Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties

Size: px
Start display at page:

Download "Wave Nature of Matter. Wave Nature of Matter. Wave Nature of Matter. Light has wave-like and particle-like properties"

Transcription

1 Wave Nature of Matter Light has wave-like and particle-like properties Can matter have wave and particle properties? de Broglie s hypothesis: matter has wave-like properties in addition to the expected particle-like like properties Confirmed by electron diffraction experiments de Broglie proposed that electrons moving around the nucleus have wave-like properties Wave Nature of Matter Since electrons have wave-like properties, each electron has an associated wavelength λ = h mv where λ = wavelength h = Planck s constant m = mass v = velocity (mv = momentum) What is the wavelength associated with an electron of mass m = x g that travels at % of the speed of light? Wave Nature of Matter If all matter has wave-like properties (and an associated wavelength), why don t we notice it? If you run 15 km/hr, what s your wavelength? The wavelength is inversely proportional to mass. The wavelength of everyday objects is extremely small because its mass is large. 1

2 Wave Nature of Matter h= J = kg.m 2 s -1 Find out de Broglie wavelength (in m) of an electron of m= g; v= 1 ms -1 Α. λ = 7 x 10-4 B. λ = 7 x C. λ = 7 x D. λ = 7 x 10 5 Find out de Broglie wavelength (in m) of an electron of m= g; v= ms -1 Α. λ = 1 x 10-4 B. λ = 1 x C. λ = 1 x D. λ = 1 x Wave Nature of Matter h= J = kg.m 2 s -1 Find out de Broglie wavelength (in m) of a baseball of m= 142 g; v= 25.0 ms -1 Α. λ = 2 x 10-4 B. λ = 2 x C. λ = 2 x D. λ = 2 x Find out de Broglie wavelength (in m) of the Earth of m = g; v = ms -1 Α. λ = 4 x 10-4 B. λ = 4 x C. λ = 4 x D. λ = 4 x The Quantum Mechanical Model Waves don t have a discrete position! Spread out through space Cannot pinpoint one specific location Since electrons have wave-like properties, we cannot know their exact position, and velocity at any given time. Bohr s model ignores the wave properties of electrons 2

3 The Quantum Mechanical Model Macroscopic world: position and velocity (momentum) of a particle can be determined to infinite precision. Quantum Q mechanical world : an uncertainty associated with each measurement. Bohr s Model Bohr s model suggests that the electron has the lowest energy at Α. Furthest point from the nucleus B. Can not predict C. Close to the nucleus D. To be computed by the formula E=hν Bohr s model suggests emission of light occurs because Α. An electron jumps to a higher energy level B. An electron jumps to a lower energy level C. An electron jumps from the ground state D. Electrons collide with each other Bohr s Model An incorrect statement about n in Bohr s model is Α. It is called principle quantum number B. It does not relate to the energy of an electron C. Energy increases as n increases D. Stability increases as n decreases Bohr s model suggests absorption of light occurs because Α. An electron jumps to a higher energy level B. An electron jumps to a lower energy level C. An electron jumps from the ground state D. Electrons collide with each other 3

4 The Quantum Mechanical Model Heisenberg Uncertainty Principle: The exact position (location) and exact momentum (mass velocity) in space of an object cannot be known simultaneously. If you know the momentum of an electron, you can t know its exact location. Electrons don t move in well-defined circular orbits around the nucleus. In 1926 Schrödinger developed an equation that incorporates both the particle-like and wave-like behavior of electrons. Heisenberg s Uncertainty Principle Uncertainty in position Δx mδu h 4π Uncertainty in momentum Heisenberg s Uncertainty Principle Δx mδu h 4π An electron moving near an atomic nucleus has a speed ms -1 ± 1%. What is the uncertainty in position ( Δx)? 4

5 The Quantum Mechanical Model Schrödinger wave equation describes the total energy of an electron in an atom based on its location and the electrostatic attraction/repulsion Solving the Schrödinger wave equation leads to a series of mathematical functions called wave functions (ψ) Although ψ does not have any yphysical meaning, the square of the wave function (ψ 2 ) describes the probability of finding the electron at a given location These wave functions are called orbitals and have a characteristic energy and shape. The Bohr model used a single quantum number (n) to describe an orbit, the Schrödinger model uses three quantum numbers: n, l, and m l to describe an orbital. An orbital: Orbitals and Quantum Numbers describes a specific distribution of electron density in space has a characteristic energy has a characteristic shape is described by three quantum numbers: n, l, m l can hold a maximum of 2 electrons A fourth quantum number (m s ) is needed to describe each electron in an orbital Orbitals and Quantum Numbers Principal quantum number (n): integral values n = 1, 2, 3, 4, describes the energy of the electron gy as n increases, the energy of the electron increases as n increases, the average distance from the nucleus increases as n increases, the electron is more loosely bound to the nucleus 5

6 Orbitals and Quantum Numbers Angular momentum quantum number (l): also known as the Azimuthal quantum number integral values l = 0, 1, 2, 3,.,(n-1) Example: If n = 3, then l = 0, 1, or 2. If n = 4, then l = 0, 1, 2, or 3. defines the shape of the orbital Orbitals and Quantum Numbers Angular momentum quantum number (l) The value for l from a particular orbital is usually designated by the letters s, p, d, f, and g: Value of l Letter used s p d f g An orbital with quantum numbers of n = 3 and l = 2 would be a 3d orbital An orbital with quantum numbers of n = 4 and l = 1 would be a 4p orbital Orbitals and Quantum Numbers Magnetic quantum number (m l ): describes the orientation in space of the orbital integral values between l and -l If l = 1, then m l = 1, 0, -1 If l = 2, then m l = 2, 1, 0, -1,-2 6

7 Orbitals and Quantum Numbers When n = 3, the values of l can be Α. +3, +2, +1, 0 B. +3, +2, +1, 0, -1, -2, -3 C. +2, +1, 0 D. +2, +1, 0, -1, -2 When n = 4, the values of l can be Α. +3, +2, +1, 0 B. +3, +2, +1, 0, -1, -2, -3 C. +2, +1, 0 D. +2, +1, 0, -1, -2 Orbitals and Quantum Numbers When l = 2, the values of m l Α. +3, +2, +1, 0 B. +3, +2, +1, 0, -1, -2, -3 C. +2, +1, 0 D. +2, +1, 0, -1, -2 can be When l = 3, the values of m l can be Α. +3, +2, +1, 0 B. +3, +2, +1, 0, -1, -2, -3 C. +2, +1, 0 D. +2, +1, 0, -1, -2 Orbitals and Quantum Numbers What type of orbital is designated by n = 3, l = 2? Α. 3s B. 2p C. 3d D. 4s What type of orbital is designated by n = 4, l = 0? Α. 3s B. 2p C. 3d D. 4s 7

8 Orbitals and Quantum Numbers What type of orbital is designated by n = 2, l = 1? Α. 3s B. 2p C. 3d D. 4s What type of orbital is designated by n = 3, l = 0? Α. 3s B. 2p C. 3d D. 4s Summary Quantum Values Property Description number n 1,2,3. size shell l 0... n-1 shape subshell m l -l..0..+l orientation orbital The number of subshells in a shell = n The number of orbitals in a subshell = 2l+1 The number of orbitals in a shell = n 2 The shapes of Orbitals s-orbital- what s value of l? Spherical in shape the size of the s-orbital increases with increasing n 1s 2s 3s 8

9 Orbital Shapes Any nodal planes? Nodal planes are defined as those planar areas where the electron density is low Orbital Shapes p-orbital- what s value of l? What are the values of m l? Three p orbitals dumbbell shaped same size and energy within same shell (same n value) different spatial orientation m l = -1 m l = 0 m l = 1 Orbital Shapes Where are the nodal planes? 9

10 Orbital Shapes d-orbitals-what s value of l? What are the values of m l? five d orbitals are present in each shell where n > 3 same energy within same shell different shapes different orientation in space Where are the nodal planes? Orbital Shapes Third Shell Orbitals E n e r g y Shell n = 3 3p 3d 3s 10

11 What are the quantum numbers associated with the following subshells: Subshells n values l values m l values 1s 2p 3p 3d 5f Summary Compare and contrast the Bohr and quantum mechanical models Summary An electron has a 100% probability of being somewhere ORBITAL: The region in space where an electron is likely to be found The usual pictures of orbitals show the region where the electron will be found 90% of the time 11

12 Summary nodes: regions in space where the electron can t be found radial probabilities: the probability of finding an electron a certain distance from the nucleus Different orbitals have different shapes and sizes different energies 12

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Chapter 7 The Quantum-Mechanical Model of the Atom

Chapter 7 The Quantum-Mechanical Model of the Atom Chapter 7 The Quantum-Mechanical Model of the Atom Electron Energy electron energy and position are complimentary because KE = ½mv 2 for an electron with a given energy, the best we can do is describe

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Chapter 7 Atomic Structure and Orbitals

Chapter 7 Atomic Structure and Orbitals Chapter 7 Atomic Structure and Orbitals Alpha Scattering Experiment: Rutherford s observations Light as Waves or Particles Wavelength (λ) is the distance between any two identical points in consecutive

More information

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction

H!!!! = E! Lecture 7 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7. Lecture 7 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 7 Lecture 7 - Atomic Structure Reading in Silberberg - Chapter 7, Section 4 The Qunatum-Mechanical Model of the Atom The Quantum

More information

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS COLLEGE PHYSICS Chapter 30 ATOMIC PHYSICS Matter Waves: The de Broglie Hypothesis The momentum of a photon is given by: The de Broglie hypothesis is that particles also have wavelengths, given by: Matter

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

QUESTION BANK ON ATOMIC STRUCTURE

QUESTION BANK ON ATOMIC STRUCTURE CHEMISTRY QUESTION BANK ON ATOMIC STRUCTURE (QUANTAM NUMBERS) Q. Deduce the possible sets of four quantum number when n =. Q. What is the maximum number of electron that may be present in all the atomic

More information

Chapter 4 Section 2 Notes

Chapter 4 Section 2 Notes Chapter 4 Section 2 Notes Vocabulary Heisenberg Uncertainty Principle- states that it is impossible to determine simultaneously both the position and velocity of an electron or any other particle. Quantum

More information

Chapter 7. Wave Behavior of Electrons

Chapter 7. Wave Behavior of Electrons Chapter 7 Wave Behavior of Electrons 2-Slit Interference If electrons behave only like particles, there should only be two bright spots on the target However, electrons actually present an interference

More information

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE 1 7.1 The Nature of Light 2 Most subatomic particles behave as PARTICLES and obey the physics of waves. Light is a type of electromagnetic radiation Light consists

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Uncertainty Principle Demonstration Any experiment designed to observe the electron results in detection of a single electron particle and no interference pattern. Determinacy vs.

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 4.1 to 4.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 4.1 to 4.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 4.1 to 4.3 Heisenberg s Uncertainty Principle Electrons have wave-particle duality, but it is impossible

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 John D. Bookstaver St. Charles Community College Cottleville, MO Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic

More information

Ch. 1: Atoms: The Quantum World

Ch. 1: Atoms: The Quantum World Ch. 1: Atoms: The Quantum World CHEM 4A: General Chemistry with Quantitative Analysis Fall 2009 Instructor: Dr. Orlando E. Raola Santa Rosa Junior College Overview 1.1The nuclear atom 1.2 Characteristics

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 6. of Atoms. Waves. Waves 1/15/2013

Chapter 6. of Atoms. Waves. Waves 1/15/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

AS V Schrödinger Model of of H Atom

AS V Schrödinger Model of of H Atom chem101/3, wi2010 pe 05 1 AS V Schrödinger Model of of H Atom Wavefunctions/ Orbitals chem101/3, wi2010 pe 05 2 General Bohr s Quantum Theory fails to explain why e s don t loose energy by constantly radiating,

More information

Chapter 7. DeBroglie Waves Heisenberg s Uncertainty Quantum Numbers Electron Configuration

Chapter 7. DeBroglie Waves Heisenberg s Uncertainty Quantum Numbers Electron Configuration Chapter 7 DeBroglie Waves Heisenberg s Uncertainty Quantum Numbers Electron Configuration Are Electrons Particles or Waves? De Broglie (1892 1987) If electromagnetic radiation behaves as a particle, could

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure.

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 Section 1 6: The Marathon Adapted from: John D. Bookstaver St. Charles Community College

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted?

Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? 135 Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? (Data from Appendix G!) 1) Find the enthalpy of reaction

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l

Quantum Numbers. principal quantum number: n. angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Quantum Numbers Quantum Numbers principal quantum number: n angular momentum quantum number: l (azimuthal) magnetic quantum number: m l Principal quantum number: n related to size and energy of orbital

More information

CHAPTER STRUCTURE OF ATOM

CHAPTER STRUCTURE OF ATOM 12 CHAPTER STRUCTURE OF ATOM 1. The spectrum of He is expected to be similar to that [1988] H Li + Na He + 2. The number of spherical nodes in 3p orbitals are [1988] one three none two 3. If r is the radius

More information

Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted?

Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? 135 Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? (Data from Appendix G!) 1) Complete the thermochemical

More information

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)?

Chem What is the difference between an orbit (Bohr model) and an orbital (quantum mechanical model)? Reading: sections 6.5-6.6 As you read this material, ask yourself the following questions: What are wave functions and orbitals, how do orbitals differ from orbits? What can we learn about an electron

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

Recall the Goal. What IS the structure of an atom? What are the properties of atoms?

Recall the Goal. What IS the structure of an atom? What are the properties of atoms? Recall the Goal What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5)

Quantum Mechanics. Reading: Gray: (1 8) to (1 12) OGN: (15.5) Quantum Mechanics Reading: Gray: (1 8) to (1 12) OGN: (15.5) A Timeline of the Atom...... 400 BC 0 1800 1850 1900 1950 400 B.C. Democritus: idea of an atom 1808 John Dalton introduces his atomic theory.

More information

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median.

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median. Chemistry Structure and Properties 2nd Edition Tro Test Bank Full Download: http://testbanklive.com/download/chemistry-structure-and-properties-2nd-edition-tro-test-bank/ Chemistry: Structure & Properties,

More information

It is impossible to measure simultaneously the position and momentum of a small particle (subatomic particle) with absolute accuracy or certainty The

It is impossible to measure simultaneously the position and momentum of a small particle (subatomic particle) with absolute accuracy or certainty The Mr.V It is impossible to measure simultaneously the position and momentum of a small particle (subatomic particle) with absolute accuracy or certainty The concept of the orbital was based on the probability

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Announcements. Please check for errors now

Announcements. Please check for errors now Announcements Print worksheet #10 prior to your Thursday discussion section LON-CAPA assignment #6 due Tuesday, Oct. 5 at 9am Next week s quiz will be on Tuesday atomic history and electron configurations

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

CHM The Basics of Quantum Mechanics (r14) Charles Taylor 1/6

CHM The Basics of Quantum Mechanics (r14) Charles Taylor 1/6 CHM 110 - The Basics of Quantum Mechanics (r14) - 2014 Charles Taylor 1/6 Introduction We've discussed how Bohr's model predicted the behavior of the hydrogen atom. To describe the other atoms (and get

More information

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents Chapter 4 Arrangement of Electrons in Atoms Table of Contents Section 1 Section 2 Section 3 The Development of a New Atomic Model The Quantum Model of the Atom Electron Configurations Sodium Yellow Strontium

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 6: The Periodic Table and Atomic Structure Electromagnetic Radiation Atomic Spectra The Bohr Atom Quantum Mechanical Model of the Atom Wave Mechanics Quantum Numbers and Electron Orbitals Interpreting

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM SPARKS CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 LM15, 16 & 17 due W 8:45AM QUIZ: CLICKER QUESTION Which of these types of light has the highest energy photons?

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 2018-10-2 1 2 Light and the Electromagnetic Spectrum Electromagnetic energy ( light ) is characterized by wavelength, frequency, and amplitude.

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Atomic Structure 11/21/2011

Atomic Structure 11/21/2011 Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Electron Configurations

Electron Configurations APChem Topic 3: Electron Configurations Notes 3-2: Quantum Numbers, Orbitals and Electron Configurations Wave Nature of Electrons All the work by Bohr suggested that the electron was a discrete particle.

More information

RADIAL DISTRIBUTION FUNCTION- DEMYSTIFIED

RADIAL DISTRIBUTION FUNCTION- DEMYSTIFIED RADIAL DISTRIBUTION FUNCTION- DEMYSTIFIED Problem 1/ Correct Statement is: 1. Every curve in a radial distribution plot should have an integrated area equal to one. 2. The maxima in the Radial probability

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University The Beginnings of Quantum Mechanics Until the beginning of the twentieth

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Chp 6: Atomic Structure

Chp 6: Atomic Structure Chp 6: Atomic Structure 1. Electromagnetic Radiation 2. Light Energy 3. Line Spectra & the Bohr Model 4. Electron & Wave-Particle Duality 5. Quantum Chemistry & Wave Mechanics 6. Atomic Orbitals Overview

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 2016 sessions lectures 3-4 (537-542, *(543-549), 549-557) 1 quantization of energy E photon = hν absorption and emission spectra of hydrogen atom Z En J n 2 18 = 2. 178 10 2 Z=1 for H

More information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information

Vanden Bout/LaBrake/Crawford. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. Important Information Unit2Day2-Crawford Page 1 Unit2Day2-Crawford Monday, September 23, 2013 4:15 PM Vanden Bout/LaBrake/Crawford CH301 Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL UNIT 2 Day 2 CH302 Vanden

More information

Quantum Theory of the Atom

Quantum Theory of the Atom Quantum Theory of the Atom The Wave Nature of Light A wave is a continuously repeating change or oscillation in matter or in a physical field. Light is also a wave. It consists of oscillations in electric

More information

Introduction to Quantum Mechanics. and Quantum Numbers

Introduction to Quantum Mechanics. and Quantum Numbers Introduction to Quantum Mechanics and Quantum Numbers The Quantum Mechanical Model quantum mechanics: the application of quantum theory to explain the properties of matter, particularly electrons in atoms

More information

Heat of formation / enthalpy of formation!

Heat of formation / enthalpy of formation! 165 Heat of formation / enthalpy of formation! What is the enthalpy change at standard conditions when 25.0 grams of hydrogen sulfide gas is reacted? 1 - Use Hess' Law to find the enthalpy change of the

More information

QUANTUM THEORY & ATOMIC STRUCTURE. GENERAL CHEMISTRY by Dr. Istadi

QUANTUM THEORY & ATOMIC STRUCTURE. GENERAL CHEMISTRY by Dr. Istadi QUANTUM THEORY & ATOMIC STRUCTURE GENERAL CHEMISTRY by Dr. Istadi 1 THE NATURE OF LIGHT Visible light is one type of electromagnetic radiation ( radiation (electromagnetic The electromagnetic radiation

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

AP Chapter 6 Study Questions

AP Chapter 6 Study Questions Class: Date: AP Chapter 6 Study Questions True/False Indicate whether the statement is true or false. 1. The wavelength of radio waves can be longer than a football field. 2. Black body radiation is the

More information

Key Equations. Determining the smallest change in an atom's energy.

Key Equations. Determining the smallest change in an atom's energy. ATOMIC STRUCTURE AND PERIODICITY Matter and Energy Key Equations λν = c ΔE = hν Relating speed of a wave to its wavelength and frequency. Determining the smallest change in an atom's energy. H( λ =R n

More information

Chapter 4: The Electron

Chapter 4: The Electron Chapter 4: The Electron C. Goodman Doral Academy Preparatory High School, 2012-2013 Based on a PowerPoint presentation by Sarah Temple By PresenterMedia.com Section 4-1 Electromagnetic Spectrum Essential

More information

Lecture 4: Electronic structure of an atom

Lecture 4: Electronic structure of an atom Lecture 4: Electronic structure of an atom Read: BLB 6.3 6.6 HW: BLB 6:33,39,51,54 Sup 6:6,7,8,10 no Sup 6.9!!! Know: matter waves uncertainty principle electronic transitions of orbitals quantum numbers

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Wavelength of 1 ev electron

Wavelength of 1 ev electron HW8: M Chap 15: Question B, Exercises 2, 6 M Chap 16: Question B, Exercises 1 M Chap 17: Questions C, D From Last Time Essay topic and paragraph due Friday, Mar. 24 Light waves are particles and matter

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

Development of atomic theory

Development of atomic theory Development of atomic theory The chapter presents the fundamentals needed to explain and atomic & molecular structures in qualitative or semiquantitative terms. Li B B C N O F Ne Sc Ti V Cr Mn Fe Co Ni

More information

Chapter 6. Electronic Structure of Atoms. The number & arrangement of e - in an atom is responsible for its chemical behavior.

Chapter 6. Electronic Structure of Atoms. The number & arrangement of e - in an atom is responsible for its chemical behavior. Chapter 6 Electronic Structure of Atoms The number & arrangement of e - in an atom is responsible for its chemical behavior I) The Wave Nature of Light A) Electromagnetic Radiation Radiant Energy light,

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay

Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay Test Bank for General Chemistry Atoms First 2nd Edition by John E. McMurry and Robert C. Fay Link download full: https://digitalcontentmarket.org/download/test-bank-for-general-chemistry-atoms-f irst-2nd-edition-by-mcmurry-and-fay/

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

SECTION 2: QUANTUM THEORY AND THE ATOM CHAPTER 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

SECTION 2: QUANTUM THEORY AND THE ATOM CHAPTER 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE SECTION 2: QUANTUM THEORY AND THE ATOM CHAPTER 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Learning Goals Compare the Bohr and quantum mechanical models of the atom. Explain the impact of de Broglie s

More information

heat of formation of carbon dioxide

heat of formation of carbon dioxide 163 FORMATION REACTIONS - A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25C and 1 atm pressure. heat of formation of carbon dioxide you

More information

--THE QUANTUM MECHANICAL MODEL

--THE QUANTUM MECHANICAL MODEL --THE QUANTUM MECHANICAL MODEL Bohr s Energy Levels Electrons reside in certain energy levels Each level represents a certain amount of energy Low Energy levels: closer to nucleus High Energy levels: farther

More information

sessions lectures 3-4

sessions lectures 3-4 Chemistry 1B Fall 2016 sessions lectures 3-4 (537-542, *(543-549), 549-557) 1 quantization of energy E photon = h absorption and emission spectra of hydrogen atom 2 18 Z En 2. 17810 J 2 n Z=1 for H atom,

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

Atomic Structure-Notes

Atomic Structure-Notes Subatomic Particles Electron, proton and neutron Atomic Structure-Notes Discovery of Electron (Michael Faraday s Cathode Ray Discharge Tube Experiment) Experimental Setup: Glass tube is partially evacuated

More information

Old and new quantum theory

Old and new quantum theory Old and new quantum theory Faults of the Bohr model: - gives only position of the lines and not the intensity - does not explain the number of electrons on each orbit - gives innacurate results for atoms

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Chapter 2. Atomic Structure and Periodicity

Chapter 2. Atomic Structure and Periodicity Chapter 2 Atomic Structure and Periodicity Chapter 2 Table of Contents (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) Electromagnetic radiation The nature of matter The atomic spectrum of hydrogen

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information