidation half reaction: NO2 - NO3 - Reduction half reaction: Cr2O7 2- Cr 3+ Next, balance all atoms except oxygen and hydrogen Oxidation half reaction: NO2 - NO3 - (already done) Reduction half reaction: Cr2O7 2-2Cr 3+ Next, balance oxygen using water Oxidation half reaction: H2O + NO2 - NO3 - Reduction half reaction: Cr2O7 2-2Cr H2O Next, balance hydrogen using H + Oxidation half reaction: H2O + NO2 - NO H + Reduction half reaction: 14H + + Cr2O7 2-2Cr H2O Next, balance charges using e - Oxidation half reaction: H2O + NO2 - NO H + + 2e - Reduction half reaction: 6e H + + Cr2O7 2-2Cr H2O Next, balance the number of electrons being transferred. Oxidation half reaction: 3H2O + 3NO2-3NO H + + 6e - Reduction half reaction: 6e H + + Cr2O7 2-2Cr H2O Combine both half reactions 6e H + + Cr2O H2O + 3NO2-2Cr H2O + 3NO H + + 6e - Cancel out anything that appears on both sides 8H + + Cr2O NO2-2Cr H2O + 3NO3 -

4 d. Cr 2O Fe 2+ Cr 3+ + Fe 3+ First, separate into oxidation and reduction half reactions Oxidation half reaction: Fe 2+ Fe 3+ Reduction half reaction: Cr2O7 2- Cr 3+ Next, balance all atoms except oxygen and hydrogen Oxidation half reaction: Fe 2+ Fe 3+ (already done) Reduction half reaction: Cr2O7 2-2Cr 3+ Next, balance oxygen using water Oxidation half reaction: Fe 2+ Fe 3+ (not necessary) Reduction half reaction: Cr2O7 2-2Cr H2O Next, balance hydrogen using H + Oxidation half reaction: Fe 2+ Fe 3+ (not necessary) Reduction half reaction: 14H + + Cr2O7 2-2Cr H2O Next, balance charges using e - Oxidation half reaction: Fe 2+ Fe 3+ + e - Reduction half reaction: 6e H + + Cr2O7 2-2Cr H2O Next, balance the number of electrons being transferred. Oxidation half reaction: 6Fe 2+ 6Fe e - Reduction half reaction: 6e H + + Cr2O7 2-2Cr H2O Combine both half reactions 6e H + + Cr2O Fe 2+ 2Cr H2O + 6Fe e - Cancel out anything that appears on both sides 14H + + Cr2O Fe 2+ 2Cr H2O + 6Fe 3+

5 e. Cu + NO 3 - Cu 2+ + NO 2 First, separate into oxidation and reduction half reactions Oxidation half reaction: Cu Cu 2+ Reduction half reaction: NO3 - NO2 Next, balance all atoms except oxygen and hydrogen Oxidation half reaction: Cu Cu 2+ (already done) Reduction half reaction: NO3 - NO2 (already done) Next, balance oxygen using water Oxidation half reaction: Cu Cu 2+ (not necessary) Reduction half reaction: NO3 - NO2 + H2O Next, balance hydrogen using H + Oxidation half reaction: Cu Cu 2+ (not necessary) Reduction half reaction: 2H + + NO3 - NO2 + H2O Next, balance charges using e - Oxidation half reaction: Cu Cu e - Reduction half reaction: e - + 2H + + NO3 - NO2 + H2O Next, balance the number of electrons being transferred. Oxidation half reaction: Cu Cu e - Reduction half reaction: 2e - + 4H + + 2NO3-2NO2 + 2H2O Combine both half reactions 2e - + 4H + + 2NO3 - + Cu 2NO2 + 2H2O + Cu e - Cancel out anything that appears on both sides 4H + + 2NO3 - + Cu 2NO2 + 2H2O + Cu 2+

6 2. Answer the following questions regarding the reaction a from the previous problem. a. What is being oxidized? I - c. What is the oxidizing agent? MnO4 - b. What is being reduced? Mn in MO4 - d. What is the reducing agent? I - 3. A cylinder with a movable piston contains moles of an ideal gas at C and mmhg. a. What is the volume of the container? PV = nrt V = nrt P = " ( moles) L atm % $ '(400.15) # mol K & " 1atm % $ mmhg x ' # 760 mmhg & =1.73 L b. If the temperature drops to 27.0 C and the pressure is held constant what will be the new volume? V = nrt P = " ( moles) L atm % $ '(300.15K) # mol K & " 1atm % $ mmhg x ' # 760 mmhg & =1.30 L g of XeF 4 gas is placed into an evacuated liter container at C. What is the pressure in the container? P = nrt V =! mole XeF $ 2.500g XeF 4 x 4! # & L atm $ # &(353.15K) " g XeF 4 %" mol K % = atm 3.000L ( )

7 grams of an ideal gas is placed into a 1.00 L container at 300.0K and the resulting pressure is 1.50 atm. What is the molar mass of this gas? First, determine the moles of gas n = PV RT = (1.50 atm)(1.00 L) " L atm % $ '(300.0 K) # mol K & = moles Second, determine molar mass MM = mass mole = 1.83g moles = 30.0 g mole 6. Circle the gas from each pair with the highest average velocity. a. He at 400K or CO 2 at 400K b. He at 400K or He at 500K c. 1 mole of He with (P = 1 atm, V = 1 L) or 1 mole of He with (P = 1 atm, V = 0.5 L) d. 1 mole of He with (P = 1 atm, V = 1 L) or 0.5 mole of He with (P = 1 atm, V = 1 L) 7. Which of the following gases would have an average velocity of 532 m/s at 500K? a. He b. H 2O c. CO 2 d. N 2 First, determine the molar mass v = 3RT MM v 2 = 3RT MM MM = 3RT v 2 = # J & 3% ( 500K $ mol K ' # 532 m & = kg / mol = 44.1g / mol 2 % ( $ s ' This matches the molar mass of CO2 8. Calculate the kinetic energy of mole of hydrogen gas at 450.0K. KE mole = 3 " J % RT = 1.5 $ '(450.0K) = 5612J 2 # mol K &

8 9. Calculate the average kinetic energy per molecule of hydrogen gas at 450.0K First, determine the KEmole using temperature KE mole = 3 " J % RT = 1.5 $ '(450.0K) = J 2 # mol K & Second, determine the average KE of a butane molecule Average KE = KE mole N A = J 6.022x10 23 = 9.319x10-21 J 10. Calculate the average velocity of an individual hydrogen molecule at K v = 3RT MM v = " J % 3$ '(450.0K) # mol K & 2.016x10 3 kg v = m s 11. Calculate the molecular mass (in kg) of the average molecule of methane (CH 4) g kg x mole CH g x mole CH x CH 4 molecules = x kg/molecule 12. Determine the kinetic energy of the average methane molecule traveling with a velocity of m/s. KE= 1 2 mv 2 = 1-26 (2.664 x 10 kg) 2! # m " s 2 $ & = x J % 13. Calculate the kinetic energy of moles of methane described in the previous problem x J molecule x 10 molecules x mole = 1545 J/mol

9 14. A gas mixture containing hydrogen and oxygen was placed into a ml container. The average velocity of an oxygen molecule in this mixture is 452 m/s. a. What is the temperature inside the container? v= 3RT MM v 2 = 3RT MM T= v 2 (MM) 3R ( ) 2 (32.00x10-3 kg/mol) = 452m/s J mol K b. What is the average velocity of a hydrogen molecule? = 262K v = 3RT MM v = J K mol K 2.016x10-3 kg/mol ( ) = 1.80x10 3 m/s c. How many moles of hydrogen gas are in the container if the ratio of hydrogen to oxygen is 2:1 with a pressure of 1.00 atm? n T = P T V RT = ( 1.00atm) ( 0.500L) L atm = moles (262K) mol K n H2 = 2 3 n T = 2 3 ( moles)= moles

10 grams of zinc metal are placed into a flask containing ml of 3.00 M hydrochloric acid. What volume of hydrogen gas can be generated at STP if the reaction is allowed to go to completion? The reaction between magnesium metal and hydrochloric acid is as follows Zn(s) + 2HCl(aq) H2(g) + ZnCl2(aq) 8.500g Zn x mole Zn 65.39g Zn x mole H 2 mole Zn = mole H mLx V= nrt P = 3.00 mole HCl 1000mL x mole H 2 2 mole HCl = mole H 2 ( mole) L atm (273.15K) mol K = 2.914L 1.000atm grams of zinc metal are placed into a flask containing ml of 3.00 M hydrochloric acid. What volume of hydrogen gas can be generated at STP if the reaction is allowed to go to completion? 10.00g Zn x mole Zn 65.39g Zn x mole H 2 mole Zn = mole H mLx V= nrt P = 3.00 mole HCl 1000mL x mole H 2 2 mole HCl = mole H 2 (0.150 mole) L atm (273.15K) mol K = 3.36L 1.000atm

11 17. A 3.05 g sample of ammonium nitrate is introduced into an evacuated 2.18 L flask and then heated to C. What is the total pressure in the flask at C after the ammonium nitrate has completely decomposed according to the reaction below? NH 4NO 3(s) N 2O(g) + 2 H 2O(g) The moles of gas will be three times the initial moles of NH4NO3! mole NH n NH4 NO 3 = 3.05 g NH 4 NO 4 NO $ 3 3 # & = moles NH 4 NO 3 " g NH 4 NO 3 % P = nrt V =! ( moles) L atm $ # &(523.15K) " mol K % 2.18 L ( ) = 2.24 atm 18. A container with a fixed volume contains a gas sample with a pressure and temperature of atm and 25.5 C. The temperature is increased to 51.0 C. Calculate the final pressure inside the container. PV = nrt rearrange equation so properties which change are on one side of the equation. P T = nr V P 1 T 1 = P 2 T 2 P 2 = P 1 T 2 T 1 = (1.000atm)(324.15K) K = atm

12 19. A cylinder with a movable (weightless, frictionless) piston contains a sample of oxygen gas. The initial volume and temperature of the gas are L and 20.0 C respectively. The gas is heated against a fixed pressure until the new volume is L. Calculate the final temperature of the gas. PV = nrt rearrange equation so properties which change are on one side of the equation. P nr = T V T 1 V 1 = T 2 V 2 T 2 = T 1 V 2 V 1 = ( K)(2.500 L) L = K

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

Chapter 11. Molecular Composition of Gases

Chapter 11. Molecular Composition of Gases Chapter 11 Molecular Composition of Gases PART 1 Volume-Mass Relationships of Gases Avogadro s Law Equal volumes of gases at the same temperature and pressure contain equal numbers of molecules. Recall

More information

Exam 1, Ch October 12, Points

Exam 1, Ch October 12, Points Chem 130 Name Exam 1, Ch 46.7 October 12, 2018 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units

More information

5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37 o C? a) 26 atm b) 4.1 atm c) 19,600 atm d) 84 atm

5. What pressure (in atm) would be exerted by 76 g of fluorine gas in a 1.50 liter vessel at -37 o C? a) 26 atm b) 4.1 atm c) 19,600 atm d) 84 atm Test bank chapter (5) Choose the most correct answer 1. A sample of oxygen occupies 47.2 liters under a pressure of 1240 torr at 25 o C. What volume would it occupy at 25 o C if the pressure were decreased

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

AP Chemistry Semester 1 Practice Problems

AP Chemistry Semester 1 Practice Problems AP Chemistry Semester 1 Practice Problems 1. Adipic Acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula? a) C 3 H 5 O 2 b) C 3 H 3 O 4 c) C 2 HO 3 d) C 2 H 5 O 4 e) C 3

More information

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems For Review 7. a. At constant temperature, the average kinetic energy of the He gas sample will equal the average kinetic energy of the Cl 2 gas sample. In order for the average kinetic energies to be the

More information

Chapter 5. The Gas Laws

Chapter 5. The Gas Laws Chapter 5 The Gas Laws 1 Pressure Force per unit area. Gas molecules fill container. Molecules move around and hit sides. Collisions are the force. Container has the area. Measured with a barometer. 2

More information

Example Exercise 10.1 Interpreting Chemical Equation Calculations

Example Exercise 10.1 Interpreting Chemical Equation Calculations Example Exercise 10.1 Interpreting Chemical Equation Calculations Given the chemical equation for the combustion of methane, CH 4, balance the equation and interpret the coefficients in terms of (a) moles

More information

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number

Redox Reactions. key terms: oxidizing agent reducing agent oxidation number Redox Reactions key terms: oxidizing agent reducing agent oxidation number Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign oxidation numbers. Electrochemistry

More information

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8. Chapter 8 Gases 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.8 Ideal Gas Law * You do not need to know Boyle s (8.3), Charles (8.4), Gay-Lussac s (8.5), Avogadro s (8.7) or the Combined gas (8.6) laws.

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

Exam 2, Ch 4-6 October 12, Points

Exam 2, Ch 4-6 October 12, Points Chem 130 Name Exam 2, Ch 4-6 October 12, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units

More information

The Gaseous State of Matter

The Gaseous State of Matter The Gaseous State of Matter Chapter 12 Hein and Arena Version 1.1 Dr. Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Company The Kinetic- Molecular Theory 2 The Kinetic-Molecular

More information

CHAPTER 14: The Behavior of Gases

CHAPTER 14: The Behavior of Gases Name: CHAPTER 14: The Behavior of Gases Period: RELATIONSHIPS BETWEEN PRESSURE, VOLUME & TEMPERATURE OF A GAS Boyle s Law-Pressure and Volume Volume (ml) Pressure ( ) 60 50 40 30 20 10 Practice problem:

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Homework 02 - Ideal Gases

Homework 02 - Ideal Gases HW02 - Ideal Gases This is a preview of the draft version of the quiz Started: Aug 8 at 4:48pm Quiz Instructions Homework 02 - Ideal Gases Question 1 A gas is enclosed in a 10.0 L tank at 1200 mmhg pressure.

More information

REVIEW QUESTIONS Chapter Determine the pressure of the gas (in mmhg) in the diagram below, given atmospheric pressure= atm.

REVIEW QUESTIONS Chapter Determine the pressure of the gas (in mmhg) in the diagram below, given atmospheric pressure= atm. Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 5 1. Determine the pressure of the gas (in mmhg) in the diagram below, given atmospheric pressure= 0.975 atm. atm = 0.975 atm h = 5 cmhg gas atm 760 mmhg

More information

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure.

Calculate the mass of L of oxygen gas at 25.0 C and 1.18 atm pressure. 142 Calculate the mass of 22650 L of oxygen gas at 25.0 C and 1.18 atm pressure. Volume of a 10'x10'x8' room 1) First, find the MOLES of gas using the ideal gas equation and the information given. 2) Convert

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

Substances that are Gases under Normal Conditions

Substances that are Gases under Normal Conditions Chapter 5: Gases 5.1 Early Experiments 5.2 The gas laws of Boyle, Charles, and Avogadro 5.3 The Ideal Gas Law 5.4 Gas Stiochiometry 5.5 Dalton s Law of Partial Pressures 5.6 The Kinetic molecular Theory

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta Chapter 5 Gases - 4 Gas Stoichiometry Dr. Sapna Gupta Stoichiometry in Gases Amounts of gaseous reactants and products can be calculated by utilizing The ideal gas law to relate moles to T, P and V. Moles

More information

[Chem²ath Contest Chemistry Questions] June 20 (Sat), 2015

[Chem²ath Contest Chemistry Questions] June 20 (Sat), 2015 [Chem²ath Contest Chemistry Questions] June 20 (Sat), 2015 1. The fuel in the buster rockets of the Space Shuttle is constituted of a mixture of ammonium perchlorate, NH 4 ClO 4, and aluminum powder. One

More information

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9 Chem 130 Name Exam October 11, 017 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and significant

More information

M = Molarity = mol solute L solution. PV = nrt % yield = actual yield x 100 theoretical yield. PM=dRT where d=density, M=molar mass

M = Molarity = mol solute L solution. PV = nrt % yield = actual yield x 100 theoretical yield. PM=dRT where d=density, M=molar mass Solubility Rules: 1. Most nitrate salts are soluble. 2. Most salts of alkali metals and ammonium cations are soluble. 3. Most chloride, bromide and iodide salts are soluble. Exceptions: salts containing

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

1.23 Gas Calculations

1.23 Gas Calculations 1.23 Gas Calculations Gas calculations at A-level are done in two different ways although both link the volumes of a gas to the amount in moles of the gas. The same amount in moles of any gas will have

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c Chem 130 Name Exam 2, Ch 4-6 July 7, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

FORM A. Answer d. b. ideal gas versus non-ideal (or real) gas: (5)

FORM A. Answer d. b. ideal gas versus non-ideal (or real) gas: (5) Chem 130 Name Exam 1, Ch 5-6 October 1, 011 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct units and

More information

Chem 1A Dr. White Fall Handout 4

Chem 1A Dr. White Fall Handout 4 Chem 1A Dr. White Fall 2014 1 Handout 4 4.4 Types of Chemical Reactions (Overview) A. Non-Redox Rxns B. Oxidation-Reduction (Redox) reactions 4.6. Describing Chemical Reactions in Solution A. Molecular

More information

CHAPTER 1 QUANTITATIVE CHEMISTRY

CHAPTER 1 QUANTITATIVE CHEMISTRY Page 4 Ex 4 (a) element; (b) mixture; (c) compound; (d) element; (e) compound 5. (a) mixture; (b) compound; (c) mixture; (d) element; (e) compound. Page 5 Ex 1.1 3. C 4. D 5. C 6. D 7. a) 0.20 b) 1.2 10

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

(1) M (2) M (3) M (4) M

(1) M (2) M (3) M (4) M Form Code A CHM 2045, Fall 2018 NAME Final Exam Review (Sumner, Gower, Korolev, Angerhofer, Polanco) Instructions: On your Scantron form, enter and bubble your name, UFID, and Form Code (see above). Turn

More information

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas.

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas. 1 1. Interpreting Chemical Equations Stoichiometry Calculations using balanced equations are called stoichiometric calculations. The starting point for any problem involving quantities of chemicals in

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

g of CO 2 gas is at a temperature of 45 o C and a pressure of 125 kpa. What is the volume of the container? 11 L

g of CO 2 gas is at a temperature of 45 o C and a pressure of 125 kpa. What is the volume of the container? 11 L Name period AP Chemistry Unit 5 answers 1. A fixed quantity of gas at 23⁰C exhibits a pressure of 748 torr and occupies a volume of 10.3 L. Calculate the volume the gas will occupy if the temperature is

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Test Bank for Chemistry 9th Edition by Zumdahl

Test Bank for Chemistry 9th Edition by Zumdahl Test Bank for Chemistry 9th Edition by Zumdahl 1. Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE 1. Nitroglycerine, C 3 H 5 N 3 O 9, is an explosive which, on detonation, decomposes rapidly to form a large number of gaseous molecules. The

More information

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A.

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A. CHEMISTRY 202 Hour Exam I September 22, 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 23 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

Gravimetric Analysis (Analysis by Mass)

Gravimetric Analysis (Analysis by Mass) Week 2 Measuring water content Gravimetric Analysis (Analysis by Mass Water is a component in many consumer products It may occur naturally or may be added in manufacturing Water content can reveal the

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases 1 Boyle s Law P α 1/V P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant amount

More information

the drink won t rise very high in the straw vacuum straw 1 atm drink

the drink won t rise very high in the straw vacuum straw 1 atm drink vacuum the drink won t rise very high in the straw straw 1 atm drink vacuum the drink won t rise very high in the straw straw 1 atm drink vacuum the drink won t rise very high in the straw straw 0.007

More information

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94 CHAPTER 5GASES 1,,8,9,11,1,14,17,19,0,,4,6,8,0,,8,40,4,45,46,51,5,55,57,6,6,80,8,88,94 5.1 a) The volume of the liquid remains constant, but the volume of the gas increases to the volume of the larger

More information

2012 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2012 AP CHEMISTRY FREE-RESPONSE QUESTIONS 01 AP CHEMISTRY FREE-RESPONSE QUESTIONS. A sample of a pure, gaseous hydrocarbon is introduced into a previously evacuated rigid 1.00 L vessel. The pressure of the gas is 0.00 atm at a temperature of 17C.

More information

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 )

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 ) Homework Stoichiometry 1.) An oxide of iron has the formula Fe 3 O 4. What mass percent of iron does it contain? (72.360%) 2.) Hydrocortisone valerate is an ingredient in hydrocortisone cream, prescribed

More information

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases 5-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. An Overview of the Physical States of Matter The Distinction of Gases from Liquids and Solids 1. Gas

More information

CHM1045 Exam 2 Chapters 3, 4, & 10

CHM1045 Exam 2 Chapters 3, 4, & 10 1. Upon analysis, a compound is found to contain 22.8% sodium, 21.8% boron, and 55.4% oxygen. What is its empirical formula? a. NaBO b. NaB 2 O 5 c. Na 2 B 4 O 7 d. Na 3 BO 4 e. None of the above. 2. The

More information

(E) half as fast as methane.

(E) half as fast as methane. Name AP Chem / / AP Chem Practice Exam #2 Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the BLUE SIDE of your scantron for each of the following.

More information

Chapter 5. Question. Question. Answer. Answer. Question (continued) The Gaseous State

Chapter 5. Question. Question. Answer. Answer. Question (continued) The Gaseous State Chapter 5 CRS s The Gaseous State Equal volumes of propane, C 3 H 8, and carbon monoxide at the same temperature and pressure have the same a. density. b.. c. number of atoms. 1) a only 2) b only 3) c

More information

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D %

1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A % C % B % D % 1. What is the mass percent of sulfur in Al 2 (SO 4 ) 3? A. 9.372 % C. 28.12 % B. 21.38 % D. 42.73 % 2. How many grams of phosphorus are in 35.70 g of P 2 O 5? A. 6.359 g C. 15.58 g B. 23.37 g D. 31.16

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A.

CHEMISTRY 202 Hour Exam I. Dr. D. DeCoste T.A. CHEMISTRY 0 Hour Exam I September, 016 Dr. D. DeCoste Name Signature T.A. This exam contains 3 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours to complete

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

CHEMISTRY 102A Spring 2012 Hour Exam II. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102A Spring 2012 Hour Exam II. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: . My answers for this Chemistry 0 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E. A sample of LSD (D-lysergic acid diethylamide, C 4 H 30

More information

Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween!

Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween! CHEMISTRY 101 Hour Exam II October 31, 2006 Adams/Le Name KEY Signature T.A./Section Research tells us fourteen out of any ten individuals like chocolate. Happy Halloween! This exam contains 17 questions

More information

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions

Date: Hybrid Chemistry Regents Prep Ms. Hart/Mr. Kuhnau. UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions UNIT 9: Solutions and Gases Lesson 9.2: Redox Reactions By the end of today, you will have an answer to: How do we determine if a reaction is a redox reaction? Do Now: 1. Which compound has both ionic

More information

Chemistry 1411 Sample EXAM # 2 Chapters 4, & 5

Chemistry 1411 Sample EXAM # 2 Chapters 4, & 5 Chemistry 1411 Sample EXAM # 2 Chapters 4, & 5 Activity Series of Metals in Aqueous Solution 1 CHEM 1411 Exam # 2 (Chapters 4, & 5) Part I- Please write your correct answer next to each question number.

More information

Ideal Gas & Gas Stoichiometry

Ideal Gas & Gas Stoichiometry Ideal Gas & Gas Stoichiometry Avogadro s Law V a number of moles (n) V = constant x n Constant temperature Constant pressure V 1 /n 1 = V 2 /n 2 Ammonia burns in oxygen to form nitric oxide (NO) and water

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

Dr. Arrington Exam 2a (100 points), Chang Ch. 4-5 Friday, October 17, 2008

Dr. Arrington Exam 2a (100 points), Chang Ch. 4-5 Friday, October 17, 2008 Chemistry 123 Honor Pledge: Dr. Arrington Exam 2a (100 points), Chang Ch. 4-5 Friday, October 17, 2008 Show all work on problems in Section II to receive full or partial credit. Give all answers with correct

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms SECTION 12.2 The Ideal Gas Law You have related the combined gas law to Avogadro s volume-mole gas relationship using two sets of conditions. This enabled you to make calculations of pressure, temperature,

More information

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12. CHAPTER 12 Stoichiometry is the calculation of quantities using different substances in chemical equations. Based on the Law of Conservation of Mass. Mg(s) + How many moles of H Chemists use balanced to

More information

Study Guide: Stoichiometry

Study Guide: Stoichiometry Name: Study Guide: Stoichiometry Period: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE

More information

Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.

Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. Chemistry 121 Chapters 7& 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A sample of carbon dioxide occupies 22.4 L at STP. Which of the

More information

1. Which type of bond involves the transfer of electrons from one atom to another? A. Hydrogen bond C. Metallic bond B. Ionic bond D.

1. Which type of bond involves the transfer of electrons from one atom to another? A. Hydrogen bond C. Metallic bond B. Ionic bond D. 1. Which type of bond involves the transfer of electrons from one atom to another? A. Hydrogen bond C. Metallic bond B. Ionic bond D. Covalent bond 2. Ethene (C 2 H 4 ) and cyclohexane (C 6 H 12 ) have

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Chemistry 11. Unit 11 Ideal Gas Law (Special Topic)

Chemistry 11. Unit 11 Ideal Gas Law (Special Topic) Chemistry 11 Unit 11 Ideal Gas Law (Special Topic) 2 1. States of substances It has been studied in Unit 3 that there exist 3 states of matter in nature: gas, liquid and solid. (Technically there is the

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

"No matter what costume you wear, when you start eating Halloween candy, you will be a goblin. - Unknown

No matter what costume you wear, when you start eating Halloween candy, you will be a goblin. - Unknown CHEMISTRY 101 Hour Exam II October 31, 2017 Andino/McCarren Name Signature Section "No matter what costume you wear, when you start eating Halloween candy, you will be a goblin. - Unknown This exam contains

More information

MOLE CONCEPT AND STOICHIOMETRY

MOLE CONCEPT AND STOICHIOMETRY MOLE CONCEPT AND STOICHIOMETRY Dear Reader You have studied about the term 'mole' in your previous class. It is defined as the amount of a substance containing as many constituting particles (atoms, molecules

More information

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3 Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O B 1.5 moles of ammonia, NH 3 C 1 mole of hydrogen gas, H 2 D 0.5 moles of methane, CH 4 Q2.

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

CHM 134 General Chemistry I Exam 2 Review, Dr. Steel. 1. Give the oxidation number of sulfur in each of these compounds.

CHM 134 General Chemistry I Exam 2 Review, Dr. Steel. 1. Give the oxidation number of sulfur in each of these compounds. CHM 1 General Chemistry I Exam Review, Dr. Steel Name 1. Give the oxidation number of sulfur in each of these compounds. H S SO H SO SO -. In the lab you reacted magnesium metal and oxygen gas to produce

More information

CHEMISTRY Practice Exam #3 - SPRING 2013

CHEMISTRY Practice Exam #3 - SPRING 2013 CHEMISTRY 1710 - Practice Exam #3 - SPRING 2013 Section 1 - This section of the exam is multiple choice. Choose the BEST answer from the choices which are given and write the letter for your choice in

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. 1 Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate. You should be able to: Vocabulary of water solubility Differentiate between

More information

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have?

CST Review Part 2. Liquid. Gas. 2. How many protons and electrons do the following atoms have? CST Review Part 2 1. In the phase diagram, correctly label the x-axis and the triple point write the names of all six phases transitions in the arrows provided. Liquid Pressure (ATM) Solid Gas 2. How many

More information

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is: Standard T & P (STP) The standard temperature and pressure for gases is: At STP, 1 mol of any ideal gas occupies 22.4 L T = 273 K (0 o C) P = 1 atm = 101.325 kpa = 1.01325 bar 22.4 L Using STP in problems

More information

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC C PROBLEMS 1) This problem is a straightforward application of the combined gas law. In this case, the temperature remains the same, so we can eliminate it from the

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry

Stoichiometry. The quantitative study of reactants and products in a chemical reaction. Burlingame High School Chemistry Stoichiometry The quantitative study of reactants and products in a chemical reaction 1 Stoichiometry Whether the units given for reactants or products are moles, grams, liters (for gases), or some other

More information

Melting. Freezing. Triple Point. Sublimation. Deposition. Temperature. 2. How many protons and electrons do the following atoms have?

Melting. Freezing. Triple Point. Sublimation. Deposition. Temperature. 2. How many protons and electrons do the following atoms have? CST Review Part 2 1. In the phase diagram, correctly label the x-axis and the triple point write the names of all six phases transitions in the arrows provided. Melting Liquid Freezing Pressure (ATM) Solid

More information

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm?

1. What is the value of the quantity PV for one mole of an ideal gas at 25.0 C and one atm? Real Gases Thought Question: How does the volume of one mole of methane gas (CH4) at 300 Torr and 298 K compare to the volume of one mole of an ideal gas at 300 Torr and 298 K? a) the volume of methane

More information

Stoichiometry Practice Problems

Stoichiometry Practice Problems Name Period CRHS Academic Chemistry Stoichiometry Practice Problems Due Date Assignment On-Time (100) Late (70) 9.1 9.2 9.3 9.4 9.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on CRHS

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT 30A5: MOLAR VOLUME OF A GAS Upon completion of this lab, the student will be able to: 1) Demonstrate a single replacement reaction. 2) Calculate the molar volume of a gas

More information

Videos 1. Crash course Partial pressures: YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion:

Videos 1. Crash course Partial pressures:   YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: Videos 1. Crash course Partial pressures: https://youtu.be/jbqtqcunyza?list=pl8dpuualjxtphzz YuWy6fYEaX9mQQ8oGr 2. Crash couse Effusion/Diffusion: https://youtu.be/tlrzafu_9kg?list=pl8dpuualjxtph zzyuwy6fyeax9mqq8ogr

More information

CHM2045 Exam 3 Review Fall 2015

CHM2045 Exam 3 Review Fall 2015 The steps to solving any chemistry problem 1) Read Question 2) Re-read Question 3) Write down everything you are given 4) Write down what you are trying to find CHM2045 Exam 3 Review 1) Write out the following

More information

Name AP Chemistry September 30, 2013

Name AP Chemistry September 30, 2013 Name AP Chemistry September 30, 2013 AP Chemistry Exam Part I: 40 Questions, 40 minutes, Multiple Choice, No Calculator Allowed Bubble the correct answer on the blue side of your scantron for each of the

More information

1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Solution : Al4C3(s) + 12 H2O (l)=> 4Al(OH)3 (s) + 3CH4 (g)

1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Solution : Al4C3(s) + 12 H2O (l)=> 4Al(OH)3 (s) + 3CH4 (g) 1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Balance the reaction. Describe the chemical process represented by this reaction. Write the name of each single reactant and product. First,

More information