Logic-based probabilistic modeling language. Syntax: Prolog + msw/2 (random choice) Pragmatics:(very) high level modeling language

Size: px
Start display at page:

Download "Logic-based probabilistic modeling language. Syntax: Prolog + msw/2 (random choice) Pragmatics:(very) high level modeling language"

Transcription

1 1

2 Logic-based probabilistic modeling language Turing machine with statistically learnable state transitions Syntax: Prolog + msw/2 (random choice) Variables, terms, predicates, etc available for p.-modeling Semantics: distribution semantics Program DB defines a probability measure P DB ( ) on least Herbrand models Pragmatics:(very) high level modeling language Just describe probabilistic models declaratively Implementation: Currently on top of B-Prolog (tabled search) Single data structure : expl. graphs, dynamic programming 2

3 Formal semantics EM learning Linear tabling Negative goals Prism Prism1.8 Distribution semantics PRISM Tabled search Negation 2010 Prism Prism Prism Prism1.9 Open source Modeling environment Variational Bayes Belief propagation MCMC Viterbi-learning non-para Bayes Ease of modeling Bayesian approach BN subsumed Download the PRISM package at 3

4 Declarative modeling : just specify your model Inventing/implementing new algorithms not required Statistical relational learning Eliminating pains of building & testing similar models Many types of inference and learning at no extra cost Exact-P,MLE,MAP,VB,MCMC,Viterbi,BIC,Cheeseman-Statz,VFE Model 1 Model 2... Model n Model 1 Model 2... Model n PRISM m n << n... Alg 1 Alg 2 Alg n Alg 1 Alg 2... Alg m 4

5 Bayes inference MCMC for PCFGs Generalization for PRISM MH sampling MCMC examples Marginal likelihood Model selection 5

6 Introduce prior P(x,y,q)=P(x,y q)p(q) x:hidden (parse tree), y:data (sentence) q:parameters, P(q):prior distribution Date sparseness, model selection Basic tasks: marginal likelihood P(y) = x P(x,y q)p(q)dq model selection a posterior P(q y) = x P(x,y q)p(q)/p(y) prediction P(x y) = P(x q)p(q y)dq Viterbi x* = argmax x P(x y) 6

7 Rule probabilities have prior distributions Dirichlet prior P D (q A a A ) q 1 a q k ak-1 for R(A)={A b 1,..,A b k } P D (q a ) = A N P D (q A a A ) where q ={q A } A N P G (t q ) = r R q f(r,t) r where f(r,t) = freq. of r in a parse tree t P G (w q ) = t:yield(t)=w P G (t q ) P G (w q ) = n i=1p G (w i q ) where corpus w =(w 1,..,w n ) Posterior P(t,q w,a) P D (q a)p G (t q )P G (w t ) where parses t =(t 1,..,t n ) Computing the posterior P(t,q w,a ) = P(t w,a )P(q t,w,a ) t ~P(t w,a ) can be sampled by Metropolis-Hastings sampling q ~P(q t,w,a ) = P(q t,a ) is easy (from posterior Dirichlet) 7

8 M. Johnson et al. proposed an MCMC algorithm for P(t w,a ) [Johnson et al. 07a] The basic idea: corpus w =(w 1,..,w n ) has state t =(t 1,..,t n ) Repeat Choose i-th sentence w i randomly from {w 1,..,w n } Sample a new parse tree t i ~ P(t i w i,q * ) where for production rul r= A... in G f r (t -i )+a r q r* = = E[q r t -i,a] (t -i : trees except t i ) r R(A) f r (t -i )+a r State change occurs t i t i with acceptance prob. P(t i w i,t -i,a)p(t i w i,q * ) A(t i, t i ) = min{ 1, } P(t i w i,t -i,a)p(t i w i,q * ) 8

9 Sample a new parse tree t i ~ P(t i w i,q * ) Compute inside probabilities for w i using q * Start with S(0,n) (w i = u 1..u n ), and recursively, given A(i,k), choose A(i,k) B(i,j) C(j,k) with q * A BC P G (B * w i,j )P G (C * w j,k ) prob. = P G (A * w i,k ) Prob. of sampling t i equals r R q r f(r,ti ) /P G (S * w i q * ) = P(t i q * )/P(w i q * ) = P(t i w i,q * ) 10

10 btype(x):- gtype(gf,gm), pg_table(x,[gf,gm]). pg_table(x,gtype):- ((X=a;X=b),(GT=[X,o];GT=[o,X];GT=[X,X]) ; X=o,GT=[o,o] ; X=ab,(GT=[a,b];GT=[b,a])). gtype(gf,gm):- msw(abo,gf),msw(abo,gm). father a b b AB o mother a o A child B (probabilistic switch) P msw (msw(abo,a)=1) = q (abo,a) = 0.3, (parameter) P DB (msw(abo,a)=x 1,msw(abo,b)=x 2,msw(abo,o)=x 3, btype(a)=y 1,btype(b)=y 2,btype(ab)=y 3,btype(o)=y 4 ) P DB (btype(a)=1) = 0.4 (parameter learning is inverse direction) 11

11 PCFG Sentence W Parse tree t A(i,k) B(i,j)C(j,k), A(i,k) C(i,m)D(m,k) Inside algorithm PRISM Goal G Explanation e=msw 1.. msw m A(i,k) (msw(a,[b,c]) B(i,j) C(j,k)) (msw(a,[c,d]) C(i,m) D(m,k))) Generalized inside algorithm Generalization is straightforward We sample (e 1,..,e K )~ P(e 1,..,e K G 1,..,G K ) Correctness provable w.r.t. the distribution semantics of PRISM 12

12 Given iid goals G = G 1,..,G K Choose i randomly from {1,..,K} Compute q * E[q G -i ] using pseudo counts obtained from PRISM s VB learning routine Sample e i ~ P(e i G i,q * ) Compute G i (msw 1 H 1 ) (msw m H m ) using PRISM s probfi Recursively choose a disjunct with prob. P DB (msw k H k )/P DB (G) State change e i e i with acceptance prob. A(e i,e i ) % values(abo,[a,b,o],[0.5,0.2,0.3]).?- probfi(btype(a)) btype(a) [0.55] <=> gtype(a,a) [0.25] {0.25} v gtype(a,o) [0.15] {0.15} v gtype(o,a) [0.15] {0.15} gtype(a,a) [0.25] <=> msw(abo,a) [0.5] & msw(abo,a) [0.5] {0.25} gtype(a,o) [0.15] <=> msw(abo,a) [0.5] & msw(abo,o) [0.3] {0.15} gtype(o,a) [0.15] <=> msw(abo,o) [0.3] & msw(abo,a) [0.5] {0.15} 13

13 14

14 Estimate P(G a) = P(G 1,..,G K a) by PRISM MH sampling Recall (E =(e 1,..,e K )) P(q *,G ) P(q * )P(G q * ) P(G ) = = P(q * G ) E P(q * E )P(E G ) Sample E 1,..,E T ~ P(E G ) by MCMC and E P(q * E )P(E G ) P(q * E 1 ) + + P(q * E T ) T 15

15 Note Put q(x,q)=q(x)q(q) and vary q(x), q(q) to make the rhs (VFE, variational free energy) close to the lhs Then q(x) p(x y), q(q) p(q y) VB-EM 16

16 17

17 Two states, two outputs 18

18 ATR corpus (10,000) 860 rule clauses 19

19 ATR corpus (10,000) 2,500 rule clauses 20

20 M = argmax M P(G 1,..,G K M) where M = M(parameters,structure) Two examples Number of clusters Length of profile HMM 21

21 predict 16 attributes (vote record) republican, n,y,n,y,y,y,n,n,n,y,?,y,y,y,n,y republican, n,y,n,y,y,y,n,n,n,n,n,y,y,y,n,? democrat,?,y,y,?,y,y,n,n,n,n,y,n,y,y,n,n democrat, n,y,y,n,?,y,n,n,n,n,y,n,y,n,n,y democrat y,y,y,n,y,y,n,n,n,n,y,?,y,y,y,y democrat, n,y,y,n,y,y,n,n,n,n,n,n,y,y,y,y democrat, n,y,n,y,y,y,n,n,n,n,n,n,?,y,y,y republican, n,y,n,y,y,y,n,n,n,n,n,n,y,y,?,y republican, n,y,n,y,y,y,n,n,n,y,n,y,y,y,?,n D: 435 data 90.8% accuracy (5 CV) Naïve Bayes C A 1 A 16 P(C,A 1,,A 16 ) = P(C)P(A 1 C)..P(A 16 C) C = republican, democrat V i = y, n Learn P(A 1 C),..,P(A 16 C) from D Predict C for unknown A 1,,A 16 by C = argmax c P(C A 1,,A 16 ) 22

22 modeling part values(class,[democrat,republican]). % class labels values(attr(_,_),[y,n]). % all attributes have two values: y or n nbayes(c,vals):- msw(class,c),nbayes(1,c,vals). nbayes(_,_,[]):-!. nbayes(j,c,[v Vals]):- choose(j,c,v), J1 is J+1,!, % cut is ok nbayes(j1,c,vals). choose(j,c,v):- ( nonvar(v) -> msw(attr(j,c),v) ; msw(attr(j,c),_) ). %%%% Utilities vote_learn:- load_data_file(gs), learn(gs). %% Batch routine for N-fold cross validation vote_cv(n):- random_set_seed(81729), load_data_file(gs0), % Load the entire data random_shuffle(gs0,gs), % Randomly reorder the data numlist(1,n,js), % Get Js = [1,...,N] (B-Prolog built-in) maplist(j,rate,vote_cv(gs,j,n,rate),js,rates), avglist(rates,avgrate), % Get the avg. of the precisions maplist(j,rate,format("test #~d: ~2f%~n",[J,Rate*100]), Js,Rates), format("average: ~2f%~n",[AvgRate*100]). %% Subroutine for learning and testing for J-th split data (J = 1...N) vote_cv(gs,j,n,rate):- format("<<<< Test #~d >>>>~n",[j]), separate_data(gs,j,n,gs0,gs1), learn(gs0), maplist(nbayes(c,vs),r,(viterbig(nbayes(c0,vs)),(c0==c->r=1;r=0)),gs1,rs), avglist(rs,rate), format("done (~2f%).~n~n",[Rate*100]). separate_data(data,j,n,learn,test):- length(data,l), L0 is L*(J-1)//N, % L0: offset of the test data (// - integer division) L1 is L*(J-0)//N-L0, % L1: size of the test data splitlist(learn0,rest,data,l0), % Length of Learn0 = L0 splitlist(test,learn1,rest,l1), % Length of Test = L1 append(learn0,learn1,learn). load_data_file(gs):- load_csv('uci/house-votes-84.data',gs0,[missing('?')]), % '?' in the data will be converted into an anonymous variable (_) maplist(csvrow([c Vs]),nbayes(C,Vs),true,Gs0,Gs). utility part 23

23 Hidden node HC added P(C,A 1,,A 16 ) = HC P(C,A 1,,A 16,HC) C HC A 11 A 16 C = republican, democrat A i = yes, no (vote record) 24

24 MCMC is now available for any PRISM program applicable to model selection (structure learning) and viterbi inference But it takes time and memory (because of Prolog implementation) Oftentimes VB seems a reasonable choice 25

An introduction to PRISM and its applications

An introduction to PRISM and its applications An introduction to PRISM and its applications Yoshitaka Kameya Tokyo Institute of Technology 2007/9/17 FJ-2007 1 Contents What is PRISM? Two examples: from population genetics from statistical natural

More information

A Logic-based Approach to Generatively Defined Discriminative Modeling

A Logic-based Approach to Generatively Defined Discriminative Modeling A Logic-based Approach to Generatively Defined Discriminative Modeling Taisuke Sato 1, Keiichi Kubota 1, and Yoshitaka Kameya 2 1 Tokyo institute of Technology, Japan {sato,kubota@mi.cs.titech.ac.jp 2

More information

Hidden Markov Models. x 1 x 2 x 3 x N

Hidden Markov Models. x 1 x 2 x 3 x N Hidden Markov Models 1 1 1 1 K K K K x 1 x x 3 x N Example: The dishonest casino A casino has two dice: Fair die P(1) = P() = P(3) = P(4) = P(5) = P(6) = 1/6 Loaded die P(1) = P() = P(3) = P(4) = P(5)

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Probabilistic Context-free Grammars

Probabilistic Context-free Grammars Probabilistic Context-free Grammars Computational Linguistics Alexander Koller 24 November 2017 The CKY Recognizer S NP VP NP Det N VP V NP V ate NP John Det a N sandwich i = 1 2 3 4 k = 2 3 4 5 S NP John

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Ryosuke Kojima & Taisuke Sato Tokyo Institute of Technology

Ryosuke Kojima & Taisuke Sato Tokyo Institute of Technology Ryosuke Kojima & Taisuke ato Tokyo Institute of Technology PRIM [ato et al. 97] (http://sato-www.cs.titech.ac.jp/prism/) Probabilistic Prolog for machine and subsumes BN,HMM,PCFG, Bayesian networks HMMs

More information

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013

More on HMMs and other sequence models. Intro to NLP - ETHZ - 18/03/2013 More on HMMs and other sequence models Intro to NLP - ETHZ - 18/03/2013 Summary Parts of speech tagging HMMs: Unsupervised parameter estimation Forward Backward algorithm Bayesian variants Discriminative

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Hidden Markov Model. Ying Wu. Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

Hidden Markov Model. Ying Wu. Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 Hidden Markov Model Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/19 Outline Example: Hidden Coin Tossing Hidden

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Soft Inference and Posterior Marginals. September 19, 2013

Soft Inference and Posterior Marginals. September 19, 2013 Soft Inference and Posterior Marginals September 19, 2013 Soft vs. Hard Inference Hard inference Give me a single solution Viterbi algorithm Maximum spanning tree (Chu-Liu-Edmonds alg.) Soft inference

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

The PITA System for Logical-Probabilistic Inference

The PITA System for Logical-Probabilistic Inference The System for Logical-Probabilistic Inference Fabrizio Riguzzi 1 and Terrance Swift 2 1 EDIF University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy fabrizio.riguzzi@unife.it 2 CETRIA Universidade

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Bayesian Networks. instructor: Matteo Pozzi. x 1. x 2. x 3 x 4. x 5. x 6. x 7. x 8. x 9. Lec : Urban Systems Modeling

Bayesian Networks. instructor: Matteo Pozzi. x 1. x 2. x 3 x 4. x 5. x 6. x 7. x 8. x 9. Lec : Urban Systems Modeling 12735: Urban Systems Modeling Lec. 09 Bayesian Networks instructor: Matteo Pozzi x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 outline example of applications how to shape a problem as a BN complexity of the inference

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Bayesian Model Comparison Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

Quiz 1, COMS Name: Good luck! 4705 Quiz 1 page 1 of 7

Quiz 1, COMS Name: Good luck! 4705 Quiz 1 page 1 of 7 Quiz 1, COMS 4705 Name: 10 30 30 20 Good luck! 4705 Quiz 1 page 1 of 7 Part #1 (10 points) Question 1 (10 points) We define a PCFG where non-terminal symbols are {S,, B}, the terminal symbols are {a, b},

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Probabilistic Context-Free Grammars and beyond

Probabilistic Context-Free Grammars and beyond Probabilistic Context-Free Grammars and beyond Mark Johnson Microsoft Research / Brown University July 2007 1 / 87 Outline Introduction Formal languages and Grammars Probabilistic context-free grammars

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

Hidden Markov models

Hidden Markov models Hidden Markov models Charles Elkan November 26, 2012 Important: These lecture notes are based on notes written by Lawrence Saul. Also, these typeset notes lack illustrations. See the classroom lectures

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

STATS 306B: Unsupervised Learning Spring Lecture 5 April 14

STATS 306B: Unsupervised Learning Spring Lecture 5 April 14 STATS 306B: Unsupervised Learning Spring 2014 Lecture 5 April 14 Lecturer: Lester Mackey Scribe: Brian Do and Robin Jia 5.1 Discrete Hidden Markov Models 5.1.1 Recap In the last lecture, we introduced

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Approximate Bayesian computation for the parameters of PRISM programs

Approximate Bayesian computation for the parameters of PRISM programs Approximate Bayesian computation for the parameters of PRISM programs James Cussens Department of Computer Science & York Centre for Complex Systems Analysis University of York Heslington, York, YO10 5DD,

More information

Introduction to Artificial Intelligence Midterm 2. CS 188 Spring You have approximately 2 hours and 50 minutes.

Introduction to Artificial Intelligence Midterm 2. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Midterm 2 You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

So# Inference and Posterior Marginals. September 19, 2013

So# Inference and Posterior Marginals. September 19, 2013 So# Inference and Posterior Marginals September 19, 2013 So# vs. Hard Inference Hard inference Give me a single solucon Viterbi algorithm Maximum spanning tree (Chu- Liu- Edmonds alg.) So# inference Task

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 5 Solving an NLP Problem When modelling a new problem in NLP, need to

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ and Center for Automated Learning and

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

CS532, Winter 2010 Hidden Markov Models

CS532, Winter 2010 Hidden Markov Models CS532, Winter 2010 Hidden Markov Models Dr. Alan Fern, afern@eecs.oregonstate.edu March 8, 2010 1 Hidden Markov Models The world is dynamic and evolves over time. An intelligent agent in such a world needs

More information

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 573: Artificial Intelligence Autumn 2012 Bayesian Networks Dan Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Outline Probabilistic models (and inference)

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

On the Relationship between Sum-Product Networks and Bayesian Networks

On the Relationship between Sum-Product Networks and Bayesian Networks On the Relationship between Sum-Product Networks and Bayesian Networks International Conference on Machine Learning, 2015 Han Zhao Mazen Melibari Pascal Poupart University of Waterloo, Waterloo, ON, Canada

More information

Language and Statistics II

Language and Statistics II Language and Statistics II Lecture 19: EM for Models of Structure Noah Smith Epectation-Maimization E step: i,, q i # p r $ t = p r i % ' $ t i, p r $ t i,' soft assignment or voting M step: r t +1 # argma

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Machine Learning, Fall 2012 Homework 2

Machine Learning, Fall 2012 Homework 2 0-60 Machine Learning, Fall 202 Homework 2 Instructors: Tom Mitchell, Ziv Bar-Joseph TA in charge: Selen Uguroglu email: sugurogl@cs.cmu.edu SOLUTIONS Naive Bayes, 20 points Problem. Basic concepts, 0

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22.

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 15: Bayes Nets 3 Midterms graded Assignment 2 graded Announcements Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides

More information

Unit 1: Sequence Models

Unit 1: Sequence Models CS 562: Empirical Methods in Natural Language Processing Unit 1: Sequence Models Lecture 5: Probabilities and Estimations Lecture 6: Weighted Finite-State Machines Week 3 -- Sep 8 & 10, 2009 Liang Huang

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Advanced Natural Language Processing Syntactic Parsing

Advanced Natural Language Processing Syntactic Parsing Advanced Natural Language Processing Syntactic Parsing Alicia Ageno ageno@cs.upc.edu Universitat Politècnica de Catalunya NLP statistical parsing 1 Parsing Review Statistical Parsing SCFG Inside Algorithm

More information

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Alan Mackworth UBC CS 322 Uncertainty 2 March 13, 2013 Textbook 6.1.3 Lecture Overview Recap: Probability & Possible World Semantics

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Artificial Intelligence Markov Chains

Artificial Intelligence Markov Chains Artificial Intelligence Markov Chains Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 12: Markov Chains Artificial Intelligence SS2010

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology Basic Text Analysis Hidden Markov Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakimnivre@lingfiluuse Basic Text Analysis 1(33) Hidden Markov Models Markov models are

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Probabilistic Logic CNF for Reasoning

Probabilistic Logic CNF for Reasoning Probabilistic Logic CNF for Reasoning Song- Chun Zhu, Sinisa Todorovic, and Ales Leonardis At CVPR, Providence, Rhode Island June 16, 2012 Goal input tracking parsing reasoning activity recognition in

More information

MCMC and Gibbs Sampling. Kayhan Batmanghelich

MCMC and Gibbs Sampling. Kayhan Batmanghelich MCMC and Gibbs Sampling Kayhan Batmanghelich 1 Approaches to inference l Exact inference algorithms l l l The elimination algorithm Message-passing algorithm (sum-product, belief propagation) The junction

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information