Neutron Optical Studies of Fundamental Phonemana in Quantum Mechnics

Size: px
Start display at page:

Download "Neutron Optical Studies of Fundamental Phonemana in Quantum Mechnics"

Transcription

1 EmQM Oct Neutron Optical Studies of Fundamental Phonemana in Quantum Mechnics Yuji HASEGAWA Atominsitut, TU-Wien, Vienna, AUSTRIA I. Introduction: neutron interferometer & polarimeter II. Uncertainty relation for error-disturbance V. Summary 1

2 The neutron Particle Feels four-forces Wave m = (1) x kg s = 1 2 = (18) x J/T = 887(2) s R = 0.7 fm = 12.0 (2.5) x10-4 fm3 u - d - d - quark structure CONNECTION de Broglie B H( h m. v Schrödinger r,t) i ( r,t) t & boundary conditions c h = (20) x m m.c For thermal neutrons = 2 Å, 2000 m/s, 20meV h B = 1.8 x m m.v 1 c 10-8 m 2k p v. t 10-2 m v (5) x 106 m d 0 2 (4) m... mass, s... spin,... magnetic moment, c... Compton wavelength, B decay lifetime, R... (magnetic) confine- debroglie wavelength, c... ment radius,... electric polarizability; all other -B coherence length, p... packet measured quantities like electric charge, magnetic two level system length, d... decay length, k. monopole and electric dipole moment are com- momentum width, t... chopper patible with zero B opening time, v... group velocity, phase. 2

3 Neutrons s in quantum mechanics Particle and wave properties p = mv = h/λ (L. De Broglie) Schroedinger equation ( r, t) i H( r, t) t (E. Schrödinger) Uncertainity Δx Δp h/4π M.C.Escher, 1938 (W. Heisenberg) 3

4 Neutron interferometry Neutrons m = kg s = 1 2 h = J/T Sample o II Phase Shifter H-Detector = 887 s R = 0.7 fm I O-Detector u d d quark structure I= I +e i o II 2 4

5 Neutron interferometer family 5

6 Two-particle vs. two-space entanglement 2-Particle Bell-State = 1 2 I II + I II I, II represent 2-Particles Quantum contextuality 2-Space Bell-State = 1 2 s I p + s II p s, p represent 2-Spaces, e.g., spin & path Violation of Bell-like inequality S' E' 1, 1 +E' 1, 2 E' 2, 1 +E' 2, 2 = > 2 Hasegawa et al., Nature2003, NJP2011 Kochen-Specker-like contradiction 1 63% E ˆ ˆ ˆ ˆ xey E' X1Y2Y 1X Hasegawa et al., PRL2006/2009 Tri-partite entanglement (GHZ-state) Neutron I ( E0) i i i e II e e ( E0 r ) M Measured Hasegawa et al., PRA2010 6

7 W- and GHZ- states in a single neutron system W state: GHZ state: 7 D. Erdösi et al. New J. Phys. 15 (2013)

8 Cheshire Cat 1: paradoxical behavior of neutrons 1 2 -x I + +x II 1 -x I + II 2 T. Denkmayr et al., to be published 8

9 Cheshire Cat 2: neutron(cat neutron(cat) ) in upper path T=1 T=0.8 T=0.6 9

10 Cheshire Cat: spin(smile spin(smile) ) in lower path IH IO IH IO IH IO IO: with spin-analysis 10

11 Neutron polarimetry - Non-commutability of j, PRA (1999) - Bell-Test, PLA (2010) - Leggett-Test, NJP (2012) - GHZ-entanglement, NJP (1012) - Spin-rotation coupling 11

12 Neutron polarimetry: tri-partite entanglement 12 M=4: for perfect circumstances

13 Uncertainty relation: historical 1 In 1927 Heisenberg postulated an uncertainty principle: γ-ray thought experiment p1q1 h with q 1 (mean error) & p 1 (discontinuous change) in modern treatment for commuting observables: 13 ( Q) ( P) 2 :error of the first measurmen ( Q) : disturbanceon the second measurement (P)

14 Uncertainty relation: historical 2 Kennard considered the spread of a wave function ψ : standard deviations Robertson generalized the relation to arbitrary pairs of observables in any states ψ 1 ( A) ( B) A, B 2 dependent on the state but independent of the appartus 14 1 Is ( A) ( B) A, B generally valid? 2

15 Universally valid uncertainty relation by Ozawa First term: error of the first measuremt, disturbance on the second measurement 15 :error of the first measurmen ( A) : disturbanceon the second measurement ( B) :standarddeviations second and third terms: crosstalks between spreads of wavefunctions and error/disturbance M. Ozawa, Phys. Rev. A 67, (2003).

16 Error and disturbance for projective measurement 16

17 Experimental scheme Successively measurement of 2 noncommuting observables A and B Apparatus 1 measures O A, Apparatus 2 measures B 17

18 Theoretical predictions 1 For error and disturbance: For the standard deviations: 18

19 Theoretical predictions 2 -Heisenberg s relation - new uncertainty relation 19

20 Experimental setup 20

21 Experimental setup 21

22 Experimental data 22

23 Results: error-disturbance trade-off ( A) A O O A A O A ( A I) O ( A I) A A A 23

24 Results: new/old uncertainty relation New uncertainty principle :errorof the first measurmen ( A) : disturbanceon the second measurement ( B) :standard deviations Heisenberg product 24 J. Erhart et al., Nature Phys. 8, (2012)

25 Results 1: incident spin-state state ( s>= >) s 0, 0 25 G. Sulyok et al., PRA. 88, (2013)

26 Results 2: polar angle of O A [O A ] θ(o A ) = /12 θ(o A ) = /3 New sum is always above border! G. Sulyok et al., PRA. 88, (2013) 26

27 Results 3: polar angle of B [[ B] (B) = /6 (B) = /4 Asymmetry appears! G. Sulyok et al., PRA. 88, (2013) 27

28 Results 4: azimuthal angle of B [[ B] (B) = 2/3 (B) = 5/6 Sum touches the border! G. Sulyok et al., PRA. 88, (2013) 28

29 Publications by other groups ArXiv;

30 Concluding remarks Neutron interferometer and polarimeter are effective tools for investigations of quantum mechanics. Universally valid uncertainty-relation by Ozawa is experimentally tested. - Neutron s spin measurement confirmed the new error-disturbance uncertainty relation. - New sum is always above the limit! Heisenberg product is often below the limit! 30

31 Neutron Quantum Optics generation Yuji Hasegawa Sam Werner Helmut Racuh Gerald Badurek Jürgen Klepp Stephan Sponar Masanao Ozawa Michael Zawisky Katharina Durstberger Hartmut Lemmel Georg Sulyok Daniel Erdösi Claus 31 Schmitzer Hannes Bartosik Jacqueline Erhart Bülent Demirel Tobias Denkmayr Hermann Geppert

Beyond Heisenberg s uncertainty principle:

Beyond Heisenberg s uncertainty principle: Theory Seminar@MPP, München 21. May 2013 Beyond Heisenberg s uncertainty principle: Error-disturbance uncertainty relation studied in neutron s successive spin measurements Yuji HASEGAWA Atominsitut, TU-Wien,

More information

Error-disturbance uncertainty relations studied in neutron optics

Error-disturbance uncertainty relations studied in neutron optics Journal of Physics: Conference Series PAPER OPEN ACCESS Error-disturbance uncertainty relations studied in neutron optics To cite this article: Stephan Sponar et al 2016 J. Phys.: Conf. Ser. 76 01208 View

More information

Investigations of fundamental phenomena in quantum mechanics with neutrons

Investigations of fundamental phenomena in quantum mechanics with neutrons Journal of Physics: Conference Series OPEN ACCESS Investigations of fundamental phenomena in quantum mechanics with neutrons To cite this article: Yuji Hasegawa 2014 J. Phys.: Conf. Ser. 504 012025 View

More information

Multi entanglement in a single-neutron system

Multi entanglement in a single-neutron system Multi entanglement in a single-neutron system Yuji Hasegawa Atominstitut der Österreichischen Universitäten, Vienna, AUSTRIA PRESTO, Japan Science and Technology Agency(JST), Saitama, JAPAN I. Introduction

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics Contextuality and the Kochen-Specker Theorem Interpretations of Quantum Mechanics by Christoph Saulder 19. 12. 2007 Interpretations of quantum mechanics Copenhagen interpretation the wavefunction has no

More information

Phases and Entanglement in Neutron Interference Experiments

Phases and Entanglement in Neutron Interference Experiments Phases and Entanglement in Neutron Interference Experiments S. Filipp, J. Klepp, H. Lemmel, S. Sponar Y. Hasegawa, H. Rauch Atominstitut der Österreichischen Universitäten QMFPA, December 26 p. 1/34 Outline

More information

Non-locality and destructive interference of matter waves

Non-locality and destructive interference of matter waves Journal of Physics: Conference Series OPEN ACCESS Non-locality and destructive interference of matter waves To cite this article: Helmut Rauch 2014 J. Phys.: Conf. Ser. 504 012017 Related content - Particle

More information

arxiv: v1 [quant-ph] 9 Jan 2012

arxiv: v1 [quant-ph] 9 Jan 2012 Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin-measurements Jacqueline Erhart, Stephan Sponar, Georg Sulyok, Gerald Badurek, Masanao Ozawa, and Yuji Hasegawa

More information

Neutron optical experiments exploring foundamental quantum-phenomena

Neutron optical experiments exploring foundamental quantum-phenomena Neutron otical exeriment exloring foundamental quantum-henomena Yuji HASEGAWA Atomintitut der Öterreichichen Univeritäten, Wien, AUSTRIA PRESTO, Jaan Science and Technology Agency, JAPAN 1. Neutron interferometer/olarimeter

More information

A quantum bouncing ball gravity spectrometer

A quantum bouncing ball gravity spectrometer qbounce A quantum bouncing ball gravity spectrometer Hartmut Abele Schloss Waldthausen 13. April 2016 Hartmut Abele, TU Wien how Case I: free fall at short distances Julio Gea-Banacloche, Am. J. Phys.1999

More information

Completion of von Neumann s Axiomatization of Quantum Mechanics: From the Repeatability Hypothesis to Quantum Instruments

Completion of von Neumann s Axiomatization of Quantum Mechanics: From the Repeatability Hypothesis to Quantum Instruments Workshop ``Hilbert s Sixth Problem University of Leicester, UK, May 2 (2--4), 2016 Completion of von Neumann s Axiomatization of Quantum Mechanics: From the Repeatability Hypothesis to Quantum Instruments

More information

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( ) " = h mv

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( )  = h mv From Last Time Wavelengths of massive objects Light shows both particle and wavelike properties Matter shows both particle and wavelike properties. How can we make sense of this? debroglie wavelength =

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I

F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I QUANTUM UNCERTAINT Y F R A N C E S C O B U S C E M I ( N A G OYA U N I V E R S I T Y ) C O L L O Q U I U M @ D E P T. A P P L I E D M AT H E M AT I C S H A N YA N G U N I V E R S I T Y ( E R I C A ) 2

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

Momentum expectation Momentum expectation value value for for infinite square well

Momentum expectation Momentum expectation value value for for infinite square well Quantum Mechanics and Atomic Physics Lecture 9: The Uncertainty Principle and Commutators http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Announcement Quiz in next class (Oct. 5): will cover Reed

More information

General Physics (PHY 2140) Lecture 15

General Physics (PHY 2140) Lecture 15 General Physics (PHY 2140) Lecture 15 Modern Physics Chapter 27 1. Quantum Physics The Compton Effect Photons and EM Waves Wave Properties of Particles Wave Functions The Uncertainty Principle http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Uncertainty Principle Werner Heisenberg 1901-1976 When you perform an experiment, do you get the exact same result every time? No. There is a fundamental uncertainty

More information

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5)

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5) Quantum Mechanics Reading: Gray: (1 8) to (1 12) OGN: (15.5) A Timeline of the Atom...... 400 BC 0 1800 1850 1900 1950 400 B.C. Democritus: idea of an atom 1808 John Dalton introduces his atomic theory.

More information

Understanding the quantum Cheshire Cat experiment of Denkmayr et al.

Understanding the quantum Cheshire Cat experiment of Denkmayr et al. Understanding the quantum Cheshire Cat experiment of Denkmayr et al. W.M. Stuckey* Department of Physics, Elizabethtown College, Elizabethtown, PA 17022 Michael Silberstein Department of Philosophy, Elizabethtown

More information

arxiv: v5 [quant-ph] 20 Oct 2017

arxiv: v5 [quant-ph] 20 Oct 2017 Confined Contextuality in Neutron Interferometry: Observing the Quantum Pigeonhole Effect Mordecai Waegell, 1, 2 Tobias Denkmayr, 3 Hermann Geppert, 3 David Ebner, 3 Tobias Jenke, 4 Yuji Hasegawa, 3 Stephan

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 Double-Slit Experiment Photons pass through the double-slit apparatus.

More information

Quantum Mechanics Tutorial

Quantum Mechanics Tutorial Quantum Mechanics Tutorial The Wave Nature of Matter Wave-particle duality and de Broglie s hypothesis. de Broglie matter waves The Davisson-Germer experiment Matter wave packets Heisenberg uncertainty

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Physics 1C Lecture 28C. "For those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Physics 1C Lecture 28C. For those who are not shocked when they first come across quantum theory cannot possibly have understood it. Physics 1C Lecture 28C "For those who are not shocked when they first come across quantum theory cannot possibly have understood it." --Neils Bohr Outline CAPE and extra credit problems Wave-particle duality

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

Relational Measurements and Uncertainty by Ken Krechmer 757 Greer Road Palo Alto, CA USA

Relational Measurements and Uncertainty by Ken Krechmer 757 Greer Road Palo Alto, CA USA Relational Measurements and Uncertainty by Ken Krechmer 757 Greer Road Palo Alto, CA USA 94303 krechmer@isology.com Abstract: In representational measurement theory, the current theory of all measurements,

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Units and dimensions

Units and dimensions Particles and Fields Particles and Antiparticles Bosons and Fermions Interactions and cross sections The Standard Model Beyond the Standard Model Neutrinos and their oscillations Particle Hierarchy Everyday

More information

Beginning Modern Quantum

Beginning Modern Quantum Beginning Modern Quantum Born s probability interpretation The indeterminacy ( uncertainty ) principle The Schroedinger equation The Copenhagen interpretation 419 Term Paper Abstract due today Homework

More information

Problems with/failures of QM

Problems with/failures of QM CM fails to describe macroscopic quantum phenomena. Phenomena where microscopic properties carry over into macroscopic world: superfluidity Helium flows without friction at sufficiently low temperature.

More information

Neutron interferometry. Hofer Joachim

Neutron interferometry. Hofer Joachim 20.01.2011 Contents 1 Introduction 2 1.1 Foundations of neutron optics...................................... 2 1.2 Fundamental techniques......................................... 2 1.2.1 Superposition

More information

Chapter 7 Atomic Structure and Orbitals

Chapter 7 Atomic Structure and Orbitals Chapter 7 Atomic Structure and Orbitals Alpha Scattering Experiment: Rutherford s observations Light as Waves or Particles Wavelength (λ) is the distance between any two identical points in consecutive

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

More on waves and Uncertainty Principle

More on waves and Uncertainty Principle More on waves and Uncertainty Principle Announcements: No Class on Friday Homework not due until Thursday. Still have several homework papers to pick up (get at end of hour) http://www.colorado.edu/physics/phys2170/

More information

Physics 342: Modern Physics

Physics 342: Modern Physics Physics 342: Modern Physics Final Exam (Practice) Relativity: 1) Two LEDs at each end of a meter stick oriented along the x -axis flash simultaneously in their rest frame A. The meter stick is traveling

More information

Probability: The Heisenberg Uncertainty Principle *

Probability: The Heisenberg Uncertainty Principle * OpenStax-CNX module: m42579 1 Probability: The Heisenberg Uncertainty Principle * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract

More information

Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties

Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties Wave Nature of Matter Light has wave-like and particle-like properties Can matter have wave and particle properties? de Broglie s hypothesis: matter has wave-like properties in addition to the expected

More information

Fundamental of Spectroscopy for Optical Remote Sensing Xinzhao Chu I 10 3.4. Principle of Uncertainty Indeterminacy 0. Expression of Heisenberg s Principle of Uncertainty It is worth to point out that

More information

Chapter 4: The Wave Nature of Matter

Chapter 4: The Wave Nature of Matter Chapter 4: The Wave Nature of Matter q We have seen in Chap. 3 that EM radiation displays both wave properties (classical description) and particle properties (quantum description) q Matter is described

More information

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( ) Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi

The Exchange Model. Lecture 2. Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams. Eram Rizvi The Exchange Model Lecture 2 Quantum Particles Experimental Signatures The Exchange Model Feynman Diagrams Eram Rizvi Royal Institution - London 14 th February 2012 Outline A Century of Particle Scattering

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Last Time We Solved some of the Problems with Classical Physics Discrete Spectra? Bohr Model but not complete. Blackbody

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 208 Dr Jean M Standard March 9, 208 Name KEY Physical Chemistry II Exam 2 Solutions ) (4 points) The harmonic vibrational frequency (in wavenumbers) of LiH is 4057 cm Based upon this

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

Bell s Theorem. Ben Dribus. June 8, Louisiana State University

Bell s Theorem. Ben Dribus. June 8, Louisiana State University Bell s Theorem Ben Dribus Louisiana State University June 8, 2012 Introduction. Quantum Theory makes predictions that challenge intuitive notions of physical reality. Einstein and others were sufficiently

More information

arxiv:quant-ph/ v1 18 Nov 2003

arxiv:quant-ph/ v1 18 Nov 2003 Violation of a Bell-like Inequality in Neutron Optical Experiments: Quantum contextuality arxiv:quant-ph/311121v1 18 Nov 23 Yuji Hasegawa, Rudolf Loidl Gerald Badurek, Matthias Baron and Helmut Rauch Atominstitut

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom The Quantum Gang Problems with Classical Physics Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom Why this shape? Why the drop? Blackbody Radiation A black body is an ideal system

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Rutherford Model 1911

Rutherford Model 1911 Rutherford Model 1911 Positive charge is concentrated in a very small nucleus. So a- particles can sometimes approach very close to the charge Ze in the nucleus and the Coulomb force F 1 4πε o ( Ze)( Ze)

More information

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 7: Quantum Theory: Introduction and Principles Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas Chapter 7: Quantum Theory: Introduction and Principles classical mechanics, the laws of motion introduced in the seventeenth century

More information

Solution 01. Sut 25268

Solution 01. Sut 25268 Solution. Since this is an estimate, more than one solution is possible depending on the approximations made. One solution is given The object of this section is to estimate the the size of an atom. While

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

Stronger uncertainty relations

Stronger uncertainty relations Stronger uncertainty relations Lorenzo Maccone Dip. Fisica, INFN Sez. Pavia, Universita' di Pavia maccone@unipv.it Arun K. Pati Quantum Information and Computation Group, HarishChandra Research Institute,

More information

Rotation and vibration of Molecules

Rotation and vibration of Molecules Rotation and vibration of Molecules Overview of the two lectures... 2 General remarks on spectroscopy... 2 Beer-Lambert law for photoabsorption... 3 Einstein s coefficients... 4 Limits of resolution...

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 6: The Periodic Table and Atomic Structure Electromagnetic Radiation Atomic Spectra The Bohr Atom Quantum Mechanical Model of the Atom Wave Mechanics Quantum Numbers and Electron Orbitals Interpreting

More information

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure

10/17/11. Chapter 7. Quantum Theory and Atomic Structure. Amplitude (intensity) of a wave. Quantum Theory and Atomic Structure Quantum Theory and Atomic Structure Chapter 7 7. The Nature of Light Quantum Theory and Atomic Structure 7. Atomic Spectra 7. The Wave-Particle Duality of Matter and Energy 7.4 The Quantum-Mechanical Model

More information

Modern Physics. Ans: 1. According to de broglie hypothesis, any moving particle is associated with a wave.

Modern Physics. Ans: 1. According to de broglie hypothesis, any moving particle is associated with a wave. Modern Physics Q1. What is matter wave? Or What is De broglie hypothesis? Ans: 1. According to de broglie hypothesis, any moving particle is associated with a wave. 2. The waves associated with a particle

More information

arxiv:quant-ph/ v1 27 Dec 2002

arxiv:quant-ph/ v1 27 Dec 2002 DO THE ROBERTSON-SCHRÖDINGER AND THE HEISENBERG UNCERTAINTY RELATIONS IMPLY A GENERAL PHYSICAL PRINCIPLE? arxiv:quant-ph/0212145v1 27 Dec 2002 Vinh Quang N. Institute of Physics, P.O.Box 429 Boho, Hanoi

More information

THE UNIVERSITY OF PRETORIA

THE UNIVERSITY OF PRETORIA PHY 255 THE UNIVERSITY OF PRETORIA FIRST SEMESTER, 2011 Campus: Hatfield PHYSICS 255 Modern Physics Exam Total: 70 (Time allowed: THREE hours Internal Examiner: M. van den Worm External Examiner: Q. Odendaal

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

Introduction to particle physics Lecture 3: Quantum Mechanics

Introduction to particle physics Lecture 3: Quantum Mechanics Introduction to particle physics Lecture 3: Quantum Mechanics Frank Krauss IPPP Durham U Durham, Epiphany term 2010 Outline 1 Planck s hypothesis 2 Substantiating Planck s claim 3 More quantisation: Bohr

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

Physics 1C. Modern Physics Lecture

Physics 1C. Modern Physics Lecture Physics 1C Modern Physics Lecture "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Atomic Structure-Notes

Atomic Structure-Notes Subatomic Particles Electron, proton and neutron Atomic Structure-Notes Discovery of Electron (Michael Faraday s Cathode Ray Discharge Tube Experiment) Experimental Setup: Glass tube is partially evacuated

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

AS V Schrödinger Model of of H Atom

AS V Schrödinger Model of of H Atom chem101/3, wi2010 pe 05 1 AS V Schrödinger Model of of H Atom Wavefunctions/ Orbitals chem101/3, wi2010 pe 05 2 General Bohr s Quantum Theory fails to explain why e s don t loose energy by constantly radiating,

More information

EPR Paradox and Bell s Inequality

EPR Paradox and Bell s Inequality EPR Paradox and Bell s Inequality James Cross 2018-08-18 1 Introduction The field of quantum mechanics is practically synonymous with modern physics. The basics of quantum theory are taught in every introductory

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM (noon) Tuesday, 24 May. 1 1D Schrödinger equation: Particle in an infinite box Consider

More information

Neutron Interferometry

Neutron Interferometry Neutron Interferometry F. E. Wietfeldt Fundamental Neutron Physics Summer School 2015 June 19, 2015 Michelson Interferometer Mach-Zender Interferometer The Perfect Crystal Neutron Interferometer Perfect

More information

-18- Section 5: Special Relativity f. 1. The laws of nature are the same in all inertial reference frames. (No preferred frame of reference.

-18- Section 5: Special Relativity f. 1. The laws of nature are the same in all inertial reference frames. (No preferred frame of reference. PHY 133 Einstein's postulates: -18- Section 5: Special Relativity f 1. The laws of nature are the same in all inertial reference frames. (No preferred frame of reference.) Inertial reference frame: one

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Laboratory 1: Entanglement & Bell s Inequalities

Laboratory 1: Entanglement & Bell s Inequalities Laboratory 1: Entanglement & Bell s Inequalities Jose Alejandro Graniel Institute of Optics University of Rochester, Rochester, NY 14627, U.S.A Abstract This experiment purpose was to study the violation

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Decoherence and The Collapse of Quantum Mechanics. A Modern View

Decoherence and The Collapse of Quantum Mechanics. A Modern View Decoherence and The Collapse of Quantum Mechanics A Modern View It s time to make decoherence mainstream QM is ~90 years old But it is still taught like the 1930s Modern textbooks still ignore measurement

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Place exam revisions in box at front of room either now or at end of lecture Physics 102: Lecture 23, Slide 1 Exam 3 Monday April 21! Material

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Module 02: Wave-particle duality, de Broglie waves and the Uncertainty principle

Module 02: Wave-particle duality, de Broglie waves and the Uncertainty principle PG Pathshala Subject: BIOPHYSICS Paper 0: Quantum Biophysics Module 0: Wave-particle duality, de Broglie waves and the Uncertainty principle Principal Investigator: Prof. Moganty R. Rajeswari Professor,

More information

chmy361 Lec42 Tue 29nov16

chmy361 Lec42 Tue 29nov16 chmy361 Lec42 Tue 29nov16 1 Quantum Behavior & Quantum Mechanics Applies to EVERYTHING But most evident for particles with mass equal or less than proton Absolutely NECESSARY for electrons and light (photons),

More information

Review of the Formalism of Quantum Mechanics

Review of the Formalism of Quantum Mechanics Review of the Formalism of Quantum Mechanics The postulates of quantum mechanics are often stated in textbooks. There are two main properties of physics upon which these postulates are based: 1)the probability

More information

Bell s Theorem...What?! Entanglement and Other Puzzles

Bell s Theorem...What?! Entanglement and Other Puzzles Bell s Theorem...What?! Entanglement and Other Puzzles Kyle Knoepfel 27 February 2008 University of Notre Dame Bell s Theorem p.1/49 Some Quotes about Quantum Mechanics Erwin Schrödinger: I do not like

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

4E : The Quantum Universe. Lecture 9, April 13 Vivek Sharma

4E : The Quantum Universe. Lecture 9, April 13 Vivek Sharma 4E : The Quantum Universe Lecture 9, April 13 Vivek Sharma modphys@hepmail.ucsd.edu Just What is Waving in Matter Waves? For waves in an ocean, it s the water that waves For sound waves, it s the molecules

More information

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle J. Y. Zeng 1, Y. A. Lei 1, S. Y. Pei, X. C. Zeng 3 1 School of Physics, Peking University, Beijing, 1871, China Department of Physics,

More information

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom Problem Set 1 Solutions 8.04 Spring 01 February 1, 01 Problem 1. (15 points) Radiative collapse of a classical atom (a) (5 points) We begin by assuming that the orbit is circular. This seems like circular

More information

Chapter 7. Wave Behavior of Electrons

Chapter 7. Wave Behavior of Electrons Chapter 7 Wave Behavior of Electrons 2-Slit Interference If electrons behave only like particles, there should only be two bright spots on the target However, electrons actually present an interference

More information

No Fine theorem for macroscopic realism

No Fine theorem for macroscopic realism No Fine theorem for macroscopic realism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany 2nd International Conference on Quantum Foundations Patna, India 17 Oct. 2016

More information