Testing CPT Invariance with Antiprotonic Atoms

Size: px
Start display at page:

Download "Testing CPT Invariance with Antiprotonic Atoms"

Transcription

1 Testing CPT Invariance with Antiprotonic Atoms Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary & ATOMKI, Debrecen, Hungary

2 Outline CPT Invariance and its Tests The Antiproton Decelerator at CERN Antihydrogen: Why, What and How? Antihydrogen Production p-he Spectroscopy Charge and Mass of Antiproton Magnetic Moment of Antiproton Hyperfine Structure of Antihydrogen Outlook

3 CPT Invariance Charge conjugation: Space reflection: Time reversal: C p(r,t)> = p(r,t)> P p(r,t)> = p( r,t)> T p(r,t)> = p(r, t)> Basic assumption of field theory: CPT p(r,t)> = p( r, t)> = p(r,t)> meaning antiparticle particle going backwards in space and time. Giving up CPT one has to give up: locality of interactions causality, or unitarity conservation of matter, information,... or Lorentz invariance

4 CPT Invariance: violation? Theoreticians in general: CPT cannot be violated CPT -violating theories: (Alan Kostelecký, F.R. Klinkhamer, N.E. Mavromatos et al) Standard Model valid up to Planck scale ( GeV). Above Planck scale new physics Lorentz violation possible Quantum gravity: fluctuations Lorentz violation loss of information in black holes unitarity violation Motivation for testing CPT at low energy Quantitative expression of Lorentz and CPT invariance needs violating theory low-energy tests can limit possible high energy violation

5 How to test CPT? Particle = antiparticle? m(k 0 ) m(k 0 )/m(average) < proton antiproton? (compare m, q, µ) hydrogen antihydrogen? (2S 1S) ν ν mass, mixing (LSND data?)

6 Exception: antigravity? ATHENA home page ( CPT : particle Earth antiparticle anti-earth weak equivalence: particle Earth antiparticle Earth

7 1 2 3 Bohr Dirac Lamb HFS 1S 2P 1/2 1/2 2S 1/2 2P 3/2 ANTIHYDROGEN F=0 F=1 Antihydrogen: e + p atom HYDROGEN 3 2 2P 3/2 2S 1/2 2P1/2 1 1S1/2 F=1 F=0 Bohr Dirac Lamb HFS 2S 1S transition with 2-photon (Doppler-free) spectroscopy at precision M. Charlton, J. Eades, D. Horváth, R. J. Hughes, C. Zimmermann: Antihydrogen physics, Physics Reports 241 (1994) 65.

8 Accelerators at CERN Until 1996 From 2007?

9 Antihydrogen observation: CERN, 1996 Expt. PS-210 at LEAR Fast p in LEAR hits Xe jet e + e created co-moving p and e + can bind to make relativistic H Neutral H leaves ring, e + and p separated and identified 11 counts 2 bgrd = 9 H observed G. Baur et al., Phys.Lett. B 368 (1996) 251 Similar experiment at FERMILAB: G. Blanford et al., Phys.Rev.Lett. 80 (1998) 3037 Spectroscopy needs cold, confined, ground-state antihydrogen

10 The Antiproton Decelerator at CERN has been built to test CPT invariance Three experiments test CPT: ATRAP: q(p)/m(p) q(p)/m(p) H(2S 1S) H(2S 1S) ATHENA: H(2S 1S) H(2S 1S) ASACUSA: q(p) 2 m(p) q(p) 2 m(p) µ l (p) µ l (p) H H HF structure RED: done, GREEN: planned c Ryugo S. Hayano

11 Cold Antihydrogen: How? 1. Trap p and e + in nested Penning trap 2. Mix p with e + at high particle densities 3. In p+ e + +e + collisions excited H atoms form 4. Confine H in quadrupole field (e + spin) 5. Stimulate deexcitation with laser 6. Make two-photon spectroscopy 1 3 are done by ATHENA and ATRAP, rest is planned ATHENA: M. Amoretti et al., Nature 419 (2002) 456. ATRAP: G. Gabrielse et al., Phys. Rev. Lett. 89 (2002)

12 Empty trap electrons cool with sync radiation Trapping antiprotons To make antihydrogen cool p with positrons Trap opened 10 7 antiprotons in Trap closed electrons cool antiprotons Cold antiprotons trapped Trap opened another bunch of 10 7 antiprotons in

13 Production of Antihydrogen ATHENA experiment H annihilation event, 2002 ATHENA, ATRAP, 2003 > 10 5 cold H produced

14 Is it really antihydrogen? Antiprotons and positrons mix in nested trap In collisions neutral particles are produced which leave the trap and could be ionised to e + and p. e + cools p: if p is overcooled it sinks in its well and stops colliding no H. The particles can be heated with RF and the H production rate driven. When H production is on, most annihilations happen at the walls, with no H the p annihilate on residual gas. ATHENA: M. Amoretti et al., Phys. Lett. B 583 (2004) 59. ATRAP: G. Gabrielse et al., Phys. Rev. Lett. 89 (2002)

15 Mass and Charge of Antiproton Proton s well (?) known: m(p)/m(e) = (85) q(e) = (63) C Precision: and Relative measurements: proton vs. antiproton Cyclotron frequency in trap q/m TRAP ATRAP collaboration Harvard, Bonn, München, Seoul p and H together precision Atomic transitions: E n m red c 2 (Zα) 2 /(2n) m q 2 PS-205 ASACUSA collaboration Tokyo, Budapest, CERN, Debrecen, Vienna Atomic Spectroscopy And Collisions Using Slow Antiprotons Asakusa, Tokyo

16 Metastable hadronic atoms In matter (gas, liquid, solid) τ(hadron) 1 ps except X He: K, π : τ 0 ; p: 3 4 µs Metastable 3-body system

17 Principle of laser spectroscopy τ µ Wavelengths in nm Induce transition between long-lived and short-lived state Force prompt annihilation

18 ASACUSA: Spectroscopy Setup

19 aser spectroscopy of antiprotonic helium N. Morita et al, Phys. Rev. Lett. 72 (1994)

20 Transition frequencies in isolated phe + atoms Experimental precision limited by: collisional and Doppler broadening, laser bandwidth Most important: density effect : measured density dependence, extrapolated to zero : reduced collisional effects by stopping slow p from RFQ post-decelerator in low-pressure (< 1 mbar), cryogenic target Last published CPT-violation limit: 10 ppb (10 8 ) M. Hori et al., Phys. Rev. Lett. 91 (2003) M. Hori et al., Phys. Rev. Lett. 87 (2001)

21 Determination of m(p),q(p) Principal quantum number p _ 4 He phe LEAR δm M p p [10 6 ] Q p / M p n= p _ 3 He allowed region phe AD + δq Q p p [10 6 ] metastable states 32 short-lived states n=31 l = Orbital quantum number 1.5 2

22 Resolution development Limits on the antiproton charge and mass from a combination of ASACUSA and ATRAP experimental results First measurement at LEAR Relative precision First AD measurement Low densities with RFQD LEAR: Higher statistics, better lasers and wavelength calibration Femtosecond optical comb generator Continuous-wave pulse amplified laser Doppler-free two-photon spectroscopy? Known mass of proton (p/e ratio) Years

23 Resolution development Resonance profile of the (n,l) = (37,35) (38,34) transition at λ = nm

24 ;1 8 : <= 2 ; ! NQ P N WM T V XY N WM T T H Level splitting in phe + atoms Density effect (T = 6 K) F =L 1/2 f,#& "#%$ ν (n,l ) &#+ "#%$ F =L 1/2 J + =L ν HF 0 / / *#& "#%$ ν SHF J =L 1 9 / / 8/7 6 / &#) "#%$ (#& "#%$ (n,l) ν HF + ν HF F + =L +1/2 '#& "#%$ - - * - - ) - - ( - - ' - - # - - " ν HF f + J ++ = L+1 ν SHF + F + =L+1/2 J + =L + ν C >?@ CB C >?A@ Level scheme, frequency scan B CB >?A@ L K M NO J K ν HF 1.15 BCG >?A@ ν + HF U K K TKS R K FCB >?A@ 1.10 BCE >?A@ DCB >?A@ H H F H H E H H D I H H H H? H H > R ++ /R ++ off Magnetic moments 0.95 p p CPT OK ν MW (GHz) E. Widmann et al., Phys. Rev. Lett. 89 (2002)

25 Outlook: slow antiproton beam Monoenergetic Ultra Slow Antiproton Source for High precision Investigations 5.8 MeV p injected into RFQ 100 kev p injected into trap 10 6 p trapped and cooled (2002) Slow p extracted (2004) Aim: stopping power single ionization nuclear studies

26 Hyperfine structure of antihydrogen p antiproton and positron Trap / Recombination + e Sextupole I Microwave Cavity Possible CPT-violation predicted by R. Bluhm et al., Phys. Rev. Lett. 82 (1999) Sextupole II Antihydrogen Detector v(p) 350m/s, L(MW cavity) = 20 cm ν HF 3kHz ppm precision E. Widmann, R.S. Hayano, M. Hori, T. Yamazaki, Nucl. Instr. Meth. B 214 (2004) 31.

27 Summary So far no CPT violation detected CERN s Antiproton Decelerator stopped in 2005 for LHC construction In H spectroscopy expected MUSASHI starts working as a user facility New antiproton machine is planned: FLAIR at GSI (A Facility for Low-energy Antiproton and Ion Research) Nobody expects CPT violation, but it must be tested

28 Making antihydrogen: Paul trap Linear antiproton Paul trap Two-tone antihydrogen production Paul trap Commercial positron source (First Point Scientific Inc.) Beam profile monitor Radiofrequency quadrupole decelerator 1 m Beam profile monitor, differential pumping, conductance limiter Electromagnetic calorimeter ASACUSA Collaboration, Addendum to Proposal, CERN-SPSC

29 Making antihydrogen: cusp trap positron source focusing solenoid cusp trap sextupole magnet MR T electron emitter microwave cavity H detector p from RFQD MUSASHI Trap (catching & cooling of p) Cusp Trap H counts RF frequency p e + H LS H HS Microwave Cavity Sextupole Lens H Det. A. Mohri, Y. Yamazaki, Europhys. Lett. 63 (2003) 207.

30 Laser spectroscopy: LEAR vs AD counts / 10 ns analog amplitude (arb. units) event-by-event λ = nm Annihilation time (µs) analog method λ = nm Annihilation time (µs) LEAR: slow extraction 10 6 laser shot, 50 min AD: fast extraction 1 laser shot, 2 min Gated phototube: prompt annihilation (97% p) off (Hamamatsu)

31 Antiproton tunnelling in collisions Temperature dependence of the cross section of quenching the metastable phe state in collisions with (H 2, D 2 ): σ q = σ 0 exp ( ) E b kt + σ t Arrhenius type + quantum tunnelling. σ t depends on barrier height and width on isotope and state. (37,34) T (K) cm 2 ) -16 (10 σ q H 2 D /T (1/K) (38,37) T (K) cm 2 ) -16 (10 σ q 5 1 B. Juhász et al., Chem. Phys. Lett., 379 (2003) 91; B. Juhász, PhD Thesis, Debrecen, H 2 D /T (1/K)

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment

Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth Antiprotonic Helium 10-14 September 2012, Stara Lesna, Slovakia p. 1/37 Antiprotonic Helium: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration

More information

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth ASACUSA 9 October 2013, St. Petersburg, Russia p. 1/41 ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration horvath.dezso@wigner.mta.hu

More information

Testing CPT Invariance with Antiprotonic Atoms 1

Testing CPT Invariance with Antiprotonic Atoms 1 Testing CPT Invariance with Antiprotonic Atoms 1 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics, H 1525 Budapest, Hungary and Institute of Nuclear Research (ATOMKI), Debrecen, Hungary

More information

Experimental Tests of CPT Invariance at CERN

Experimental Tests of CPT Invariance at CERN Dezső Horváth: CPT Tests at CERN Szegedi Egyetem, 2018.10.15. p. 1 Experimental Tests of CPT Invariance at CERN Szegedi Egyetem, Elm-Fiz. Tanszék, 2018.10.15. Horváth Dezső horvath.dezso@wigner.mta.hu

More information

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron mass ratio Fukuoka, August 2012 Masaki Hori Max Planck Institute of Quantum Optics A. Sótér, D. Barna, A.

More information

Study of the hyperfine structure of antiprotonic helium

Study of the hyperfine structure of antiprotonic helium Nuclear Instruments and Methods in Physics Research B 214 (2004) 89 93 www.elsevier.com/locate/nimb Study of the hyperfine structure of antiprotonic helium J. Sakaguchi a, J. Eades a, R.S. Hayano a, M.

More information

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics 258 501 ALPHA (CERN) CPT, CERN ishida@icepp.s.u-tokyo.ac.jp TRIUMF Canada s National Laboratory for Particle and Nuclear Physics Makoto.Fujiwara@triumf.ca 2015 2 26 ( H ) (p ) ( e + ) CPT ( ) CERN (AD;

More information

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN Fundamental physics with antihydrogen and antiprotons at the AD Michael Doser CERN What measurements are we talking about? 1) Precise spectroscopic comparison between H and H tests of fundamental symmetry

More information

Matter and Antimatter

Matter and Antimatter Dezső Horváth: Matter and Antimatter Symmetry Festival 2009 Budapest, 31 July 05 August 2009 p. 1 Matter and Antimatter Dezső Horváth horvath@rmki.kfki.hu KFKI Research Institute for Particle and Nuclear

More information

A Next-generation Low-energy Antiproton Facility

A Next-generation Low-energy Antiproton Facility A Next-generation Low-energy Antiproton Facility E. Widmann, University of Tokyo Chairman, FLAIR steering committee Nuclear Physics @ J-PARC Workshop NP04, Tokai, August 2 4, 2004 University of Tokyo Antiproton

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

CPT symmetry test Gravity between matter and antimatter Listen to the whisper of nature (Planck mass vs our limitedness )

CPT symmetry test Gravity between matter and antimatter Listen to the whisper of nature (Planck mass vs our limitedness ) Trapped charged particles and Fundamental physics April 12-16, 2010, Saariselkae, Finland Advances in Antihydrogen y g Experiments p Yasunori Yamazaki RIKEN & Univ. Tokyo Trapped charged particles and

More information

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007 Antimatter Jan Meier Seminar: Experimental Methods in Atomic Physics May, 8th 27 Overview Antimatter and CPT theorie what is antimatter? what physics does it follow to? First observations of antimatter

More information

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA

The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA The CERN Antiproton Physics Programme The Antiproton Decelerator (AD) & ELENA Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary The CERN antiproton facilities Experiments, their programmes

More information

Prospects of in-flight hyperfine spectroscopy of (anti)hydrogen for tests of CPT symmetry E. Widmann Stefan Meyer Institute for Subatomic Physics,

Prospects of in-flight hyperfine spectroscopy of (anti)hydrogen for tests of CPT symmetry E. Widmann Stefan Meyer Institute for Subatomic Physics, Prospects of in-flight hyperfine spectroscopy of (anti)hydrogen for tests of CPT symmetry Stefan Meyer Institute for Subatomic Physics, Vienna Austrian Academy of Sciences HISEBSM Rencontres de Vietnam

More information

Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by on 3/23/

Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by on 3/23/ Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by 128.141.46.242 on 3/23/18 Proc. 12th Int. Conf. Low Energy Antiproton Physics

More information

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy Martin Diermaier LEAP 2016 Kanazawa Japan Martin Diermaier Stefan-Meyer-Institute March th 2016 MOTIVATION Charge

More information

Atomic collision experiment using ultra-slow antiproton beams

Atomic collision experiment using ultra-slow antiproton beams See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239883 Atomic collision experiment using ultra-slow antiproton beams Article in Journal of

More information

Risultati recenti di produzione

Risultati recenti di produzione Risultati recenti di produzione dell anti-idrogeno Luca Venturelli Università di Brescia (Dipartimento di Ingegneria dell Informazione) Istituto Nazionale di Fisica Nucleare Physics Department/INFN joint

More information

Experiments with low energy antimatter

Experiments with low energy antimatter Experiments with low energy antimatter Giovanni Consolati, on behalf of the AEGIS collaboration Politecnico di Milano and Istituto Nazionale Fisica Nucleare - Milano Introduction to cold antimatter Experiments

More information

Recent results from ATHENA

Recent results from ATHENA Recent results from ATHENA G. Bonomi a, M. Amoretti b,p.d.bowe c,c.canali bd, C. Carraro bd,c.l.cesar e,m. Charlton f,m.doser a, A. Fontana gh,m.c.fujiwara il, R. Funakoshi l, P. Genova gh,j.s.hangst c,r.s.hayano

More information

Observation of the 1S-2S Transition in Antihydrogen

Observation of the 1S-2S Transition in Antihydrogen Observation of the 1S-2S Transition in Antihydrogen Dirk van der Werf Swansea University CEA-Saclay ALPHA What do we want to do Check CPT conservation Baryon asymmetry Standard model extension (SME): Assume

More information

Progress of antihydrogen beam production with the double cusp trap

Progress of antihydrogen beam production with the double cusp trap 1 / 34 Progress of antihydrogen beam production with the double cusp trap Yugo Nagata Department of applied physics, Tokyo University of Agriculture and Technology Atomic Physics Research Unit, RIKEN March

More information

ASACUSA STATUS REPORT

ASACUSA STATUS REPORT January, 29 ASACUSA STATUS REPORT ASACUSA progress during 28 and plans for 29 CERN-SPSC-29-5 / SPSC-SR-4 27/1/29 ASACUSA collaboration D. Barna 1,6, M. Charlton 2, M. Corradini 3, A. Dax 1, H. Dølrath

More information

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas

On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas On the Possibility of Non-Neutral Antiproton Plasmas and Antiproton-Positron Plasmas H. Higaki Plasma Research Center, University of Tsukuba 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan 305-8577 Abstract.

More information

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton W. Quint a, J. Alonso b, S. Djekić b, H.-J. Kluge a, S. Stahl b, T. Valenzuela b, J. Verdú b, M. Vogel b, and G. Werth b a Gesellschaft

More information

Towards the production of an anti-hydrogen beam

Towards the production of an anti-hydrogen beam Towards the production of an anti-hydrogen beam S. Van Gorp 1, N. Kuroda 2, S. Ulmer 1, D.J. Murtagh 1, M. Corradini 4, M. Diermaier 6, M. Leali 4, C. Malbrunot 6, V. Mascagna 4, O. Massiczek 6, K. Michishio

More information

Sponsored document from Physics Letters. [Part B] First observation of two hyperfine transitions in antiprotonic 3 He

Sponsored document from Physics Letters. [Part B] First observation of two hyperfine transitions in antiprotonic 3 He Sponsored document from Physics Letters. [Part B] First observation of two hyperfine transitions in antiprotonic 3 He S. Friedreich a,, D. Barna b,c, F. Caspers d, A. Dax b, R.S. Hayano b, M. Hori b,e,

More information

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration The Magnetic Moment of the Proton A. Mooser for the BASE collaboration Motivation CPT-Symmetry fundamental cornerstone of Standard Model Strategy: Compare properties of matter and antimatter conjugates

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Observing a single hydrogen-like ion in a Penning trap at T = 4K Hyperfine Interactions 115 (1998) 185 192 185 Observing a single hydrogen-like ion in a Penning trap at T = 4K M. Diederich a,h.häffner a, N. Hermanspahn a,m.immel a,h.j.kluge b,r.ley a, R. Mann b,w.quint

More information

Antimatter research at F(L)AIR

Antimatter research at F(L)AIR Antimatter research at F(L)AIR University of Wales Swansea Overview of the Flair facility Physics at FLAIR Antihydrogen spectroscopy Gravitational acceleration of amtihydrogen G-factor of the antiproton

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012 Outline Introduction and motivation Principle of Penning traps Setup and measurement

More information

Study on Bose-Einstein Condensation of Positronium

Study on Bose-Einstein Condensation of Positronium Study on Bose-Einstein Condensation of Positronium K. Shu 1, T. Murayoshi 1, X. Fan 1, A. Ishida 1, T. Yamazaki 1,T. Namba 1,S. Asai 1, K. Yoshioka 2, M. Kuwata-Gonokami 1, N. Oshima 3, B. E. O Rourke

More information

A 680-fold improved comparison of the antiproton and proton magnetic moments

A 680-fold improved comparison of the antiproton and proton magnetic moments A 680-fold improved comparison of the antiproton and proton magnetic moments Eric Tardiff Gerald Gabrielse, Jack DiSciacca, Kathryn Marable, Mason Marshall Harvard University July 21, 2014 Testing CPT

More information

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN Anti-Apple g? g? Pauline Yzombard (1), on behalf of the AEgIS (2) collaboration (1) Laboratoire Aimé Cotton,

More information

The Proton Magnetic Moment

The Proton Magnetic Moment Georg Schneider on behalf of the BASE collaboration March 9, 2016, Kanazawa 1. Theoretical basics Who we are? Measurement principle The double Penning trap method Experimental setup Milestones 2 / 25 Who

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

arxiv: v1 [physics.ins-det] 6 Jun 2016

arxiv: v1 [physics.ins-det] 6 Jun 2016 Hyperfine Interactions manuscript No. (will be inserted by the editor) Towards Measuring the Ground State Hyperfine Splitting of Antihydrogen A Progress Report arxiv:1606.01791v1 [physics.ins-det] 6 Jun

More information

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО( РАН) ) (St. Petersburg) & Max-Planck Planck-Institut für Quantenoptik (Garching)

More information

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S.Yu. Orlov, V.N. Panteleev, Yu.M. Volkov

More information

THE ELENA PROJECT AT CERN

THE ELENA PROJECT AT CERN Vol. 46 (2015) ACTA PHYSICA POLONICA B No 1 THE ELENA PROJECT AT CERN W. Oelert representing the ELENA Collaboration Johannes Gutenberg-Universität Institut für Physik Staudingerweg 7, 55128 Mainz, Germany

More information

EDM Measurements using Polar Molecules

EDM Measurements using Polar Molecules EDM Measurements using Polar Molecules B. E. Sauer Imperial College London J. J. Hudson, M. R. Tarbutt, Paul Condylis, E. A. Hinds Support from: EPSRC, PPARC, the EU Two motivations to measure EDMs EDM

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements T. Kieck 1, H. Dorrer 1, Ch. E. Düllmann 1,2, K. Eberhardt 1, L. Gamer 3, L. Gastaldo 3, C. Hassel 3, U. Köster 4, B. Marsh 5, Ch. Mokry 1, S. Rothe

More information

The First Cold Antihydrogen *

The First Cold Antihydrogen * The First Cold Antihydrogen * M.C. Fujiwara ab, M. Amoretti c, C. Amsler d, G. Bonomi e, A.Bouchta e, P.D. Bowe f, C. Carraro cg C.L. Cesar h, M. Charlton i, M. Doser e, V. Filippini j, A. Fontana jk,

More information

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski 28.01.2011 1 Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI Denis Anielski Westfälische Wilhelms-Universität

More information

Two- photon laser spectroscopy of antiprotonic helium and the antiproton- to- electron mass ratio

Two- photon laser spectroscopy of antiprotonic helium and the antiproton- to- electron mass ratio Two- photon laser spectroscopy of antiprotonic helium and the antiproton- to- electron mass ratio Masaki Hori 1,2, Anna Sótér 1, Daniel Barna 2,4, Andreas Dax 2, Ryugo Hayano 2, Susanne Friedreich 3, Bertalan

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Two-stage Rydberg charge exchange in a strong magnetic field

Two-stage Rydberg charge exchange in a strong magnetic field Two-stage Rydberg charge exchange in a strong magnetic field M. L. Wall, C. S. Norton, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849-5311, USA Received 21 June 2005;

More information

GBAR Project Gravitational Behavior of Antihydrogen at Rest

GBAR Project Gravitational Behavior of Antihydrogen at Rest GBAR Project Gravitational Behavior of Antihydrogen at Rest Pierre Dupré CEA Saclay, FRANCE 1 Contents Motivation Scheme Schedule 2 Motivation A direct test of the Equivalence Principle with antimatter

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University TAMU-TRAP facility for Weak Interaction Physics P.D. Shidling Cyclotron Institute, Texas A&M University Outline of the talk Low energy test of Standard Model T =2 Superallowed transition Facility T-REX

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

Study on positronium Bose-Einstein condensation

Study on positronium Bose-Einstein condensation Study on positronium Bose-Einstein condensation Akira Ishida a,*, K. Shu a, T. Murayoshi a, X. Fan a, T. Namba a,s. Asai a, K. Yoshioka b, M. Kuwata-Gonokami a, N. Oshima c, B. E. O Rourke c, R. Suzuki

More information

Atomic Physics in Traps

Atomic Physics in Traps Atomic Physics in Traps QED Fundamental Constants CPT Invariance Wolfgang Quint GSI Darmstadt and Univ. Heidelberg Quantum mechanics, Relativity, and P.A.M. Dirac Quantum mechanics Special Relativity Dirac

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

Probing the antiworld

Probing the antiworld Feature: Antihydrogen physicsweb.org Probing the antiworld One of the most staggering achievements in quantum physics was Paul Dirac s prediction of the anti-electron in 1930. By tirelessly modifying Schrödinger

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

CDF. Antimatter Gravity Experiment. An Opportunity for Fermilab to (potentially) Answer Three of the Big Questions of Particle Physics

CDF. Antimatter Gravity Experiment. An Opportunity for Fermilab to (potentially) Answer Three of the Big Questions of Particle Physics Antimatter Gravity Experiment An Opportunity for Fermilab to (potentially) Answer Three of the Big Questions of Particle Physics Physics Motivation g has never been measured! CPT: g g earth antiearth earth

More information

First Attempts at Antihydrogen Trapping in ALPHA

First Attempts at Antihydrogen Trapping in ALPHA First Attempts at Antihydrogen Trapping in ALPHA G.B. Andresen,W.Bertsche,P.D.Bowe,C.C.Bray, E. Butler,C.L. Cesar,S.Chapman,M.Charlton, J. Fajans, M.C. Fujiwara,R. Funakoshi,D.R.Gill,J.S.Hangst,W.N.Hardy,

More information

Møller Polarimetry on Atomic Hydrogen

Møller Polarimetry on Atomic Hydrogen E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen 1 Møller Polarimetry on Atomic Hydrogen E.Chudakov 1 1 JLab Meeting at UVA Outline E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen

More information

The GBAR experiment. Dirk van der Werf

The GBAR experiment. Dirk van der Werf The GBAR experiment Dirk van der Werf principle detector Laser (t 0 ) gravity J.Walz & T. Hänsch" General Relativity and Gravitation, 36 (2004) 561 detector (t 1 ) 2 principle detector Laser (t 0 ) gravity

More information

High-precision measurements of the fundamental properties of the antiproton

High-precision measurements of the fundamental properties of the antiproton High-precision measurements of the fundamental properties of the antiproton Hiroki Nagahama on behalf of the BASE collaboration PSAS 2016, Jerusalem 26/May Goal of BASE Table of contents Principle of CPT

More information

Spring 2007 Qualifier- Part I 7-minute Questions

Spring 2007 Qualifier- Part I 7-minute Questions Spring 007 Qualifier- Part I 7-minute Questions 1. Calculate the magnetic induction B in the gap of a C-shaped iron core electromagnet wound with n turns of a wire carrying current I as shown in the figure.

More information

Particle Accelerators

Particle Accelerators Experimental Methods of Particle Physics Particle Accelerators Andreas Streun, PSI andreas.streun@psi.ch https://ados.web.psi.ch/empp-streun Andreas Streun, PSI 1 Particle Accelerators 1. Introduction

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Recycling Ring. on behalf of the Recycling Ring Design Group (Quasar, Musashi & Ullrich groups) TCP 2010 Conference 12 April 2010

Recycling Ring. on behalf of the Recycling Ring Design Group (Quasar, Musashi & Ullrich groups) TCP 2010 Conference 12 April 2010 Electrostatic Low-Energy Antiproton Recycling Ring Michele Siggel-King on behalf of the Recycling Ring Design Group (Quasar, Musashi & Ullrich groups) 1 Now Motivation Low-Energy Antiproton Research CERN

More information

Measurement of the hyperfine splitting of 133 Cs atoms in superfluid helium

Measurement of the hyperfine splitting of 133 Cs atoms in superfluid helium Hyperfine Interact DOI 10.1007/s10751-014-1102-z Measurement of the hyperfine splitting of 133 Cs atoms in superfluid helium K. Imamura T. Furukawa X. F. Yang Y. Mitsuya T. Fujita M. Hayasaka T. Kobayashi

More information

"SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR"

SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR H.-Jürgen Kluge GSI/Darmstadt and Universität Heidelberg TRIUMF, Vancouver, Canada TITAN Workshop, June 10-11, 2005 "SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR" 1.

More information

Interaction between antiprotonic helium ion and He atom: Potential Energy Surface

Interaction between antiprotonic helium ion and He atom: Potential Energy Surface Interaction between antiprotonic helium ion and He atom: Potential Energy Surface S.N. Yudin 1, I.V. Bodrenko 2, and G.Ya. Korenman 1 1 D.V.Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow

More information

High Resolution Electron Spectrometry at the NESR. Ajay Kumar

High Resolution Electron Spectrometry at the NESR. Ajay Kumar High Resolution Electron Spectrometry at the NESR Collaboration Ajay Kumar GSI, Darmstadt Stored Particles Atomic Physics Research Collaboration R. Mann G. Garcia X. Ma B. Sulik J. Ullrich L.C. Tribedi

More information

novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork

novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork novel Iagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork Carsten P. Welsch - On behalf of the ITANET Consortium - c.welsch@gsi.de Outline What is ITANET? Network

More information

Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017

Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017 Beam Cooling M. Steck, GSI Darmstadt CAS Advanced Accelerator Physics, Royal Holloway University of London, 3-15 September 2017 Observation of Cooling Xe 54+ beam at 400 MeV/u cooled with electron current

More information

Cavity Control in a Single-Electron Quantum Cyclotron

Cavity Control in a Single-Electron Quantum Cyclotron Cavity Control in a Single-Electron Quantum Cyclotron An Improved Measurement of the Electron Magnetic Moment David Hanneke Michelson Postdoctoral Prize Lectures 13 May 2010 The Quantum Cyclotron Single

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Euroschool on Physics with Exotic Beams, Mainz 005 Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry Klaus Blaum Johannes Gutenberg-University Mainz

More information

The ATHENA experiment

The ATHENA experiment The ATHENA experiment Antihydrogen at Rest for precision Tests of CPT and WEP M. H. Holzscheiter Los Alamos National Laboratory (for the ATHENA Collaboration) 1. Physics Goals 2. Antiproton Decelerator

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Allen Mills, Jr., University of California Riverside in collaboration with David Cassidy and Harry Tom (UCR) Rod Greaves

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

free electron plus He-like ion

free electron plus He-like ion free electron plus He-like ion E e I p,n E 2 E 1 ΔE=E e +I p,n aber: ΔE=E 2 -E 1 n n n n n n=1 n=2 n=3 AAMOP 2011-2012 2011-11-16 1 dielectronic recombination E 2 E 1 n n n n n n=1 n=2 n=3 AAMOP 2011-2012

More information

THE ALPHA COLLABORATION

THE ALPHA COLLABORATION THE ALPHA COLLABORATION Aarhus University, Denmark Auburn University, USA University of British Columbia, Canada University of California Berkeley, USA University of Calgary, Canada CERN University of

More information

Equivalence principle for free and bound antiparticles

Equivalence principle for free and bound antiparticles Equivalence principle for free and bound antiparticles Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut für Quantenoptik (Garching) How accurate are

More information

Precision spectroscopy of antiprotonic helium

Precision spectroscopy of antiprotonic helium Hyperfine Interact (009) 194:15 0 DOI 10.1007/s10751-009-004-7 Precision spectroscopy of antiprotonic helium Vladimir I. Korobov Zhan-Xiang Zhong Published online: 1 August 009 Springer Science + Business

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Physics at Accelerators

Physics at Accelerators Physics at Accelerators Course outline: The first 4 lectures covers the physics principles of accelerators. Preliminary plan: Lecture 1: Accelerators, an introduction. Acceleration principles. Lecture

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Accelerator Details: the Antiproton Source

Accelerator Details: the Antiproton Source 1 di 6 10/05/2006 9.23 Return to Fermilab's Chain of Accelerators (movie clip) Fermilab's Chain of Accelerators Return to Accelerator Details Main Page Why use antiprotons? A collider has an enormous advantage

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information