Qubits by electron spins in quantum dot system Basic theory

Size: px
Start display at page:

Download "Qubits by electron spins in quantum dot system Basic theory"

Transcription

1 > α θ Summer school of FIRST/Q-cybanetics Chinen, Okinawa, Aug. 21, 2010 > Qubits by electron spins in quantum dot system Basic theory Yasuhiro Tokura NTT Basic Research Laboratories FIRST project, theory subgroup Quantum Cybanetics, semiconductor qubits

2 Self-introduction NTT

3 Solid state qubits microscopic coherence I - - Macroscopic system + Ensemble measurement Nanostructures: Small ensemble + Single electron spectroscopy Mesoscopic physics: quantum - interference, low-dimensionality,. e e e System of just one or two electrons + Dynamics in single shot Control over microscopic nature of energy quanta, correlation Also, challenge to quantum information

4 Charge and spin: Tiny quantities to detect Charge A e =1.6X10-19 C I e Best resolution measurement with low-t and low-noise fa 10 4 electrons/sec Spin Ensemble measurement : times/sec Magnetic moment µ µ B =gµ B S z = eh = 9.27x10-24 J/T for electron spin 2mc Standard measurement using a Hall device and a SQUID device J/T Ensemble measurement: spins or How to identify single e and µ?... Manipulate/Readout of quantum information

5 Orbital and spin degrees of freedom Energy relaxation T 1 ) Slow due to weak Nuclear spin coupling to environment ~> 1 msec Phonon +Spin-orbit Charge = Orbital T 1 ~T 2 ~ nsec due to strong phonon coupling Fast due to strong coupling to phonon bath ~ nsec Spin robust quantum number Spin qubits and quantum computing Use of Quantum Dots (QDs)

6 Part I, Aug. 21 Basic theory of spin qubits in QDs (Y. Tokura, NTT) Part II, Aug. 26 Experiments and future problems (Prof. S. Tarucha, Univ. Tokyo)

7 Single and double QDs holding a few electrons! Advent of one-electron single QDs Tarucha et al. PRL 96 Jung et al. APL05 Ciorga et al. PRB 02 Advent of two-electron double QDs nanotube Mason et al. Science 04 Hatano et al. Science 05 Petta et al. Science 04

8 Energy spectrum of a quantum dot -Hamiltonian: Quantum mechanical effect and interaction effect -Tunneling spectroscopy Conductance - Isolation of single electron

9 Eigen energy of two-dimensional harmonic QD 2p" H=h 2 k 2 /2m* + V(r) V(r)=(1/2)mω 02 r 2 (n, l)= (1, 0)(0, ±2) 1s" (n, l)=(0, ±1) (n, l)=(0, 0) n radial quantum number l angular momentum quantum number

10 Single-particle states in a 2D harmonic QD! electron! 0.20 hω 0 12" 0.15 Energy (mev)" 3d! 9" 3d! 6" 2p! 3" 1s! 3s! ev" V (V) s- 3s3d! 0" 2" 4" 6" Magnetic field (T)" c". B 1s- 2p! s- 1s! B(T)

11 Model Hamiltonian for an isolated QD Constant Interaction model: H CI = ε k c kσ c kσ + 1 2C (en Q 0) 2 kσ E N = Σ kσ c + kσ c kσ Q 0 =V g C g : offset charge V g, C g : Gate voltage, capacitance N=0 N=1 ε 1 N=2 2ε 1 N=3 2ε 1 +ε 2 U=e 2 /2C: Charging energy C: Total capacitance 0 e/c g 2e/C g 3e/C g V g S= 0 for even N S=1/2 for odd N Even-odd filling, Spin pairing Assumption: Δε k ~2ε F /N for large N and =0 for spin degeneracy U>> k B T (low temperature)

12 One and two electron states in QD N=1 φ (r) ε 1 = U(1)=ε 1 N=2 φ 2 φ 1 ε 2 ε 1 Δ 12 Hartree GS ES U(2)=2ε 1 + V intra U*(2)=ε 1 + ε 2 + V intra - V ex >, >, > + > Δ 12 >V ex Singlet Triplet Fock (exchange energy)

13 How do we detect the energy spectra? µ(1) µ(2) µ(3) Increment of µ(n) Single-particle level spacing + Interaction energy Current-sensitive measurement Source lead µ S >µ(n) e ΔN=+1 e I=ef tunnel-rate ΔN=-1 e Drain lead µ(n) >µ D

14 Probing electronic states in quantum Dot V g Conductance peaks appear every time when the cost of U+δε is paid: Coulomb oscillations : On-site repulsion : Level spacing (=0 for spin pairs) G Peak position: measure of µ(n) - V g. Spin paired states +

15 Single electron tunneling (SET) transistor Atom-like shell filling 2p! 1s! N=2" 6" 12" N=0" 1" Single electron tunnel=ensemble measurement I=fxe

16 Coulomb diamond: di/dv sd -V sd and V g Vg + N+1 E F d =µ(n+1) Source E Fd =µ(n) N+1 Drain N Δµ(N+1)=eV sd E F d =µ(n) E F s E Fs =µ(n+1) N E F d ΔE F =ev sd E s F =µ(n) I=0: Coulomb blockade N-1 E Fs =µ(n) E F s N N-1 0 Vsd

17 Coulomb diamond! ! -2.0 Gate Voltage V) ! Source-Drain Voltage(mV)

18 Evolution of Coulomb peaks (µ(n)) with B Energy (mev)" 12" 3d: =-2! 9 3s: =0! 3d: =2" 2p: =-1! 6" 2p: =1" 1s: =0 3" 0" 2" 4" 6" Magnetic field (T)" Gate voltage (V) -1.78" -0.78" 3rd shell 2nd shell 1st shell Spin pair! 0 Magnetic field (T) 3"

19 Excited states Vg + N+1 E F d =µ(n+1) E Fd =µ (N+1) E Fd =µ (N+1) µ(n) µ (N+1) µ (N) N E F d =µ(n) E Fs =µ(n+1) E F s =µ (N) E F s =µ (N) N-1 E Fs =µ(n) µ(n) 0 Vsd

20 Spin singlet-triplet transition Exact diagonalization! Experiment:! Excitation spectrum! Elextrochemical potential (mev)" Gate Voltage (V)" Magnetic field (T)"

21 Two-electrons in two quantum dots - Heitler-London state Dot 1 Dot 2 - Exchange coupling N 1 N2 V g1 V g2

22 Stability diagram of double dot system Vg2! Vg2! (2,0) (2,1) (2,2) (1,0) (1,1) (1,2) (0,0) (1,0) (2,0) (0,1) (0,0) (1,1) (1,0) µ(0,0)= µ(1,0)= µ(1,0) =µ(1,1) Vg1! N 1" N 2" Vg1! N 1" N 2" Vg1" Vg2" µ(n 1 ) and µ(n 2 ) independent Isolated two dots! Vg1" Vg2" Two dots are only coupled " through the gates."

23 Stability diagram of double dot system V g2" Electrostatic" V g2"electrostatic+quantum mechanical" V inter (0,1) (1,1) (0,0) (1,0) N 1" N 2" Vg1" Vg2" V intra1 V intra2 Capacitive coupling! between two dots! One-electron charging in one dot raises the electrostatic potential of the other dot by E c =e 2 /C inter, " V g1" V g1" (0,1) (0,1) 2t (0,0) (1,0) N 1" N 2" Tunnel coupling! between two dots! Vg1" Vg2" V g1" Degeneracies between different charge states are lifted by the tunnel coupling. The total electron number is only well defined."

24 Single electron states in coupled dots φ L (r) φ R (r) Anti-symmetric Symmetric N=1 U(1)=µ(N=1:S )=E s E L E A E R 2t E S A Potential offset between two dots: δ E S -E A = 4t 2 + δ

25 Two electron states: Hund-Mulliken approach ε Three singlet states: µ HM-S (2)=E HM-S (2)-E S (1) E HM S = 2ε + V int er + V ex 4 V int ra V int er V ex t 2 E HM T = 2ε + V int er V ex Exchange energy: E HM-T -E HM-S = 4t 2 /(V intra -V inter -V ex )-2V ex J

26 Exchange coupling in DQD J ~ 4t 2 /(V intra -V inter ) B ext H exch =JS 1 S 2 H exc =JS 1 S 2 S L S R V intra t, V inter V intra Center gate G. Burkard et al. PRB 00 t is controlled by center gate voltage. J=J(t : V g, B ext )

27 Offset dependence of exchange J Dot 1 N 1 Dot 2 N2 Two-electron spectra by Hund-Mulliken approach S** V g1 V g1 V g2 Offset δ V g2 Energy relative to E Triplet S* T S Level offset δ

28 Spin qubit using quantum dots Concept Initialization two-qubit operations

29 Use electron spin for making qubit Why!? Natural two level system Qubit = a > + b > Correlation of spin exchange H int JS 1 S 2 Robust quantum number Long T 1 and T 2 Scalable in solid state system Toward > S L S R Possible information transfer Charge.useful for measurement Atom.useful for storage Photon.useful for communication Loss and DiVincenzo PRA (98)

30 Initialization Zeeman splitting E Zeeman = g dot µb ( g dot < g bulk =0.44 GaAs) Polarization =1 - exp [-E Zeeman /k B T] >99 pure state : > at 300mK for E Zeeman (B=8 T) >k B T For fast Initialization Γ Easy Initialization by waiting for a time longer than T 1 (ms) Spin exchange by tunneling between the QD and contact leads Initialization time < Γ -1 ~ nsec V G Γ -1

31 Universal logic gates Classical calculation completeness {AND, OR, NOT} {NAND} {XOR}.. Quantum calculation {Rotation, CNOT} input output Bit A Bit C If Bit A input 1, then Invert Bit C {Rotation, SWAP 1/2 } S L S R CNOT = XOR can be prepared using SWAP 1/2 CNOT(Nonentangled state)=entangled state.swap 1/2 Entangler

32 CNOT using exchange coupling D. Loss and D. DiVincenzo, PRA98 U CNOT =Usw 1/2 exp[i(π/2) S 1z ] Usw 1/2 exp[i(π/2) S 1z ] exp[-i(π/2) S 2z ] Square root SWAP of U SW between spin 1 and 2 π/2 rotation of spin 1, 2 about z-axis z e π/2 H int = JS 1 S 2 z e

33 Effect of fluctuating nuclear field Mixing of singlet and triplet states in a double QD when J < gµ B ΔB nuc If J < gµ B ΔB nuc < E Zeeman, S(1,1)-T 0 (1,1) mixing due to ΔB nuc z ΔB nuc = B 1nuc -B 2nuc Johnson et al. Nature 05 Koppens et al. Sciece 05 Kodera, et al. Physica E 08 T - T 0 T + T - T 0 T + S gµ B ΔB nuc If J, E Zeeman < gµ B ΔB nuc, S(1,1)-T 0 (1,1) mixing due to ΔB nuc z S(1,1)-T ± (1,1) mixing due to ΔB nuc x,y gµ B ΔB nuc E(, ) <> E(, )

34 J manipulation: SWAP between > and > S(0, ) (, ) SWAP (, ) T 0 =( >+ >)/ 2 t SWAP =360 psec<< t Rabi control tunnel coupling to control SWAP 0> 1> Petta et al. Science 05

35 Single spin rotation using Global dc B field and local ac B field...on-chip coil...electrically driven spin resonance

36 Coherent manipulation of single electron spins Local ac magnetic field has been generated by various ways electrically by injecting an ac current to an on-chip coil Koppens et al. Science 2006 and by applying an ac electric field Nowack et al. Science 2007 Pioro-Ladriere et al. Nature Physics 2008 optically by applying an off-resonance laser pulse to induce optical Stark effect F. Jelezko et al. PRL2004 R. Hanson et al. PRL 2006; Science 2008 D. Press et al. Nature 2008 Note: First electrical control of spin qubit made out of > and > using SWAP in double QD Petta et al. Science 2005

37 Optical control of single electron spins N-V center in diamond F. Jelezko et al. PRL2004 R. Hanson et al. PRL 2006; Science 2008 Self-assembled InGaAs quantum dots D. Press et al. Nature 2008 Ramsey

38 Concept of spin rotation=esr ESR Hamiltonian Larmor precession µxb 0 > ω 0 =γb 0 Scalable qubits > B 0 ω 0 B AC To manipulate a single spin in a QD: Global DC B 0 + Local AC B AC To manipulate more spins in a multiple QD: Local DC B 0 + Local AC B AC

39 Paramagnetic defect located near Si/SiO2! Cavity ESR: An ESR peak in the shot noise current signal T2*= 100 nsec, due to spin-spin relaxation Note:T2 ~ 100 µsec for isolated paramagnetic defect T2* ~ 100 ns for Si/SiGe 2DEG

40 ESR of a single defect! T 2 derived from FWHM = 0.1 µsec, due to spin-spin relaxation Note:T 2 ~ 100 µsec for isolated paramagnetic defect Linear relationship of resonant magnetic field versus microwave frequency: g-factor ~2.0

41 Straightforward technique: on-chip coil Koppens et al Science 06 B ac induced by I ac flowing a coil ac B DC B 0 ac I I AC = 1 ma B ac ~ 1 mt π rotation: ~ 80 ns accompanied heating and difficulty in localizing the field.problem in qubit scalabilty f Rabi I ac Voltage driven ESR

42 Spin address with magnetic field gradient Direct NMR observation of local magnetic field generated by micromagnet S. Watanabe et al. Appl. Phys. Lett. b SL ~ T/µm 92, (2008) Proposal of an all Silicon quantum computer T. D. Ladd et al. Phys. Rev. Lett. 89, (2002)

43 Selectivity: nano-mri Stray field parallel to external field B 0 50 nm misalignment M z x PNAS 106, 1313 (2009). Tobacco mosaic virus dot 1 dot 2 B x B 0 (mt) 0 d -50 Δ Z x 1 x 2 x (µm) 0.5 d ~ 100 nm Δ Z ~ 20 mt δb 01 δb 02 E. A. Laird et al., Phys. Rev. Lett. (2007) M. Piore-Ladriere et al. Nat. Phys. 4, 776 (2008) Magnetic field gradient enables selective ESR addressing for each spins like MRI.

44 Standard spin resonance Time-dependent uniform magnetic field B x (t) Electric dipole Single ESR Electric driven resonance Non-uniform static magnetic field B x (z) Space z Space z B x Time t ~20 GHz local B field: B x (t) Time t ~20 GHz local E field: z(t) No heating and better designed for making multiple qubits

45 Physical systems of non-uniform field g-tensor modulation Spin-orbit Hyperfine int. µ B N (x) Slanting Zeeman field µ-magnet S B x ( ) 0 e Y. Kato Science 2003 K. C. Nowack Science 2007 E. A. Laird PRL (2007) Y. Tokura PRL 2006 g-tensor engineering...optical control B loc =( Vxp)σ...realistic but not general and small in GaAs Δ not-coherent... Local, static B field Micro-magnet induced field gradient slanting Zeeman field

46 Spin-orbit Interaction (SOI) Rashba SOI HSOI = - Structural inversion symmetry e " 4m 2 c 2 " [ Ε x v ] s Dresselhaus SOI Bulk inversion asymmetry B 0 (001) H SOI = α(-p y σ x + p x σ y ) + β(-p x σ x +p y σ y )

47 Local B field generation by SOI y [010] [ 110] E ac B ext H spin = H Zeeman + H SOI H Zeeman = -(1/2)g B µb ext σ H SOI = α(-p y σ x + p x σ y ) + β(-p x σ x +p y σ y ) Rashba Dresselhaus [110] x [100] External B ext U = exp[ i m {(αx + βy)σ y (βx + αy)σ x }], H spin U H spin U = 1 2 gµ B[B ext σ x + B SOI (x)σ z ], B SOI (x) = B ext 2m -> position-dependent B loc (α ± β)x + Bext // [110] - Bext // [1-10] Golovach et al., PRB 06,, 44, 17 (2009).

48 Generic slanting Zeeman fields B SL =b SL x x Effective slanting field by SOI B SOI (x) = B ext 2m Slanting field by on-chip micro-magnet (α ± β)x B magnet = [δb + b SL z]ˆx + b SL xẑ e Effective slanting field by nuclear spin H HF = A Ψ 2 2 0(r j )I j σ j = H 0 HF + A 4 (r rj )Ψ 2 0(r j ){I + j σ + I j σ+ } j H 0 HF 1 2 gµ B{b + HF σ + b HF σ+ } r

49 AC electric field with a slanting Zeeman field E AC ~ B 0 B SL =b SL x x AC electric field E AC affects the electron charge: H el = ee AC (t) r Introduction of canonical transformation Ψ 0 (r,t) = e ik R(t) Ψ osc 0 (r,t), R(t) ee AC(t) mω0 2 which transforms position operator with a time-dependent displacement r e ik R(t) re ik R(t) = r + R(t) Hence, the slanting field become equivalent to timedependent transverse field: B SL (t) b SL R x (t) ESR Hamiltonian

50 EDSR with Slanting Zeeman Field by Micro-magnet M Proposal Y. Tokura et al., Phys. Rev. Lett. 96, (2006) Experiment M. Pioro-Ladrière et al., Nat. Phys. 4, 776 (2008). dc B 0 gate g µ Δ B B z B SL ΔB z E ac V ac Large gradient b SL = 1T/ µm z AC = 1nm Strong effective field B AC = 1mT ΔB z different in two dots. Address two spins independently. Small displacement (V AC ~ 1 mv) No need for spin-orbit coupling, hyperfine interaction or g-factor engineering.

51 Decoherence problem T 1, T 2, and T 2 * Spin-orbit and nuclear spin coupling

52 Energy Spin relaxation T 1 ) Nuclear spin Phonon +Spin-orbit Spin relaxation Spin scattering in nonmagnetic semiconductor SO coupling + coupling to phonons T 1 > 100 µsec Khaetskii and Nazarov, PRB (00) for GaAs; Golovach et al. PRL (04) for GaAs QD Slow due to weak coupling to environment > dc B field" Hyperfine coupling to nuclear spins T 1 >> µsec due to DOS discreteness Erlingsson et al. PRB (01); Khaetskii et al. PRL (02) Phonon only influences δb (t) along xy. > Larmor precession : f= gµb./h T 2 =2T 1 > msec

53 Electrical Pump & Probe Measurement! Fujisawa et al. Nature 419, 278 (02)

54 Measurement of Spin LifetimeT 1 : SO effect N=2! Triplet! N=1! 2p! 1s! phonon! Singlet! 1s! T 1 > 200 µs" 1s! Zeeman splitting" =gµ B B! B = 7T" 0.4 B // = 8 T T 1 ~ 0.85 ms Fujisawa et al. Nature (2002) Waiting time (ms) Elzerman et al. Nature (2004)

55 Spin-based Quantum Information Processing Energy relaxation time: field dependence T 1 = msec~sec >>Gate operation time ~ns S. Amasha et al. Phys. Rev. Lett. 100, (2008).

56 Nuclear Spin Bath Problem Contact interaction to nuclei: 69 Ga, 71 Ga, 75 As (I=3/2) in GaAs QD 50 nm Flip-flop e B ext N=10 5 to 10 6 nuclei in GaAs QD Overhauser shift (ΔE Zeeman ) Shift of ESR condition Nuclear spins are dynamically polarized because of the long lifetime (~min.). Usually very weak for ESR because of the large difference in the Zeeman energy Fal ko et al. J. Phys: Condense Matter 91; Khaetskii et al. ; Erlingsson et al. PRB 01 But can influence the ensemble measurement of ESR and Rabi e e

57 Decoherence by a nuclear spin bath Electron Zeeman states in the statistically fluctuating nuclear spin bath B tot z B ext B ext =a few T >> B nuc =A/ N ~ a few mt (~30 MHz) B ext µ B z nuc // B ext Fluctuate Larmor frequency by B z nuc /B ext (~0.1 %) but very slowly (~sec) B nuc. Influence of B xy nuc is small, because ΔB xy ~ (B ext 2 + B xy nuc 2 ) 1/2 B ext ~ % Inhomogeneous broadening of ESR condition Phase fluctuation (or dephasing) in the ensemble measurement T 2 *=10 to 30 ns Bracker et al. PRL 04; Petta et al. Science 05; Koppens et al. Nature 05 Pioro-Ladriere, et al..nature Physics 08, Tokura, Nature Physics 09. Decoherence mechanism by electron spin mediated spin diffusion T2 ~> 1µs L. Cywinski, et al., Phys. Rev. B 79, (2009). W. A. Coish, et al., Phys. Rev. B 81, (2010).

58 Summary Spin qubits with quantum dots Isolation of single electron spin in each quantum dots Exchange control Electrical modulation of exchange energy available for SWAP Exchange control EDSR with Spin-orbit+micromagnet useful for multiple qubits Decoherence problem Spin-orbit interaction Hyperfine coupling with nuclear spin bath

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field 1 Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot R. Brunner 1,2, Y.-S. Shin 1, T. Obata 1,3, M. Pioro-Ladrière 4, T. Kubo 5, K. Yoshida 1, T. Taniyama

More information

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL, This is the viewgraph with the recorded talk at the 26th International Conference on Physics of Semiconductor (ICPS26, Edinburgh, 22). By clicking the upper-left button in each page, you can hear the talk

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots Introduction Resonant Cooling of Nuclear Spins in Quantum Dots Mark Rudner Massachusetts Institute of Technology For related details see: M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007);

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots The Harvard community has made this article openly available. Please share how this access benefits you. Your story

More information

Magnetic field B B V

Magnetic field B B V 1 (a) T vv + S vv ± T vv spot-iii T v1v + T vv1 + E V 6 8 1 1 14 S v1v S vv1 1 T v1v T vv1 spot-ii E V 6 8 1 1 14 spot-i (b) S v1v1 ± T v1v1 14 T v1v1 ESR 6 8 1 1 14 V T v1v T vv1 Energy E E V 1 1 8 6

More information

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov,

More information

Semiconductor few-electron quantum dots as spin qubits

Semiconductor few-electron quantum dots as spin qubits 36 Semiconductor few-electron quantum dots as spin qubits J. M. ELZERMAN, R. HANSON, L. H. WILLEMS VAN BEVEREN, L. M. K. VANDERSYPEN, AND L. P. KOUWENHOVEN Kavli Institute of Nanoscience Delft and ERATO

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Spin-orbit qubit in a semiconductor nanowire

Spin-orbit qubit in a semiconductor nanowire 1 Spin-orbit qubit in a semiconductor nanowire S. Nadj-Perge 1*, S. M. Frolov 1*, E. P. A. M. Bakkers 1,2 and L. P. Kouwenhoven 1 1 Kavli Institute of Nanoscience, Delft University of Technology, 2600

More information

Quantum Computing with Semiconductor Quantum Dots

Quantum Computing with Semiconductor Quantum Dots X 5 Quantum Computing with Semiconductor Quantum Dots Carola Meyer Institut für Festkörperforschung (IFF-9) Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 The Loss-DiVincenzo proposal 2 3 Read-out

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Wave function engineering in quantum dot-ring structures

Wave function engineering in quantum dot-ring structures Wave function engineering in quantum dot-ring structures Nanostructures with highly controllable electronic properties E. Zipper, M. Kurpas, M. M. Maśka Instytut Fizyki, Uniwersytet Sląski w Katowicach,

More information

Coherent Control of a Single Electron Spin with Electric Fields

Coherent Control of a Single Electron Spin with Electric Fields Coherent Control of a Single Electron Spin with Electric Fields Presented by Charulata Barge Graduate student Zumbühl Group Department of Physics, University of Basel Date:- 9-11-2007 Friday Group Meeting

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta 1, A. C. Johnson 1, J. M. Taylor 1, E. A. Laird 1, A. Yacoby, M. D. Lukin 1, C. M. Marcus 1, M. P. Hanson 3, A.

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Quantum Computing with Electron Spins in Semiconductor Quantum Dots

Quantum Computing with Electron Spins in Semiconductor Quantum Dots Quantum Computing with Electron Spins in Semiconductor Quantum Dots Rajesh Poddar January 9, 7 Junior Paper submitted to the Department of Physics, Princeton University in partial fulfillment of the requirement

More information

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University 1 Controlling Spin Qubits in Quantum Dots C. M. Marcus Harvard University GaAs Experiments: David Reilly (Univ. Sydney) Edward Laird

More information

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear Pauli spin blockade in cotunneling transport through a double quantum dot H. W. Liu, 1,,3 T. Fujisawa, 1,4 T. Hayashi, 1 and Y. Hirayama 1, 1 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya,

More information

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University Review of quantum dots (mostly GaAs/AlGaAs), with many references: Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen,

More information

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/ Electrical control of spin relaxation in a quantum dot S. Amasha et al., condmat/07071656 Spin relaxation In a magnetic field, spin states are split b the Zeeman energ = g µ B B Provides a two-level sstem

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Few-electron molecular states and their transitions in a single InAs quantum dot molecule

Few-electron molecular states and their transitions in a single InAs quantum dot molecule Few-electron molecular states and their transitions in a single InAs quantum dot molecule T. Ota 1*, M. Rontani 2, S. Tarucha 1,3, Y. Nakata 4, H. Z. Song 4, T. Miyazawa 4, T. Usuki 4, M. Takatsu 4, and

More information

Solid-State Spin Quantum Computers

Solid-State Spin Quantum Computers Solid-State Spin Quantum Computers 1 NV-Centers in Diamond P Donors in Silicon Kane s Computer (1998) P- doped silicon with metal gates Silicon host crystal + 31 P donor atoms + Addressing gates + J- coupling

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Driven coherent oscillations of a single electron spin in a quantum dot

Driven coherent oscillations of a single electron spin in a quantum dot Driven coherent oscillations of a single electron spin in a quantum dot F. H. L. Koppens 1, C. Buizert 1, K. J. Tielrooij 1, I. T. Vink 1, K. C. Nowack 1, T. Meunier 1, L. P. Kouwenhoven 1 & L. M. K. Vandersypen

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.160 Valley-spin blockade and spin resonance in carbon nanotubes Fei Pei, Edward A. Laird, Gary A. Steele, Leo P. Kouwenhoven Contents 1. Energy levels

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/114892/dc1 Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields K. C. Nowack, * F. H. L. Koppens, Yu. V. Nazarov, L. M. K.

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents Semiclassical limit and longtime asymptotics of the central spin problem Gang Chen Doron Bergman Leon Balents Trieste, June 2007 Outline The problem electron-nuclear interactions in a quantum dot Experiments

More information

Nuclear Spin Effects in Semiconductor Quantum Dots

Nuclear Spin Effects in Semiconductor Quantum Dots Nuclear Spin Effects in Semiconductor Quantum Dots The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chekhovich, E. A.,

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Single Electron Transistor (SET)

Single Electron Transistor (SET) Single Electron Transistor (SET) SET: e - e - dot A single electron transistor is similar to a normal transistor (below), except 1) the channel is replaced by a small dot. C g 2) the dot is separated from

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature177 In this supplemental information, we detail experimental methods and describe some of the physics of the Si/SiGe-based double quantum dots (QDs). Basic experimental methods are further

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot E. Kawakami 1, P. Scarlino 1, D. R. Ward 2, F. R. Braakman 1,3, D. E. Savage 2, M. G. Lagally 2, Mark Friesen 2, S. N. Coppersmith

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, UC Berkeley, Univ. of Illinois, UTEP Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay 400 nm Solid State Qubits (1) S D Daniel Esteve QUAN UM ELECT RONICS GROUP SPEC, CEA-Saclay From the Copenhagen school (1937) Max Planck front row, L to R : Bohr, Heisenberg, Pauli,Stern, Meitner, Ladenburg,

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Electrically Protected Valley-Orbit Qubit in Silicon

Electrically Protected Valley-Orbit Qubit in Silicon Quantum Coherence Lab Zumbühl Group Electrically Protected Valley-Orbit Qubit in Silicon - FAM talk - Florian Froning 21.09.2018 1 Motivation I [1] Zehnder, L., Zeitschrift für Instrumentenkunde. 11: 275

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Authors: A. Noiri 1,2, T. Takakura 1, T. Obata 1, T. Otsuka 1,2,3, T. Nakajima 1,2, J. Yoneda 1,2, and S. Tarucha 1,2 Affiliations:

More information

Weak-measurement theory of quantum-dot spin qubits

Weak-measurement theory of quantum-dot spin qubits Weak-measurement theory of quantum-dot spin qubits Andrew N. Jordan, 1 Björn Trauzettel, 2 and Guido Burkard 2,3 1 Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627,

More information