Thermohemija. Energija. Prvi zakon termodinamike. Entalpija / kalorimetrija

Size: px
Start display at page:

Download "Thermohemija. Energija. Prvi zakon termodinamike. Entalpija / kalorimetrija"

Transcription

1 Thermohemija Energija Prvi zakon termodinamike Entalpija / kalorimetrija Hess-ov zakon Kirchoff-ov zakon

2 Prenos toplote U endotermalnom procesu, toplota se uvek prenosi sa toplijeg objekta (okruženja) na hladniji sistem. T(sistema) raste T (okruženja) opada

3 Prenos toplote U egzotermalnom procesu, toplota se prenosi iz toplijeg SISTEMA u hladnije OKRUŽENJE. T(sistema) opada T(okruženja) raste

4 U toku hemijske reakcije se može apsorbovati (trošiti) ili oslobadjati (davati) tolota. Medjutim u toku hemijskih reakcija se takodje može vršiti rad. Zn(s) + 2H + (aq) Zn 2+ (aq) + H 2 (g) Ako je pritisak konstantan w P V Sistem vrši rad!

5

6

7 Entalpija je tolota razmenjena izmedju sistema i okoline pri konstantnom pritisku Entalpija je funkcija stanja definisana sa: H = U + PV Na konstantnom pritisku promena entalpije je: H = H 2 - H 1 = U 2 + PV 2 - (U 1 + PV 1 ) H = U + P V Iz prvog zakona : U = Q - P V H = Q p (konstantnom P)

8 Veza U i H H U P V V H nrt P U n g n g RT RT Prethodna jednačina znači da se promena unutrašnje energije i promena entalpije sistema razlikuju značajno samo kada u reakciji dolazi do promene broja molova kada u reakciji učestvuju gasovi bilo kao reaktanti, ili kao produkti. P

9 CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) + Q (-802,3 kj/mol) Q + H 2 O (s) H 2 O (l). Većina hemijskih reakcija odvija se na konstantnom pritisku, pa se toplota razmenjena u tim uslovima može izraziti termodinamičkom funkcijom stanja - entalpijom. Kako je entalpija funkcija stanja, H zavisi samo od početnog i krajnjeg stanja. Takodje, treba napomenuti da je kod mnogih reakcija na P = const, i V = 0, tako da je H = U. 1. u reakciji nema gasova: 2 KOH (aq) + H 2 SO 4 (aq) K 2 SO 4 (aq) + 2H 2 O (l) Kako se radi o tečnostima, promena V = U. 0, pa je P V = 0, i H

10 2. broj molova reaktanata jednak je broju molova produkata u gasnoj reakciji: N 2 (g) + O 2 (g) 2 NO (g) V = 0, P V = 0 H = U. 3. broj molova gasa menja se tokom reakcije, pa P V 0. Medjutim, kako je najčešće q P >> P V H U. 2 H 2 (g) + O 2 (g) 2H 2 O (g); H kj; P V = kj U = H - P V = - 481,1 kj H Za najveći broj hemijskih reakcija može se pouzdano uzeti vrednost H kao jednaka ili približno jednaka U.

11 Promena entalpije hemijske reakcije prikazuje se entalpijskim dijagramom CaO(s) + CO 2 (g) CaCO 3 (s) rxnh o = kJmol -1 Entalpija je ekstenzivna veličina, pa je promena entalpije H direktno proporcionalna količini supstance!

12 Promena Standardne Enthalpije, odnosno, H 0, je promena entalpije za proces u kome se i reaktanti i produkti nalaze u svojim standardnim stanjima (STP). Standardne entalpije nastajanja supstanci: toplota nastanka jednog jedinjenja jeste povećanje toplotnog sadržaja H kada se nagradi 1 mol supstance iz njenih elemenata. Dogovorno je uzeto da je: Toplotni sadržaj jednog jedinjenja jednak njegovoj toploti postojanja. C (s) + O 2 (g) = CO 2 (g) H = kj/mol=-94 kcal/mol H = U + P V U = H - P V; U = H - PV = H - RT n g. Ovde je - promena broja molova, a n g - promena broja molova gasnih učesnika reakcije. Kako je u ovoj reakciji, n g = 0 H = U.

13 izračunavanje toplote nastanka metana iz ugljenika i vodonika: C grafit + 2 H 2 (g) CH 4 (g) H = kj Znamo toplote nastanka CO 2 i H 2 O (toplotni sadržaji elemenata - C, O i H su jednaki 0!), a takodje i toplotu rekacije izmedju metana i kiseonika: a) C grafit + O 2 (g) CO 2 (g) H = kj b) H 2 (g) + 1/2 O 2 (g) H 2 O (l) H = kj c) CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (l) H = kj Kombinacijom: (a) + 2(b) - (c),dobija se da je H za traženu reakciju kj.

14 Standardne Entalpije Formiranja C(s, graphite) + O 2 (g) CO 2 (g) H f 0 = kj mol -1 C(s, graphite) + 2H 2 (g) CH 4 (g) H f 0 = kj mol -1 ½ N 2 (g) + 3/2 H 2 (g) NH 3 (g) H f 0 = kj mol -1 (1/2) N 2 (g) + (1/2) O 2 (g) NO(g) H f 0 = kj mol -1

15 2. Toplota sagorevanja: promena toplotnog sadržaja koja prati potpuno sagrevanje jednog mola nekog jedinjenja: 3. Toplota topljenja: promena toplotnog sadržaja koja prati topljenje jednog mola čvrste supstance. 4. Toplota isparavanja: promena toplotnog sadržaja koja prati isparavanje jednog mola čvrste supstance. 5. Toplota hidrogenacije: promena toplotnog sadržaja koja prati prevodjenje jednog mola nezasiććenog ugljovodonika u odgovarajuće zasićeno jedinjenje pomoću gasovitog vodonika:

16 Energy H 2 O(l) H final > H initial H = H final H initial Endothermic H 2 O(s) H 2 O(s) H 2 O(l) ΔH = kj mol -1

17 Energy H 2 O(l) H final < H initial H = H final H initial Exothermic H 2 O(s) H 2 O(l) H 2 O(s) ΔH = kj mol -1

18

19 Odakle potiče toplota reakcije? Kada raguje 2 g H 2 i 16 g O 2 nastaje 18 g vode i oslobadja se 242 kj toplote. Pitanje je: odakle potiče ova energija? Energija nastala tokom stvaranja jednog mola vode nastala je kao transformisana energija iz unutrašnje energije reaktanata, vodonika i kiseonika. Unutrašnja energija čestica: U = E kinetičko + E potencijalno Dakle, kada se stvara voda u reakciji: H 2 + 1/2 O 2 H 2 O E 1 E 2 i E 1 > E 2 Pitanje je: koji delovi unutrašnje energije sistema su odgovorni za promenu u energiji koja se javlja tokom hemijske reakcije (odnosno za Q P = H)?

20 U = E K trans + E K rot + E K vib + E P(atom) + E P(nukleus) + E P (bond) Kako je kineticka energija E K T, na T = const E K 0. Energija koja se oslobadja ili apsorbuje tokom hemijske promene potiče od razlike potencijalne energije E P medjuatomskih (unutarmolekulskih) veza reaktanata i produkata. Hemijska reakcija je proces u kome se hemijske veze u molekulima reaktanata kidaju (potrebna je energija E 1 ), a veze u novim molekulima, produktima nastaju (oslobadja se energija E 2 ). Kada je E 2 >E 1, reakcija je egzotermna.

21 Stehiometrija termohemijske jednačine Pomoću termohemijskih jednačina se predstavljaju termohemijske promene. Postoje 2 pravila: 1. H je iste vrednosti ali suprotnog znaka za reakciju u suprotnom smeru. 2. Veličina H je proporcionalna količini susptance. H 2 (g) + 1/2O 2 (g) H 2 O (l) H = kj/mol 2H 2 (g) + O 2 (g) 2H 2 O (l) H = kj/mol 2H 2 O (l) 2H 2 (g) + O 2 (g) H = kj/mol

22 H isparavanja: Promena entalpije potrebna da jedan mol supstance ispari na tački ključanja pri pritisku od 1 atm. ( kjmol-1 at 373K za vodu ) endoterman H topljenja : Promena entalpije potrebna da se jedan mol čiste supstance istopi na tački topljena pri pritisku od 1 atm. (+6.01 kjmol-1 at 273K za led) endoterman

23

24 Hesov zakon sumiranja toplota Promena entalpije ukupnog hemijskog procesa je suma entalpija u pojedinačnim procesima. Promena toplote u hemijskoj reakciji je ista nezavisno od toga da li se reakcija dešava u jednom ili više stupnjeva.

25 Posledica činjenice da je entalpija funkcija stanja (ne zavisi od prethodnog stanja sistema) je da se: može se odrediti promena entalpije H za složenu reakciju bez razmatranja kako se reakcija odvila u realnosti. Termohemijske jednačine se mogu sabirati i oduzimati, pa se entalpija velikog broja hemijskih reakcija može izračunati bez meranja. Ovo je posebno važno kada su u pitanju složene reakcije, kao i reakcije koje se odvijaju u nepovoljnim eksperimentalnim uslovima.

26 C + O 2 CO 2 H = kj C+ ½ O 2 CO H = kj CO (g) ½ O 2 CO 2 H = kj (-283) = kj/mol

27 Izračunavanje H za reakciju kod koje se ta vrednost teško meri, iz poznatih vrednosti, kada znamo H za neke druge reakcije.

28 Hess-ov zakon Promena entalpije ukupnog hemijskog procesa je suma entalpija u pojedinačnim procesima. rxnh o = H o products - H o reactants

29 A C Hess-ov zakon Ako je reakcija zbir dve reakcije tada je promena entalpije u toku zbirne reakcije zbir promena entalpije komponenata reakcije. -C = H A-B + H B-C products C A B C reactants A

30 Kalorimetrija - Promena unutrašnje energije se može meriti kalorimetrijski U = q - P V pri konstantnoj zapremini V=0! Tako da je U = q

31 H = ΔQ ΔT H = ΔQ = const ΔT H =ΔQ = C ΔT Promena enthalpije Promena temperature Tolotni kapacitet C = m C spec C spec = specifični toplotni kapacitet H = ΔQ = m C spec ΔT

32 Specifični tolotni kapacitet Sposobnost supstance da primi toplotu C spec = J g -1 K -1 Količina energije (J) potrebna da se 1g supstance zagreje za 1 K

33

34 Al C Fe Cu Au NH 3 H 2 O C 2 H 5 OH drvo staklo

35 Kirhoff-ov zakon - uticaj temperature na toplotu reakcije I H 1 + T C PB II H 2 + T C PA H 1 = (H B - H A ) T1 ; H 2 = (H B - H A ) T2 H 1 + T C PB = H 2 + T C PA H T H 2 1 H T T H P C C C P PB PA P H produkata T P H H T reak tanata T ( C ) ( C ) C tan P produkti P reak ti P P P C P

36 Za reakciju: n A A + n B B + n C C + = n L L + n M M + n N N + C [ n ( C ) n ( C )...] [ n ( C ) n ( C )...] P L P L M P M A P A B P B H H C dt 0 T 0 P 2 3 C a bt ct dt P C na nb T nc T... T T T... P T 2 H H T T... dt H T 1/ 2 T 1/ 3 T H H T 0

37 rh(t 2 ) Reactants(T 2 ) Products(T 2 ) H R Reactants(T 1 ) Products(T 1 ) H P rh(t 1 ) rh(t 2 ) = H R + rh(t 1 ) + H P

38

39 Foods: Fuels for the Body Three classes of food are carbohydrates, proteins, and fat. Carbohydrates include starches and sugars. During digestion, they are converted to simple sugar glucose C 6 H 12 O 6. C6H12O6(s) + 6 O2(g) 6 CO2(g) + 6 H2O(l) H = kj Fats belong to the ester family, which is derived from a carboxylic acid RCOOH and an alcohol ROH. An OH group of the acid is replaced by a OR group of the alcohol. On a mass basis, the heat of combustion of fats (-37.4 kj/g C39H74O6) is almost twice that of glucose ( kj/g). Therefore, fats are the perfect material for energy storage. Proteins are polymers of amino acids, and have about the same energy values as O carbohydrates. Food calories (Cal) 1 Kcal = 1 Cal = 1000 cal = 4.18 kj H H C C NH 2 OH

40 Energy Content of Foods Chemical energy in animals is derived from carbohydrates, fats, and proteins. Carbohydrates 17 Fat 38 Protein 17 Fuel value (kj/g) Fuel value is usually expressed in kcal or Cal per serving. 1 Cal = 1 kcal = kj

41 Energy Content of Foods If a person uses about 420 kj/mi when running, how many candy bars are required to run three miles? 1 Butterfinger : 42 g carbohydrates 11 g fat 3 g protein 56 g 710 kj 420 kj 50 kj 1180 kj

42

43 Energy 2 H 2 (g) + O 2 (g) NH 4 NO 3 (aq) H final < H initial H final > H initial Exothermic Endothermic 2 H 2 O(l) NH 4 NO 3 (s) + H 2 O(l)

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

CHM 111 Dr. Kevin Moore

CHM 111 Dr. Kevin Moore CHM 111 Dr. Kevin Moore Kinetic Energy Energy of motion E k 1 2 mv 2 Potential Energy Energy of position (stored) Law of Conservation of Energy Energy cannot be created or destroyed; it can only be converted

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy of motion:

More information

Energy Relationships in Chemical Reactions

Energy Relationships in Chemical Reactions Energy Relationships in Chemical Reactions What is heat? What is a state function? What is enthalpy? Is enthalpy a state function? What does this mean? How can we calculate this? How are the methods the

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat

Energy, Enthalpy and Thermochemistry. Energy: The capacity to do work or to produce heat 9 Energy, Enthalpy and Thermochemistry Energy: The capacity to do work or to produce heat The law of conservation of energy Energy can be converted but the total is a constant Two types of energy: Kinetic

More information

Hemijska ravnoteža se dostiže kada su: brzina direktne i povratne reakcije jednake i koncentracije reaktanata i proizvoda konstantne

Hemijska ravnoteža se dostiže kada su: brzina direktne i povratne reakcije jednake i koncentracije reaktanata i proizvoda konstantne HEMIJSKA RAVNOTEŽA Hemijska ravnoteža se dostiže kada su: brzina direktne i povratne reakcije jednake i koncentracije reaktanata i proizvoda konstantne Mehanička (stabilna, labilna, indiferentna) Statička

More information

1) Calculate the kinetic energy in J of an electron moving at m / s. The mass of an electron is g.

1) Calculate the kinetic energy in J of an electron moving at m / s. The mass of an electron is g. Multiple-Choice and Bimodal Questions 6 1) Calculate the kinetic energy in J of an electron moving at 6.00 m / s. The mass of 28 an electron is 9.11 g. A) 4.98 48 B) 3.28 14 C) 1.64 17 D) 2.49 48 E) 6.56

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

MUNISH KAKAR's INSTITUE OF CHEMISTRY

MUNISH KAKAR's INSTITUE OF CHEMISTRY ENTHALPY CHANGE & HESS's LAW ( WS #4 ) Q1. H and E for the reaction, S(s) + 3 O(g) SO3(g) are related as: (a) H = E 0.5 RT (b) H = E 1.5RT (c) H = E + RT (d) H = E + 1.5 RT Q. The enthalpy of solution

More information

5/14/14. How can you measure the amount of heat released when a match burns?

5/14/14. How can you measure the amount of heat released when a match burns? CHEMISTRY & YOU Chapter 7 Thermochemistry How can you measure the amount of heat released when a match burns? 7. The Flow of Energy 7.3 Heat in Changes of State 7.4 Calculating Heats of Reaction Remember:

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Termodinamika. FIZIKA PSS-GRAD 29. studenog Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Termodinamika. FIZIKA PSS-GRAD 29. studenog Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Termodinamika FIZIKA PSS-GRAD 29. studenog 2017. 15.1 Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental laws that heat and work obey.

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Enthalpy of Formation formation = f = enthalpy associated with the formation of a compound from its constituent elements Examples of formation equations:

More information

Unit 8: Equilibrium Unit Review

Unit 8: Equilibrium Unit Review 1. Predict the effect of increasing pressure on the position of equilibrium in the following systems: a. CH 4 (g) + 2H 2 O(g) CO 2 (g) + 4H 2 (g) b. N 2 O 5 (g) + NO(g) 3NO 2 (g) c. NO(g) + NO 2 (g) N

More information

Selected Questions on Chapter 5 Thermochemistry

Selected Questions on Chapter 5 Thermochemistry Selected Questions on Chapter 5 Thermochemistry Circle the correct answer: 1) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J? A) 1.00 B) 100 10 2 C)

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels

Thermochemistry. Using Heats of Reaction - Hess s Law - Standard Enthalpies of Formation - Fuels Foods, Commercial Fuels, and Rocket Fuels Thermochemistry Understanding Heats of Reaction - Energy and Its Units - Heat of Reaction - Enthalpy and Enthalpy Change - Thermochemical Equations - Applying Stoichiometry to Heats of Reaction - Measuring

More information

BCIT Fall Chem Exam #2

BCIT Fall Chem Exam #2 BCIT Fall 2017 Chem 3310 Exam #2 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information

CHEMICAL THERMODYNAMICS

CHEMICAL THERMODYNAMICS CT 1 CHEMICAL THERMODYNAMICS Syllabus : Fundamentals of thermodynamics : System and surroundings, extensive and intensive properties, state functions, types of processes. First law of thermodynamics -

More information

10/23/10. Thermodynamics and Kinetics. Chemical Hand Warmers

10/23/10. Thermodynamics and Kinetics. Chemical Hand Warmers 10/23/10 CHAPTER 6 Thermochemistry 6-1 Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s) + 3 O2(g) 2 Fe2O3(s) The amount your hand temperature

More information

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process.

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process. 31. This is an endothermic reaction so heat must be absorbed in order to convert reactants into products. The high temperature environment of internal combustion engines provides the heat. 33. a. Heat

More information

Thermodynamics Review 2014 Worth 10% of Exam Score

Thermodynamics Review 2014 Worth 10% of Exam Score Thermodynamics Review 2014 Worth 10% of Exam Score Name: Period: 1. Base your answer to the following question on the diagram shown below. 4. The heat of combustion for is kcal. What is the heat of formation

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Internal Energy (U) of a system is the total energy contained within the system, partly as kinetic energy and partly as potential energy

Internal Energy (U) of a system is the total energy contained within the system, partly as kinetic energy and partly as potential energy אנרגיה פנימית Internal Energy Internal Energy (U) of a system is the total energy contained within the system, partly as kinetic energy and partly as potential energy Kinetic energy involves three types

More information

Thermochemistry AP Chemistry Lecture Outline

Thermochemistry AP Chemistry Lecture Outline Thermochemistry AP Chemistry Lecture Outline Name: thermodynamics: the study of energy and its transformations -- thermochemistry: the subdiscipline involving chemical reactions and energy changes Energy

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or

Energy & Chemistry. Internal Energy (E) Energy and Chemistry. Potential Energy. Kinetic Energy. Energy and Chemical Reactions: Thermochemistry or Page III-5-1 / Chapter Five Lecture Notes Energy & Chemistry Energy and Chemical Reactions: Thermochemistry or Thermodynamics Chapter Five Burning peanuts supplies sufficient energy to boil a cup of water

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Thermochemistry: Part of Thermodynamics

Thermochemistry: Part of Thermodynamics Thermochemistry: Part of Thermodynamics Dr. Vickie M. Williamson @vmwilliamson Student Version 1 Chemical Thermodynamics! Thermodynamics: study of the energy changes associated with physical and chemical

More information

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

More information

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts Section 3.0. The 1 st Law of Thermodynamics (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities 3.2. Definitions and Concepts 3.3. The First Law of THERMODYNAMICS 3.4. Enthalpy 3.5. Adiabatic Expansion

More information

measure ΔT in water to get q = q surroundings and use q system = q surroundings

measure ΔT in water to get q = q surroundings and use q system = q surroundings example using water: Calculate the amount of energy required to heat 95.0 g of water from 22.5 C to 95.5 C. q = s m ΔT ( C (4.184 J g 1 C 1 ) (95.0 g) (73.0 = = 2.90 x 10 4 J or 29.0 kj Constant Pressure

More information

Sample Exercise 5.1 Describing and Calculating Energy Changes

Sample Exercise 5.1 Describing and Calculating Energy Changes Sample Exercise 5.1 Describing and Calculating Energy Changes A bowler lifts a 5.4-kg (12-lb) bowling ball from ground level to a height of 1.6 m (5.2 feet) and then drops the ball back to the ground.

More information

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy AP Chemistry: Thermochemistry Lecture Outline 5.1 The Nature of Energy Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationships between chemical

More information

Hemijska ravnoteža. Poglavlje 2.6 Zakon o dejstvu masa Van t Hofova reakciona izoterma Termodinamički uslov i položaj hemijske ravnoteže

Hemijska ravnoteža. Poglavlje 2.6 Zakon o dejstvu masa Van t Hofova reakciona izoterma Termodinamički uslov i položaj hemijske ravnoteže Hemijska ravnoteža Poglavlje 2.6 Zakon o dejstvu masa Van t Hofova reakciona izoterma Termodinamički uslov i položaj hemijske ravnoteže Hemijska ravnoteža Odigravanje neke hemijske reakcije predstavlja

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K eq ; Calculating K eq using equilibrium concentrations; Factors that affect equilibrium; Le Chatelier s Principle What

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J.

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J. FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. J. Schwarcz Name: Associate Examiner: A. Fenster INSTRUCTIONS 1. Enter your

More information

AIR CURTAINS VAZDU[NE ZAVESE V H

AIR CURTAINS VAZDU[NE ZAVESE V H AIR CURTAINS V 15.000 H 21.000 KLIMA Co. 2 KLIMA Co. Flow and system stress should be known factors in air flow. The flow is gas quantity flowing through the system during given time unit and is measured

More information

If neither volume nor pressure of the system changes, w = 0 and ΔE = q = ΔH. The change in internal energy is equal to the change in enthalpy.

If neither volume nor pressure of the system changes, w = 0 and ΔE = q = ΔH. The change in internal energy is equal to the change in enthalpy. 5 Thermochemistry Visualizing Concepts 5.1 The book s potential energy is due to the opposition of gravity by an object of mass m at a distance d above the surface of the earth. Kinetic energy is due to

More information

6. Reaction Chemistry

6. Reaction Chemistry 6. Reaction Chemistry 6.1 Chemical Elements 6.2 Chemical Bonding 6.3 Chemical Reactions 6.4 Thermodynamics 6.5 Properties of Water 6.6 Important Biomolecules 6.1 Chemical Elements It is common for elements

More information

6. [EXO] reactants have more energy 7. [EXO] H is negative 8. [ENDO] absorbing sunlight to make sugar 9. [ENDO] surroundings get cold

6. [EXO] reactants have more energy 7. [EXO] H is negative 8. [ENDO] absorbing sunlight to make sugar 9. [ENDO] surroundings get cold 10.A Thermo: Endo/Exo and ΔH 1. For each of the following laws of thermodynamics, what does each actually mean in terms of the behavior of energy and particles? 1 st Law of Thermodynamics? Energy is neither

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions Gilbert Kirss Foster Chapter 9 Thermochemistry Energy Changes in Chemical Reactions Chapter Outline 9.1 Energy as a Reactant or Product 9.2 Transferring Heat and Doing Work 9.3 Enthalpy and Enthalpy Changes

More information

) DON T FORGET WHAT THIS REPRESENTS.

) DON T FORGET WHAT THIS REPRESENTS. 5.J Thermo: Endo/Exo and ΔH I Pledge : ( Initial ) DON T FORGET WHAT THIS REPRESENTS. 1. For each of the following laws of thermodynamics, what does each actually mean in terms of the behavior of energy

More information

PRORAČUN I ANALIZA ADIJABATSKE TEMPERATURE REAKCIJA SAMORASPROSTIRUĆE VISOKOTEMPERATURNE SINTEZE U SISTEMU CaWO 4 + Mg(Al)

PRORAČUN I ANALIZA ADIJABATSKE TEMPERATURE REAKCIJA SAMORASPROSTIRUĆE VISOKOTEMPERATURNE SINTEZE U SISTEMU CaWO 4 + Mg(Al) Savez inženjera metalurgije Srbije i Crne Gore SIM Originalni naučni rad UDC:669.715 721:275.18.12=861 PRORAČUN I ANALIZA ADIJABATSKE TEMPERATURE REAKCIJA SAMORASPROSTIRUĆE VISOKOTEMPERATURNE SINTEZE U

More information

BCIT Winter Chem Exam #1

BCIT Winter Chem Exam #1 BCIT Winter 2014 Chem 0012 Exam #1 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

Chem 112, Fall 05 Exam 2a

Chem 112, Fall 05 Exam 2a Name: YOU MUST: Put your name and student ID on the bubble sheet correctly. Put all your answers on the bubble sheet. Please sign the statement on the last page of the exam. Please make sure your exam

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314.05 Exam II John II. Gelder October 18, 1994 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 9 different pages. The last three pages include a periodic table,

More information

Homework Problem Set 6 Solutions

Homework Problem Set 6 Solutions Chemistry 360 Dr. Jean M. Standard Homework Problem Set 6 Solutions 1. Determine the amount of pressure-volume work performed by 50.0 g of liquid water freezing to ice at 0 C and 1 atm pressure. The density

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5.

Chapter 5: Thermochemistry. Molecular Kinetic Energy -Translational energy E k, translational = 1/2mv 2 -Rotational energy 5. Chapter 5: Thermochemistry 1. Thermodynamics 2. Energy 3. Specific Heat 4. Enthalpy 5. Enthalpies of Reactions 6. Hess s Law 7. State Functions 8. Standard Enthalpies of Formation 9. Determining Enthalpies

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium 1 Which statement incorrectly describes a chemical reaction approaching equilibrium? As a chemical reaction approaches equilibrium, the net change in the amount of reactants

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

CHEM J-11 June /01(a)

CHEM J-11 June /01(a) CHEM1001 2014-J-11 June 2014 22/01(a) Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kj) absorbed

More information

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Name: INSTRUCTIONS (for the actual Midterm) 1. Enter your student number and name on

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

SASTAV MATERIJE ELEMENTI, ATOMI, JEDINJENJA, MOLEKULI, JONI HEMIJSKE REAKCIJE

SASTAV MATERIJE ELEMENTI, ATOMI, JEDINJENJA, MOLEKULI, JONI HEMIJSKE REAKCIJE SASTAV MATERIJE ELEMENTI, ATOMI, JEDINJENJA, MOLEKULI, JONI HEMIJSKE REAKCIJE ELEMENTI HEMIJSKI ELEMENT JE SUPSTANCA KOJA SE HEMIJSKIM PUTEM NE MOŽE RAZLOŽITI NA PROSTIJE SUPSTANCE. DO SADA JE POZNATO

More information

Unit 2 Pre-Test Reaction Equilibrium

Unit 2 Pre-Test Reaction Equilibrium Unit 2 Pre-Test Reaction Equilibrium Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider the following equilibrium system: 2HF(g) F 2(g) + H 2 (g)

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

1 A reaction that is spontaneous.

1 A reaction that is spontaneous. Slide 1 / 55 1 A reaction that is spontaneous. A B C D E is very rapid will proceed without outside intervention is also spontaneous in the reverse direction has an equilibrium position that lies far to

More information

Lecture 7 Enthalpy. NC State University

Lecture 7 Enthalpy. NC State University Chemistry 431 Lecture 7 Enthalpy NC State University Motivation The enthalpy change ΔH is the change in energy at constant pressure. When a change takes place in a system that is open to the atmosphere,

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Contents and Concepts Understanding Heats of Reaction The first part of the chapter lays the groundwork for understanding what we mean by heats of reaction. 1. Energy and Its

More information

Chapter 17 Thermochemistry

Chapter 17 Thermochemistry Chapter 17 Thermochemistry Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Explain how energy, heat, and work are related. 2 Section 17.1 The Flow of Energy Heat and Work OBJECTIVES: Classify

More information

Najbrži procesi Prenos elektrona Prenos H atoma Prenosi drugih atoma izmedju molekula DNK sinteza. dc dt

Najbrži procesi Prenos elektrona Prenos H atoma Prenosi drugih atoma izmedju molekula DNK sinteza. dc dt HEMIJSKA KINETIKA - kojom brzinom se reakcija odvija. - kakav je mehanizam hemijske reakcije koji su koraci koji se dogode tokom promene reaktanata ka produktima. - zajedno sa izučavanjem ravnoteže i termodinamičkih

More information

Definitions and Basic Concepts

Definitions and Basic Concepts Chemical Thermodynamics: Energy Changes in Chemical Systems Conversion of energy from one form to another Transfer of energy from one place to another Why do we care about Thermodynamics? Practical applications:

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

Thermodynamics & kinetics

Thermodynamics & kinetics Zepelin Hindenburg 1937 Thermodynamics & kinetics H 2 + ½ O 2 H 2 O H = - 241 KJ/mol both spontaneous! R P but rates? R P 2Fe + O 2 + 2H 2 O 2 Fe (OH) 2 H = - 272 KJ/mol Reaction coordinate Thermodynamics

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Thermodynamics 1. Hot Milk in a thermos flask is an example for 1) Isolated system ) Open system 3) Closed system 4) Adiabatic system. In open system, system and surroundings exchange 1) Energy only )

More information

Lecture outline: Chapter 5

Lecture outline: Chapter 5 Lecture outline: Chapter 5 1. The nature of energy Thermochemistryh 2. First law of thermodynamics 3. Enthalpies of reaction 4. Hess law 5. Enthalpies of formation 1 Chemical Reactivity (1) Does a chemical

More information

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid

Chemistry 163B. Thermochemistry. Chapter 4 Engel & Reid Chemistry 163B Thermochemistry Chapter 4 Engel & Reid 3 heats of reactions (constant volume; bomb calorimeter) ΔU V = q V ΔU= U products -U reactants 4 heats of reactions (constant volume; fig 4.3 E&R)

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat

Thermochemistry. Chapter 6. Dec 19 8:52 AM. Thermochemistry. Energy: The capacity to do work or to produce heat Chapter 6 Dec 19 8:52 AM Intro vocabulary Energy: The capacity to do work or to produce heat Potential Energy: Energy due to position or composition (distance and strength of bonds) Kinetic Energy: Energy

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Thermochemistry Notes

Thermochemistry Notes Name: Thermochemistry Notes I. Thermochemistry deals with the changes in energy that accompany a chemical reaction. Energy is measured in a quantity called enthalpy, represented as H. The change in energy

More information

Chemistry: The Central Science. Chapter 5: Thermochemistry

Chemistry: The Central Science. Chapter 5: Thermochemistry Chemistry: The Central Science Chapter 5: Thermochemistry Study of energy and its transformations is called thermodynamics Portion of thermodynamics that involves the relationships between chemical and

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Chemistry. Friday, March 30 th Monday, April 9 th, 2018

Chemistry. Friday, March 30 th Monday, April 9 th, 2018 Chemistry Friday, March 30 th Monday, April 9 th, 2018 Do-Now: BrainPOP: Heat 1. Write down today s FLT 2. Distinguish between exothermic and endothermic processes. 3. What is the specific heat of water?

More information

WORKSHEET #1. Dougherty Valley HS AP Chemistry Hess s Law Problems

WORKSHEET #1. Dougherty Valley HS AP Chemistry Hess s Law Problems Dougherty Valley HS AP Chemistry Hess s Law Problems WORKSHEET #1 1. Calculate the standard enthalpy change, ΔH o, for the formation of 1 mol of strontium carbonate (the material that gives the red color

More information

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3. While you wait, please complete the following information:

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3. While you wait, please complete the following information: DO NOT OPEN UNTIL INSTRUCTED TO DO SO CHEM 110 Dr. McCorkle Exam #3 While you wait, please complete the following information: Name: Student ID: Turn off cellphones and stow them away. No headphones, mp3

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information