Motion in an Undulator

Size: px
Start display at page:

Download "Motion in an Undulator"

Transcription

1 WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dnamics Grop :: Pal Scherrer Institte Motion in an Undlator CERN Accelerator School FELs and ERLs

2 On-ais Field of Planar Undlator For planar ndlator with onl one transverse magnetic field component, the field is given on-ais: B Besin( k) with k Using Lorent Force eqation with the assmptions: Relativistic electron eam moves primaril into -direction The energ of the electrons is preserved in the magnetic field. d F ev B mc ecb sin( k) dt The eqation cannot e solved directl ecase the time-dependence of the longitdinal position (t) and velocit (t) is nknown. Page

3 Dominant Motion On-Ais I We assme that the deflection strength per modle is small so that the electron still moves predominantl in the -direction. The transverse motion and the reslting modlation of the longitdinal motion can e regarded as small. ( t) c t e f ( t), ( t) ( e / c) f ( t) The parameter and fnction e and f(t) are ndefined t we assme that the are sfficientl small to treat them as a pertration. Later we will jstif this assmption when the eplicit form of e is known. Becase the motion in a magnetic field does not change the energ the longitdinal and transverse velocit are linked 1 1 Page 3

4 Dominant Motion On-Ais II Integration of leading term in Lorent Force eqation: d d eb mc ecb k k c t dt dt m sin( ) sin( ) eb mck cos( k) The phsical constants and the ndlator parameters are comined into the so-called ndlator parameter eb.93 T cm cos( ) B k mck Two comments: The vale of is tpicall arond nit For a relativistic eam the maimm angle in the orit is ' / / Page 4

5 Dominant Motion On-Ais III Becase total energ is preserved, longitdinal and transverse velocities are linked energ: Using the epression of and the identit cos() =[1+cos()]/, we are getting: cos( k ) 1 / 1 cos( k) 4 The mean longitdinal velocit is given: 1 1 / The integration pertration is well jstified ecase the oscillating term in longitdinal velocit remains small over the entire ndlator length. Page 5

6 Trajector in Planar Undlator Integration ( pertration again) of the velocities in and ield the trajector: ( t) sin( ck( t)) k Co-moving Frame ( t) c t sin( c k t) 8 k Longitdinal wiggle motion has half period length. Cases a figre 8 motion in the co-moving frame. The longitdinal position is effectivel smeared ot Copling to harmonics Redced copling to fndamental trajector Effective position Page 6

7 Harmonics in Planar Undlator Inclding longitdinal oscillation term in transverse oscillation: cos( k) ee e ik i sin( k ) c t 8 ik m e e ( 1) J m( ) e m m ( 1) Jm( ) cos([m 1] k ) m m ( 1) [ Jm( ) Jm 1( )] cos([m 1] k ) m imk Identities of Bessel Fnction iasin im m( ) m e J a e m J ( a) ( 1) J ( a) m m Motion has: Redced amplitde of fndamental oscillation J ( m ) 1for m Occrrence of odd harmonics. On the scale of the ndlator period the harmonics are hardl noticeale (Thogh it ecomes important with respect to a given radiation wavelength) Page 7

8 On-ais Motion in Helical Undlator Helical ndlators has a transverse magnetic field, which rotates along the ndlator ais: B B e sin( k) e cos( k) From the Lorent force we otain: d ecb d ecb sin( k ) cos( k ) dt mc dt mc Integration similar to planar ndlator case: cos( k ) sin( k ) Longitdinal velocit Note that there is no longitdinal oscillation no harmonics are ecited Page 8

9 Comparison Planar and Helical Undlator Eclding higher harmonics in case of planar ndlator Using average position (for convenience) Planar Helical [ J( ) J1( )] cos( k) cos( k ) sin( k ) 1 / 1 cos( k) / 1 1 Page 9

10 Off-Ais Field Components I The simple field dependence B B cannot e sed for the entire esin( k) transverse plane ecase it violates Mawell condition of free space: B We assme a vector potential to derive B: A B Condition I: A Condition II: A Dominant vector component is in : B A cosh( k)cosh( k )cos( k) k Condition I: A ( k k k ) A k k k Meaning of k and k will e eplained later Condition II: B k A A A sinh( k)sinh( k )cos( k) k k Page 1

11 Off-Ais Field Components II With the valid vector potential the field is: It provide focsing of the electron if not injected on-ais: k sinh( k)sinh( k )sin( k) k B B cosh( k)cosh( k )sin( k) k cosh( k)sinh( k )cos( k) k Horiontal Focsing: Effective Field B 1 for [,+] Effective Field B for [-,] Off-Ais: B 1 > B Net kick inwards B B 1 Vertical Focsing: 1 st half-period: F = -ev B nd half-period: F = -e(-v )(-B ) Off-Ais: B ~k Net kick inwards Field Lines Transverse Velocit Page 11

12 Crved Poles Meaning of k and k Note that the magnetic field can also e derived from a scalar potential B cosh sinh sin k k k k Setting the scalar potential to a constant vales defines an eqipotential plane with the dependence for small transverse etensions: k sinh( k)sinh( k )sin( k) k B B cosh( k)cosh( k )sin( k) k cosh( k)sinh( k )cos( k) k c 1 sinh( k ) c1 c 1 k cosh(k ) The parameter k descries the transverse dependence on the pole srface: k > poles are crved inwards k < cosh is replaced with cos poles are crved otwards defocsing k > k < Page 1

13 Helical Undlator In an ideal helical ndlator the focsing is smmetric with: k k k / The simplest vector potential and magnetic field is: ( ) ( ) cos ( ) ( ) sin A I k r I k r k r B A A I kr I kr k k A I( kr) I( kr) cos k ( ) ( ) sin I ( k r)sin k B B I k r I k r k 1 However a helical ndlator field is also otained sperposition of two planar fields. If the smmetr is roken (e.g. APPLE Undlator) the roll-off parameters k and k are different for the two polariation planes. The sm of all coefficient in sqare still have still to e the sqare of k. For APPLE tpe ndlator the reslting net constants can e significantl larger, e.g.: k 5 k, k 6k Page 13

14 The Hamilton Fnction and Electron Motion I The Hamilton fnction is a constant of motion ecase there is no eplicit timedependence in the vector potential (here planar ndlator): 4 H P ea c m c mc The velocities are: B cosh( k)cosh( k )cos( k) k sinh( )sinh( )cos( ) A k k k k k P ea P ea P H, H, H p m p m p m Note that the velocit term proportional A is eactl the fast oscillation term t now with the transverse dependence on the ndlator field: cosh( k )cosh( k )cos( k ) The canonical momentm P descries mostl the slow etatron-oscillation Page 14

15 The Hamilton Fnction and Electron Motion II 4 H P ea c m c mc The transverse momenta are given : 1 F P H P ea m mk eb cosh( k ) cosh( k ) ( k / k ) sinh( k ) sinh( k ) 4 A k k k k k cosh( k)cosh( k )cos( k) k sinh( )sinh( )cos( ) Some terms have een dropped or simplified for the evalation of the slow etatron motion: B p cos 1 p A cos k p A k Page 15

16 Electron Motion for Small Amplitdes The reslting etatron eqations of motion ecome: P e B k sinh( k )cosh( k ) cosh( k ) ( k / k ) sinh( k ) m m k For small amplitdes in : c k Similar calclation for : c k Natral focsing of ndlators Total focsing strength is given ndlator period: k k k Page 16

17 Betatron Motion for Natral Focsing The transport matri for qadrpole focsing is given M 1 cos sin sin cos k c Matching condition is: Note: eam energ and long. velocit T M 1 1 M M Note: twiss parameter 1,, M11 M M1M 1 At aot 1 MeV the matched etatron fnction is arond 1 m At 1 GeV it is 1 m For X-ra FELs there is the need for eternal focsing to redced the electron eam sie Page 17

18 Eternal Focsing If the natral focsing is not sfficient, sperimposed qadrpole fields can provide more focsing. Undlator Modle Qadrpole Eqations of motions for the slow etatron-oscillation are: ( ) ( ), Q Q( ) ( ) Formal soltion of : Special case: Natral focsing onl ( ) I ( ) cos ( ) p I '( ) ( )cos ( ) sin ( ) p () I ( ) cos '( ) I sin Page 18

19 Longitdinal Velocit for Natral Focsing Inclding etatron-motion in longitdinal velocit: cos( ) sin( ) 4 1 / 1 1 k k Averaging ot all fast oscillating terms Betatron motion p p k I 1 / k I 1 sin sin 4 4 (, ) cosh( k )cosh(k ) The -vale shold e evalated at the position of the electron with: I I (, ) 1 k k k cos( ) k cos( ) 1 / 1 k k 4 I I No dependence on the etatron-phase Page 19

Pendulum Equations and Low Gain Regime

Pendulum Equations and Low Gain Regime WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dynamics Grop :: Pal Scherrer Institte Pendlm Eqations and Low Gain Regime CERN Accelerator School FELs and ERLs Interaction with Radiation

More information

Setting The K Value And Polarization Mode Of The Delta Undulator

Setting The K Value And Polarization Mode Of The Delta Undulator LCLS-TN-4- Setting The Vale And Polarization Mode Of The Delta Undlator Zachary Wolf, Heinz-Dieter Nhn SLAC September 4, 04 Abstract This note provides the details for setting the longitdinal positions

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for edcational and R&D activities related to the Hngarian ELI project Free electron lasers Lectre 1.: Introdction, overview and working principle János Hebling Zoltán

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101

PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101 PHY 113 C General Phsics I 11 AM 1:15 PM R Olin 101 Plan for Lectre 16: Chapter 16 Phsics of wave motion 1. Review of SHM. Eamples of wave motion 3. What determines the wave velocit 4. Properties of periodic

More information

Part II Effect of Insertion Devices on the Electron Beam

Part II Effect of Insertion Devices on the Electron Beam Part II Effect of Insertion Devices on the Electron Beam Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble II, 1/14, P. Elleaume, CAS, Brunnen July -9, 3. Effect of an Insertion Device

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L.

EXERCISES WAVE EQUATION. In Problems 1 and 2 solve the heat equation (1) subject to the given conditions. Assume a rod of length L. .4 WAVE EQUATION 445 EXERCISES.3 In Problems and solve the heat eqation () sbject to the given conditions. Assme a rod of length.. (, t), (, t) (, ),, > >. (, t), (, t) (, ) ( ) 3. Find the temperatre

More information

Electron Phase Slip in an Undulator with Dipole Field and BPM Errors

Electron Phase Slip in an Undulator with Dipole Field and BPM Errors CS-T--14 October 3, Electron Phase Slip in an Undlator with Dipole Field and BPM Errors Pal Emma SAC ABSTRACT A statistical analysis of a corrected electron trajectory throgh a planar ndlator is sed to

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Pulses on a Struck String

Pulses on a Struck String 8.03 at ESG Spplemental Notes Plses on a Strck String These notes investigate specific eamples of transverse motion on a stretched string in cases where the string is at some time ndisplaced, bt with a

More information

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS Bearings commonly sed in heavy rotating machine play a significant role in the dynamic ehavior of rotors. Of particlar interest are the hydrodynamic earings,

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC AMS B Pertrbation Methods Lectre 5 Copright b Hongn Wang, UCSC Recap: we discssed bondar laer of ODE Oter epansion Inner epansion Matching: ) Prandtl s matching ) Matching b an intermediate variable (Skip

More information

MAT389 Fall 2016, Problem Set 6

MAT389 Fall 2016, Problem Set 6 MAT389 Fall 016, Problem Set 6 Trigonometric and hperbolic fnctions 6.1 Show that e iz = cos z + i sin z for eer comple nmber z. Hint: start from the right-hand side and work or wa towards the left-hand

More information

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853 October 13, 3. CB 3-17 OCTUPOLE/QUADRUPOLE/ ACTIG I OE DIRECTIO Aleander Mikhailichenko Cornell Universit, LEPP, Ithaca, Y 14853 We propose to use elements of beam optics (quads, setupoles, octupoles,

More information

Free-Electron Laser. A) Motivation and Introduction. B) Theoretical Approach. C) Experimental Realization / Challenges

Free-Electron Laser. A) Motivation and Introduction. B) Theoretical Approach. C) Experimental Realization / Challenges Free-Electron Laser A) Motivation and Introdction B) Theoretical Approach C) Experimental Realization / Challenges v1 A) Motivation and Introdction need for short wavelengths why FELs? free electron wave

More information

Curves - Foundation of Free-form Surfaces

Curves - Foundation of Free-form Surfaces Crves - Fondation of Free-form Srfaces Why Not Simply Use a Point Matrix to Represent a Crve? Storage isse and limited resoltion Comptation and transformation Difficlties in calclating the intersections

More information

E ect Of Quadrant Bow On Delta Undulator Phase Errors

E ect Of Quadrant Bow On Delta Undulator Phase Errors LCLS-TN-15-1 E ect Of Qadrant Bow On Delta Undlator Phase Errors Zachary Wolf SLAC Febrary 18, 015 Abstract The Delta ndlator qadrants are tned individally and are then assembled to make the tned ndlator.

More information

Experiment and mathematical model for the heat transfer in water around 4 C

Experiment and mathematical model for the heat transfer in water around 4 C Eropean Jornal of Physics PAPER Experiment and mathematical model for the heat transfer in water arond 4 C To cite this article: Naohisa Ogawa and Fmitoshi Kaneko 2017 Er. J. Phys. 38 025102 View the article

More information

Low Emittance Machines

Low Emittance Machines TH CRN ACCLRATOR SCHOOL CAS 9, Darmstadt, German Lecture Beam Dnamics with Snchrotron Radiation And Wolski Universit of Liverpool and the Cockcroft nstitute Wh is it important to achieve low beam emittance

More information

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018 Geometric Image Maniplation Lectre 4 Wednesda, Janar 4, 08 Programming Assignment Image Maniplation: Contet To start with the obvios, an image is a D arra of piels Piel locations represent points on the

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/16 Fall, 2013 Name Closed book; closed notes. Time limit: 120 mintes. An eqation sheet is attached and can be

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

4 Primitive Equations

4 Primitive Equations 4 Primitive Eqations 4.1 Spherical coordinates 4.1.1 Usefl identities We now introdce the special case of spherical coordinates: (,, r) (longitde, latitde, radial distance from Earth s center), with 0

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

MEC-E8001 Finite Element Analysis, Exam (example) 2017

MEC-E8001 Finite Element Analysis, Exam (example) 2017 MEC-E800 Finite Element Analysis Eam (eample) 07. Find the transverse displacement w() of the strctre consisting of one beam element and po forces and. he rotations of the endpos are assmed to be eqal

More information

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET)

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET) Theoretical, Nmerical (FEM) and Experimental Analsis of composite cracked beams of different bondar conditions sing vibration mode shape crvatres Pankaj Charan Jena, Daal R. Parhi, G. Pohit 3 Department

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION

STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STABILIZATIO ON OF LONGITUDINAL AIRCRAFT MOTION USING MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION Čeliovsý S.*, Hospodář P.** *CTU Prage, Faclty

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactl qadratic bt can either be made to look qadratic

More information

Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev Petviashvili Equation

Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev Petviashvili Equation Commn. Theor. Phs. 65 (16) 31 36 Vol. 65, No. 3, March 1, 16 Nonlocal Smmetries and Interaction Soltions for Potential Kadomtsev Petviashvili Eqation Bo Ren ( ), Jn Y ( ), and Xi-Zhong Li ( ) Institte

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory International Jornal of Scientific and Research Pblications, Volme, Isse 11, November 1 1 ISSN 5-15 Flere of Thick Simply Spported Beam Using Trigonometric Shear Deformation Theory Ajay G. Dahake *, Dr.

More information

Fluidmechanical Damping Analysis of Resonant Micromirrors with Out-of-plane Comb Drive

Fluidmechanical Damping Analysis of Resonant Micromirrors with Out-of-plane Comb Drive Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Flidmechanical Damping Analsis of Resonant Micromirrors with Ot-of-plane Comb Drive Thomas Klose 1, Holger Conrad 2, Thilo Sandner,1,

More information

This Topic follows on from Calculus Topics C1 - C3 to give further rules and applications of differentiation.

This Topic follows on from Calculus Topics C1 - C3 to give further rules and applications of differentiation. CALCULUS C Topic Overview C FURTHER DIFFERENTIATION This Topic follows on from Calcls Topics C - C to give frther rles applications of differentiation. Yo shold be familiar with Logarithms (Algebra Topic

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski Advanced topics in Finite Element Method 3D trss strctres Jerzy Podgórski Introdction Althogh 3D trss strctres have been arond for a long time, they have been sed very rarely ntil now. They are difficlt

More information

Lateral Load Capacity of Piles

Lateral Load Capacity of Piles Lateral Load Capacity of Piles M. T. DAVSSON, Department of Civil Engineering, University of llinois, Urbana Pile fondations sally find resistance to lateral loads from (a) passive soil resistance on the

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

Range of validity and intermittent dynamics of the phase of oscillators with nonlinear self-excitation

Range of validity and intermittent dynamics of the phase of oscillators with nonlinear self-excitation Range of validit and intermittent dnamics of the phase of oscillators with nonlinear self-ecitation D.V. Strnin 1 and M.G. Mohammed Comptational Engineering and Science Research Centre, Faclt of Health,

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14 Accelerator Phsics Statistical and Beam-Beam Effects G. A. Krafft Old Dominion Universit Jefferson Lab Lecture 4 Graduate Accelerator Phsics Fall 7 Waterbag Distribution Lemons and Thode were first to

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

5.6. Differential equations

5.6. Differential equations 5.6. Differential equations The relationship between cause and effect in phsical phenomena can often be formulated using differential equations which describe how a phsical measure () and its derivative

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications

Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications Optimization via the Hamilton-Jacobi-Bellman Method: Theory and Applications Navin Khaneja lectre notes taken by Christiane Koch Jne 24, 29 1 Variation yields a classical Hamiltonian system Sppose that

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

1 Introduction. r + _

1 Introduction. r + _ A method and an algorithm for obtaining the Stable Oscillator Regimes Parameters of the Nonlinear Sstems, with two time constants and Rela with Dela and Hsteresis NUŢU VASILE, MOLDOVEANU CRISTIAN-EMIL,

More information

ECON3120/4120 Mathematics 2, spring 2009

ECON3120/4120 Mathematics 2, spring 2009 University of Oslo Department of Economics Arne Strøm ECON3/4 Mathematics, spring 9 Problem soltions for Seminar 4, 6 Febrary 9 (For practical reasons some of the soltions may inclde problem parts that

More information

Thermal balance of a wall with PCM-enhanced thermal insulation

Thermal balance of a wall with PCM-enhanced thermal insulation Thermal balance of a wall with PCM-enhanced thermal inslation E. Kossecka Institte of Fndamental Technological esearch of the Polish Academy of Sciences, Warsaw, Poland J. Kośny Oak idge National aboratory;

More information

Phase-merging enhanced harmonic generation free-electron laser

Phase-merging enhanced harmonic generation free-electron laser OPEN ACCESS Phase-merging enhanced harmonic generation free-electron laser To cite this article: Chao Feng et al 014 New J. Phys. 16 04301 View the article online for pdates and enhancements. Related content

More information

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit Accelerator School 8 Transverse Beam Dnamics- V. S. Pandit Equation of Motion Reference orbit is a single laner curve. Diole is used for bending and quadruole for focusing We use coordinates (r, θ, ) Diole

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

Digital Image Processing. Lecture 8 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep.

Digital Image Processing. Lecture 8 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Digital Image Processing Lectre 8 Enhancement in the Freqenc domain B-Ali Sina Uniersit Compter Engineering Dep. Fall 009 Image Enhancement In The Freqenc Domain Otline Jean Baptiste Joseph Forier The

More information

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe

Cosmic rays. l Some come from the sun (relatively low energy) and some from catastrophic events elsewhere in the galaxy/universe Special relativity The laws of physics are the same in all coordinate systems either at rest or moving at constant speed with respect to one another The speed of light in a vacm has the same vale regardless

More information

A RELATIVISTIC THEORY OF ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY

A RELATIVISTIC THEORY OF ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY A RELATIVISTIC THEORY OF ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY Y. M. HU a *Y.J.HU a Y. R. LIN-LIU b a Institte of Plasma Physics Chinese Academy of Sciences Hefei China Center for Manetic Fsion Theory

More information

Low Emittance High Energy Gain Inverse Free Electron Laser Using a Waveguided Helical Undulator

Low Emittance High Energy Gain Inverse Free Electron Laser Using a Waveguided Helical Undulator Low Emittance High Energy Gain Inverse Free Electron Laser Using a Wavegided Helical Undlator Matthew James Affolter Particle Beam Physics Laboratory, University of California at Los Angeles (Dated: September

More information

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

arxiv: v1 [hep-ph] 25 Mar 2014

arxiv: v1 [hep-ph] 25 Mar 2014 Moleclar state Σ b Σ b in the copled-channel formalism S.M. Gerasyta and E.E. Matskevich Department of Physics, St. Petersbrg State Forest Technical University, Instittski Per. 5, St. Petersbrg 940, Rssia

More information

Title. Author(s)ALAMIRI, M. ASSAD; GOTO, YOSHIAKI. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)ALAMIRI, M. ASSAD; GOTO, YOSHIAKI. Issue Date Doc URL. Type. Note. File Information Title ULTIATE STATE O THIN-WALLED HOLLOW CIRCULAR STEEL DIRECTIONAL HORIZONTAL SEISIC ORCES AND TRI-DIRECT Athor(s)ALAIRI. ASSAD; GOTO OSHIAKI Isse Date 013-09-1 Doc URL http://hdl.handle.net/115/54373

More information

A Model-Free Adaptive Control of Pulsed GTAW

A Model-Free Adaptive Control of Pulsed GTAW A Model-Free Adaptive Control of Plsed GTAW F.L. Lv 1, S.B. Chen 1, and S.W. Dai 1 Institte of Welding Technology, Shanghai Jiao Tong University, Shanghai 00030, P.R. China Department of Atomatic Control,

More information

Low-emittance tuning of storage rings using normal mode beam position monitor calibration

Low-emittance tuning of storage rings using normal mode beam position monitor calibration PHYSIAL REVIEW SPEIAL TOPIS - AELERATORS AND BEAMS 4, 784 () Low-emittance tning of storage rings sing normal mode beam position monitor calibration A. Wolski* Uniersity of Lierpool, Lierpool, United Kingdom

More information

Ch.1: Basics of Shallow Water Fluid

Ch.1: Basics of Shallow Water Fluid AOS611Chapter1,/16/16,Z.Li 1 Sec. 1.1: Basic Eqations 1. Shallow Water Eqations on a Sphere Ch.1: Basics of Shallow Water Flid We start with the shallow water flid of a homogeneos densit and focs on the

More information

Conditions for Approaching the Origin without Intersecting the x-axis in the Liénard Plane

Conditions for Approaching the Origin without Intersecting the x-axis in the Liénard Plane Filomat 3:2 (27), 376 377 https://doi.org/.2298/fil7276a Pblished by Faclty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Conditions for Approaching

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Motion in Two Dimension (Projectile Motion)

Motion in Two Dimension (Projectile Motion) Phsics Motion in Two Dimension (Projectile Motion) www.testprepkart.com Table of Content. Introdction.. Projectile. 3. Assmptions of projectile motion. 4. Principle of phsical independence of motions.

More information

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0

Chapter 6. Inverse Circular Functions and Trigonometric Equations. Section 6.1 Inverse Circular Functions y = 0 Chapter Inverse Circlar Fnctions and Trigonometric Eqations Section. Inverse Circlar Fnctions. onetoone. range. cos... = tan.. Sketch the reflection of the graph of f across the line =. 7. (a) [, ] é ù

More information

Approximate Solution for the System of Non-linear Volterra Integral Equations of the Second Kind by using Block-by-block Method

Approximate Solution for the System of Non-linear Volterra Integral Equations of the Second Kind by using Block-by-block Method Astralian Jornal of Basic and Applied Sciences, (1): 114-14, 008 ISSN 1991-8178 Approximate Soltion for the System of Non-linear Volterra Integral Eqations of the Second Kind by sing Block-by-block Method

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

Time-adaptive non-linear finite-element analysis of contact problems

Time-adaptive non-linear finite-element analysis of contact problems Proceedings of the 7th GACM Colloqim on Comptational Mechanics for Yong Scientists from Academia and Indstr October -, 7 in Stttgart, German Time-adaptive non-linear finite-element analsis of contact problems

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

The Dual of the Maximum Likelihood Method

The Dual of the Maximum Likelihood Method Department of Agricltral and Resorce Economics University of California, Davis The Dal of the Maximm Likelihood Method by Qirino Paris Working Paper No. 12-002 2012 Copyright @ 2012 by Qirino Paris All

More information

Dynamics of the Atmosphere 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35

Dynamics of the Atmosphere 11:670:324. Class Time: Tuesdays and Fridays 9:15-10:35 Dnamics o the Atmosphere 11:67:34 Class Time: Tesdas and Fridas 9:15-1:35 Instrctors: Dr. Anthon J. Broccoli (ENR 9) broccoli@ensci.rtgers.ed 73-93-98 6 Dr. Benjamin Lintner (ENR 5) lintner@ensci.rtgers.ed

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

The Oscillatory Stable Regime of Nonlinear Systems, with two time constants

The Oscillatory Stable Regime of Nonlinear Systems, with two time constants 6th WSES International Conference on CIRCUITS SYSTEMS ELECTRONICSCONTROL & SIGNL PROCESSING Cairo Egpt Dec 9-3 7 5 The Oscillator Stable Regime of Nonlinear Sstems with two time constants NUŢU VSILE *

More information

Lecture 17 Errors in Matlab s Turbulence PSD and Shaping Filter Expressions

Lecture 17 Errors in Matlab s Turbulence PSD and Shaping Filter Expressions Lectre 7 Errors in Matlab s Trblence PSD and Shaping Filter Expressions b Peter J Sherman /7/7 [prepared for AERE 355 class] In this brief note we will show that the trblence power spectral densities (psds)

More information

Uncertainties of measurement

Uncertainties of measurement Uncertainties of measrement Laboratory tas A temperatre sensor is connected as a voltage divider according to the schematic diagram on Fig.. The temperatre sensor is a thermistor type B5764K [] with nominal

More information

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction International Jornal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volme-3, Isse-8, Agst 2015 Elastico-Viscos MHD Free Convective Flow Past an Inclined Permeable Plate

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

Solutions to Math 152 Review Problems for Exam 1

Solutions to Math 152 Review Problems for Exam 1 Soltions to Math 5 Review Problems for Eam () If A() is the area of the rectangle formed when the solid is sliced at perpendiclar to the -ais, then A() = ( ), becase the height of the rectangle is and

More information

Hamiltonian Modulation Theory for Water Waves on Arbitrary Depth

Hamiltonian Modulation Theory for Water Waves on Arbitrary Depth Proceedings of the Twenty-first ( International Offshore and Polar Engineering Conference Mai, Hawaii, USA, Jne 9-4, Copyright by the International Society of Offshore and Polar Engineers (ISOPE ISBN 978--8865-96-8

More information

m = Average Rate of Change (Secant Slope) Example:

m = Average Rate of Change (Secant Slope) Example: Average Rate o Change Secant Slope Deinition: The average change secant slope o a nction over a particlar interval [a, b] or [a, ]. Eample: What is the average rate o change o the nction over the interval

More information

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length,

L = 2 λ 2 = λ (1) In other words, the wavelength of the wave in question equals to the string length, PHY 309 L. Soltions for Problem set # 6. Textbook problem Q.20 at the end of chapter 5: For any standing wave on a string, the distance between neighboring nodes is λ/2, one half of the wavelength. The

More information

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources

Traveling Wave Undulators for FELs and Synchrotron Radiation Sources LCLS-TN-05-8 Traveling Wave Undulators for FELs and Synchrotron Radiation Sources 1. Introduction C. Pellegrini, Department of Physics and Astronomy, UCLA 1 February 4, 2005 We study the use of a traveling

More information