Extended ensemble Kalman filters for high-dimensional hierarchical state-space models

Size: px
Start display at page:

Download "Extended ensemble Kalman filters for high-dimensional hierarchical state-space models"

Transcription

1 Exended ensemble Kalman filers for high-dimensional hierarchical sae-space models Jonahan Sroud McDonough School of Business Georgeown Universiy Join work wih Mahias Kazfuss (Texas A&M) and Chris Wikle (Missouri) Jonahan Sroud (Georgeown) Exended EnKFs 1 / 31

2 Ouline Ouline 1 SSMs and Exising DA Mehods 2 Exended EnKFs 3 Numerical examples 4 Conclusions Jonahan Sroud (Georgeown) Exended EnKFs 2 / 31

3 SSMs and Exising DA Mehods Ouline 1 SSMs and Exising DA Mehods 2 Exended EnKFs 3 Numerical examples 4 Conclusions Jonahan Sroud (Georgeown) Exended EnKFs 3 / 31

4 SSMs and Exising DA Mehods The sae-space model (SSM) From a saisical perspecive: DA is filering in a SSM SSM wih addiive Gaussian error in discree ime = 1, 2,...: y = H x + v, v N m (0, R ), x = M (x 1 ) + w, w N n (0, Q ), where y is m 1 observaion vecor. x is n 1 sae vecor. H is m n observaion marix. M ( ) is evoluion operaor. v, w are independen errors. iniial sae x 0 N n (a 0, P 0 ) assume parameers known (for now) Jonahan Sroud (Georgeown) Exended EnKFs 4 / 31

5 SSMs and Exising DA Mehods Sequenial Daa Assimilaion Mehods Wan filering disribuion p(x y 1:) for = 1, 2,..., T. Kalman Filer (KF) Ensemble Kalman Filer (EnKF) Paricle Filer (PF) (Kalman, 1960) (Evensen, 1994) (Gordon e al., 1993) Poserior N (a 1, P 1 ) x (i) 1 p(x 1 y 1: 1 ) a ime 1 x (i) 1 p(x 1 y 1: 1 ) Prior N (a f, Pf ) a ime a f = M a 1 x f (i) p(x x (i) 1 ) P f = M P 1M + Q (i) xf p(x x (i) 1 ) Poserior N (a, P ) Resample x f (i) a ime a = (I K H )a f + K y x(i) = (I ˆK H )x f (i) + ˆK y (i) where w (i) P = (I K H )P f wih weighs w (i) p(y x f (i) ) y (i) N (y, R ) o obain poserior samples x (i) Jonahan Sroud (Georgeown) Exended EnKFs 5 / 31

6 SSMs and Exising DA Mehods Illusraion of he updae sep Illusraion of differen updaing schemes a a single ime poin poserior likelihood prior Exac EnKF Paricle Filer Paricle weighs degenerae for large n (Snyder e al., 2008; Slivinski and Snyder, 2016) EnKF requires regularizaion of sample forecas covariance/gain marix (Houekamer and Michell, 1998, 2001; O e al., 2004; Hamill e al., 2001; Anderson and Anderson, 1999; Whiaker and Hamill, 2002; Zhang e al., 2004,...) Jonahan Sroud (Georgeown) Exended EnKFs 6 / 31

7 Exended EnKFs Ouline 1 SSMs and Exising DA Mehods 2 Exended EnKFs 3 Numerical examples 4 Conclusions Jonahan Sroud (Georgeown) Exended EnKFs 7 / 31

8 Exended EnKFs Hierarchical sae-space model (HSSM) Saring wih x 0 N n (a 0, P 0 ), we assume for = 1, 2,...: z y, θ g(y ; θ ) y = H (θ ) x + v, v N m ( 0, R (θ ) ) x = M (x 1 ; θ ) + w, w N n ( 0, Q (θ ) ) θ θ 1 p(θ θ 1 ) where z R m are he acual measuremens, y R m is a laen variable, θ are model parameers, and we have added a ransformaion layer and a parameer layer o he addiive Gaussian SSM (in black). Wan filering disribuion p(x, θ z 1: ) for = 1, 2,.... Jonahan Sroud (Georgeown) Exended EnKFs 8 / 31

9 Exended EnKFs Exising mehods for parameer esimaion Sae augmenaion (Anderson, 2001). Mos popular mehod, bu does no work well if he saes and parameers are weakly correlaed (DelSole and Yang, 2010) Sequenial maximum likelihood/bayes (Dee and da Silva, 1999; Michell and Houekamer, 2000; Sroud and Bengsson, 2007; Frei and Künsch, 2012; Sroud e al., 2018) for specific parameers Ieraive EnKF/EnKS (Gu and Oliver, 2007; Chen and Oliver, 2012; Bocque and Sakov, 2013) sae augmenaion wih opimizaion. Also much work on choosing uning parameers (e.g., Anderson, 2007a,b, 2009; Li e al., 2009; Miyoshi, 2011,...). Jonahan Sroud (Georgeown) Exended EnKFs 9 / 31

10 Exended EnKFs Non-Gaussian Daa Assimilaion Paricle Filers (e.g., van Leeuwen, 2010,...). Local Paricle Filers (Poerjoy, 2016) Hybrid PF/EnKF (Frei and Künsch, 2012, 2013; Slivinski e al., 2015) Robus EnKF (Roh e al., 2013) Rank Hisogram Filers (Anderson, 2010) Anamorphism (Lien e al., 2013; Amezcua and van Leeuwen, 2014) GIGG-EnKF (Bishop, 2016) Momen Maching EnKF (Lei and Bickel, 2011) Reviews/Comparisons (Bocque e al., 2010; Lei e al., 2010)... Jonahan Sroud (Georgeown) Exended EnKFs 10 / 31

11 Exended EnKFs Basic idea of exended EnKFs Condiional on y and θ, he HSSM reduces o he sandard SSM, for which he EnKF is applicable Take exising echniques for Bayesian inference (e.g., Gibbs sampler, paricle filer), bu replace he par requiring inegraing ou or sampling from x by he EnKF Examples: Gibbs-EnKF Paricle-EnKF Gibbs-EnKS... Jonahan Sroud (Georgeown) Exended EnKFs 11 / 31

12 Exended EnKFs Basic idea of exended EnKFs Condiional on y and θ, he HSSM reduces o he sandard SSM, for which he EnKF is applicable Take exising echniques for Bayesian inference (e.g., Gibbs sampler, paricle filer), bu replace he par requiring inegraing ou or sampling from x by he EnKF Examples: Gibbs-EnKF Paricle-EnKF Gibbs-EnKS... Jonahan Sroud (Georgeown) Exended EnKFs 11 / 31

13 Exended EnKFs Algorihm 1: Gibbs EnKF (GEnKF) Assume: forecass of sae and parameers are independen, M (x 1 ) does no depend on θ, and θ are independen over ime. Then: For = 0: Draw (x (i) For 1: 0, θ(i) 0 1. Forecas sep: x (i) 2. Iniialize y (i) ) from Nn(a0, P0)p(θ0), i = 1,..., M. = M (x (i) 1 ), i = 1,..., M. and θ (i), for i = 1,..., M. 3. For i = 1,..., M, ierae beween he following seps unil convergence: (a) Sample x (i) (b) Sample y (i) (c) Sample θ (i) from ˆp(x y (i) from p(y x (i) from p(θ y (i), θ (i), x (1:M) ) using EnKF updae., θ (i), z )., x (i), z ). Then, each (x (i), θ (i) ) is a join sample from p(x, θ z 1: ). Jonahan Sroud (Georgeown) Exended EnKFs 12 / 31

14 Exended EnKFs Algorihm 2: Paricle EnKF (for low-dim parameers) Iniialize he algorihm wih an ensemble of ensembles: (θ (i) 0, x(i,j) 0 ) wih w (i) 0 = 1/M, i = 1,..., M; j = 1,..., N. Then, for each ime 1: 1. For i = 1,..., M: (a) Sample a paricle θ (i) from p(θ θ (i) (b) Propagae he ensemble: x (i,j) (c) Calculae paricle weigh: w (i) (d) Generae x (i,j) from ˆp(x z, θ (i) 1 ) 2. Filering disribuion: p(θ, x z 1:) M = M (x (i,j) 1, θ(i) ), j = 1,..., N. w (i) 1 LZ (z θ (i), x (i,1:n) )., x (i,1:n) ), j = 1,..., N, using EnKF. i=1 w (i) 1 N N j=1 δ (θ (i),x (i,j) ) (θ, x) 3. If desired, resample he paricles (θ (i), x (i,1:n) ) wih weighs w (i) o obain an unweighed sample Likelihood L Z (z θ, x (i,1:n) ) is approximaed using EnKF In he case of forecas independence of saes and parameers, only need a single ensemble (cf. Frei and Künsch, 2012) Jonahan Sroud (Georgeown) Exended EnKFs 13 / 31

15 Exended EnKFs Algorihm 3: Gibbs-EnKS Wan smoohing disribuion p(x 1:T, θ 1:T z 1:T ) for fixed T. 1. Iniialize y 1:T and θ 1:T. 2. Ierae beween following seps unil convergence: (a) Draw a sample x 1:T from p(x 1:T θ 1:T, y 1:T ) using he EnKS*. (b) Draw a sample y 1:T from p(y 1:T z 1:T, x 1:T, θ 1:T ). (c) Draw a sample θ 1:T from p(θ 1:T x 1:T, y 1:T, z 1:T ). *Ensemble Kalman Smooher (Evensen and van Leeuwen, 2000). Works even for high-dimensional parameers, if full condiional disribuion is available in closed form Jonahan Sroud (Georgeown) Exended EnKFs 14 / 31

16 Exended EnKFs Properies of he exended EnKFs For linear Gaussian SSMs, algorihms converge o rue poserior as N and M or he number of MCMC ieraions increase For small N, algorihms will end o perform well for HSSMs for which EnKF/EnKS works well for he embedded SSM. Compuaional complexiy: EnKF: Have o apply M o N ensemble members; updae is O(nN 2 ) for mos EnKF varians (e.g. Tippe e al., 2003) Exended EnKFs: In general, have o carry ou EnKF several imes. Bu: Ofen only a small number of ieraions or paricles is necessary, and only he updae has o be repeaed Thus, increased compuaional cos of exended EnKFs is minor in some applicaions Jonahan Sroud (Georgeown) Exended EnKFs 15 / 31

17 Numerical examples Ouline 1 SSMs and Exising DA Mehods 2 Exended EnKFs 3 Numerical examples 4 Conclusions Jonahan Sroud (Georgeown) Exended EnKFs 16 / 31

18 Numerical examples Daa wih ouliers Heavy-ailed noise disribuion: v l ν (0, σ 2 ), ν small Special case of our HSSM: z = y and R(θ) = σ 2 diag(θ 1,..., θ m ), where θ l ind. IG(ν/2, ν/2) GEnKF (Robus EnKF): Updae sep: For j = 1,..., N, repea G imes (unil convergence): (a) EnKF updae of x (j) from x f (j) based on y, θ (j), x f (1:N). (b) Sample θ (j) ind. l IG(ν/ , ν/2 + ( y l (Hx (j) ) l ) 2/2), l = 1,..., m σ Jonahan Sroud (Georgeown) Exended EnKFs 17 / 31

19 Numerical examples Daa wih ouliers Heavy-ailed noise disribuion: v l ν (0, σ 2 ), ν small Special case of our HSSM: z = y and R(θ) = σ 2 diag(θ 1,..., θ m ), where θ l ind. IG(ν/2, ν/2) GEnKF (Robus EnKF): Updae sep: For j = 1,..., N, repea G imes (unil convergence): (a) EnKF updae of x (j) from x f (j) based on y, θ (j), x f (1:N). (b) Sample θ (j) ind. l IG(ν/ , ν/2 + ( y l (Hx (j) ) l ) 2/2), l = 1,..., m σ Jonahan Sroud (Georgeown) Exended EnKFs 17 / 31

20 Numerical examples Daa wih ouliers Heavy-ailed noise disribuion: v l ν (0, σ 2 ), ν small Special case of our HSSM: z = y and R(θ) = σ 2 diag(θ 1,..., θ m ), where θ l ind. IG(ν/2, ν/2) GEnKF (Robus EnKF): Updae sep: For j = 1,..., N, repea G imes (unil convergence): (a) EnKF updae of x (j) from x f (j) based on y, θ (j), x f (1:N). (b) Sample θ (j) ind. l IG(ν/ , ν/2 + ( y l (Hx (j) ) l ) 2/2), l = 1,..., m σ Jonahan Sroud (Georgeown) Exended EnKFs 17 / 31

21 Numerical examples Example: Heavy-ailed daa Simulaed heavy-ailed daa (wih v l /σ 2 ) daa rue sae exac pos. GEnKF EnKF PF Huber Jonahan Sroud (Georgeown) Exended EnKFs 18 / 31

22 Numerical examples Example: Threshold Models Challenge: Observaion disribuions wih poin masses (e.g., binary) Use ransformaion equaions involving indicaor funcions Example: Rainfall amouns: { yl κ, y l > 0 z l = g(y l ; θ) = 0, y l 0 for some κ > 1. Assume R = σ 2 I m. Gibbs-EnKF for rainfall daa: Sep 3(c): Independenly: { = z 1/κ y l z l, x, κ l, z l > 0 N ( (Hx) l, σ 2), z l = 0 Sep 3(b): If κ is unknown, sample from p(κ x (j), z) Jonahan Sroud (Georgeown) Exended EnKFs 19 / 31

23 Numerical examples Example: Threshold Models Challenge: Observaion disribuions wih poin masses (e.g., binary) Use ransformaion equaions involving indicaor funcions Example: Rainfall amouns: { yl κ, y l > 0 z l = g(y l ; θ) = 0, y l 0 for some κ > 1. Assume R = σ 2 I m. Gibbs-EnKF for rainfall daa: Sep 3(c): Independenly: { = z 1/κ y l z l, x, κ l, z l > 0 N ( (Hx) l, σ 2), z l = 0 Sep 3(b): If κ is unknown, sample from p(κ x (j), z) Jonahan Sroud (Georgeown) Exended EnKFs 19 / 31

24 Numerical examples Example: Threshold Models Challenge: Observaion disribuions wih poin masses (e.g., binary) Use ransformaion equaions involving indicaor funcions Example: Rainfall amouns: { yl κ, y l > 0 z l = g(y l ; θ) = 0, y l 0 for some κ > 1. Assume R = σ 2 I m. Gibbs-EnKF for rainfall daa: Sep 3(c): Independenly: { = z 1/κ y l z l, x, κ l, z l > 0 N ( (Hx) l, σ 2), z l = 0 Sep 3(b): If κ is unknown, sample from p(κ x (j), z) Jonahan Sroud (Georgeown) Exended EnKFs 19 / 31

25 Numerical examples Example: Threshold models Simulaed rainfall daa (wih κ = 3) daa rue rain exac pos. GEnKF EnKF PF Jonahan Sroud (Georgeown) Exended EnKFs 20 / 31

26 Numerical examples Simulaion sudy: Non-Gaussian obs. a a single ime poin Simulaed heavy-ailed and rainfall daa. Compared GEnKF updae o (marix-free) EnKF and PF (imporance sampler): Heavy-ailed Rainfall Rain (κ unkn.) MSPE CRPS MSPE CRPS MSPE CRPS exac GEnKF EnKF >100 >100 PF Huber (Roh e al., 2013) Deails: Simulaed 100 rue saes of size n = 100; m = 75 randomly chosen observaions; H is subse of ideniy marix True sae disribuion: mean 0.2, powered exponenial covariance wih power 1.8 and scale 10. σ 0.2 EnKF and PF: N = 100. GEnKF: N = 30; 1 or 3 ieraions Wendland aper wih range 20 Jonahan Sroud (Georgeown) Exended EnKFs 21 / 31

27 Numerical examples Smoohing for Lorenz-96 n = 40 equally-spaced locaions on a circle Observaions a all locaions Observaions every δ = 0.2, T = 10 observaion imes Gaussian observaions (z = y ) M (x 1 ) = θ Lorenz 8,0.2 (x 1 ) H = R = I n, Q = 0.2Σ L Prior: θ N (0.8, ). Goal: Find smoohing disribuion p(θ, x 1:T y 1:T ) Compared hree mehods on 100 simulaed daases: 1. EnKS wih sae augmenaion wih N = 1000, θ N (θ 1, ) 2. Gibbs-EnKS 3. Paricle Gibbs sampler (Andrieu e al., 2010) For Gibbs-EnKS and paricle-gibbs: N = 50; 100 Gibbs ieraions; p(θ x 1:T, y 1:T ) is in closed form Jonahan Sroud (Georgeown) Exended EnKFs 22 / 31

28 Numerical examples Lorenz-96 resuls for one simulaed daase sae daa rue x GEnKS PG θ rue GEnKS PG (a) Sae a loc. 1 over ime (x 1:T,1 ) Ieraion (b) Trace plos for θ Figure: (a) True sae and poserior means and 80% inervals for sae variable x 1. (b) True value and race plos for parameer θ. Jonahan Sroud (Georgeown) Exended EnKFs 23 / 31

29 Numerical examples Lorenz-96 resuls averaged over 100 daases Parameer θ Sae x 1:T MSPE CRPS MSPE CRPS Gibbs-EnKS EnKS+SA >100 > Paricle Gibbs Prior EnKS wih sae augmenaion diverges Paricle Gibbs sampler produces worse inference on θ han simply using he prior disribuion (i.e., compleely ignoring he daa) Jonahan Sroud (Georgeown) Exended EnKFs 24 / 31

30 Conclusions Ouline 1 SSMs and Exising DA Mehods 2 Exended EnKFs 3 Numerical examples 4 Conclusions Jonahan Sroud (Georgeown) Exended EnKFs 25 / 31

31 Conclusions Summary EnKF handles high-dimensional, nonlinear SSMs, bu is less appropriae under non-gaussianiy or for unknown parameers Exended EnKFs handle more general, hierarchical SSMs, including unknown parameers and non-gaussian observaions In some cases, compuaional effor is similar o EnKF Resuls are approximae, bu asympoically correc for linear models In general, exended EnKFs can only work well if he embedded EnKF for known parameers works well for he problem a hand Jonahan Sroud (Georgeown) Exended EnKFs 26 / 31

32 Conclusions References This alk is largely based on 2 papers: Kazfuss, M., Sroud, J.R., and Wikle, C.K Undersanding he ensemble Kalman filer. The American Saisician, 70(4), Kazfuss, M., Sroud, J.R., and Wikle, C.K Exended ensemble Kalman filers for high-dimensional hierarchical sae-space models. arxiv: Funding Kazfuss: NSF DMS and DMS Wikle: NSF SES Jonahan Sroud (Georgeown) Exended EnKFs 27 / 31

33 Conclusions References I Amezcua, J. and van Leeuwen, P. J. (2014). Gaussian anamorphosis in he analysis sep of he EnKF: A join sae-variable/observaion approach. Tellus A, 66: Anderson, J. L. (2001). An ensemble adjusmen Kalman filer for daa assimilaion. Monhly Weaher Review, 129: Anderson, J. L. (2007a). An adapive covariance inflaion error correcion algorihm for ensemble filers. Tellus A, 59: Anderson, J. L. (2007b). Exploring he need for localizaion in ensemble daa assimilaion using an hierarchical ensemble filer. Physica D, 230: Anderson, J. L. (2009). Spaially and emporally varying adapive covariance inflaion for ensemble filers. Tellus, 61: Anderson, J. L. (2010). An non-gaussian ensemble filer updae for daa assimilaion. Monhly Weaher Review, 138: Anderson, J. L. and Anderson, S. L. (1999). A Mone Carlo implemenaion of he nonlinear filering problem o produce ensemble assimilaions and forecass. Monhly Weaher Review, 127: Andrieu, C., Douce, A., and Holensein, R. (2010). Paricle Markov chain Mone Carlo. Journal of he Royal Saisical Sociey, Series B, 72:1 33. Bishop, C. H. (2016). The GIGG-EnKF: Ensemble Kalman filering for highly skewed non-negaive uncerainy disribuions. Quarerly Journal of he Royal Meeorological Sociey, 141: Bocque, M., Pires, C. A., and Wu, L. (2010). Beyond Gaussian saisical modeling in geophysical daa assimilaion. Monhly Weaher Review, 138(8): Bocque, M. and Sakov, P. (2013). Join sae and parameer esimaion wih an ieraive ensemble Kalman smooher. Nonlinear Processes in Geophysics, 20(5): Chen, Y. and Oliver, D. S. (2012). Ensemble randomized maximum likelihood mehod as an ieraive ensemble smooher. Mahemaical Geosciences, 44(1):1 26. Dee, D. P. and da Silva, A. M. (1999). Maximum likelihood esimaion of forecas and observaion error covariance parameers. Par I: Mehodology. Monhly Weaher Review, 127: DelSole, T. and Yang, X. (2010). Sae and parameer esimaion in sochasic dynamical models. Physica D, 239(18): Jonahan Sroud (Georgeown) Exended EnKFs 28 / 31

34 Conclusions References II Evensen, G. (1994). Sequenial daa assimilaion wih a nonlinear quasi-geosrophic model using Mone Carlo mehods o forecas error saisics. Journal of Geophysical Research, 99: Evensen, G. and van Leeuwen, P. J. (2000). An ensemble Kalman smooher for nonlinear dynamics. Monhly Weaher Review, 128: Frei, M. and Künsch, H. R. (2012). Sequenial sae and observaion noise covariance esimaion using combined ensemble Kalman and paricle filers. Monhly Weaher Review, 140: Frei, M. and Künsch, H. R. (2013). Bridging he ensemble Kalman and paricle filers. Biomerika, 100: Gordon, N. J., Salmond, D. J., and Smih, A. F. M. (1993). Novel approach o nonlinear/non-gaussian Bayesian sae esimaion. In IEE Proceedings, volume F-140, pages IEE. Gu, Y. and Oliver, D. S. (2007). An ieraive ensemble Kalman filer for muliphase fluid flow daa assimilaion. SPE Journal, 12(4): Hamill, T. M., Whiaker, J., and Snyder, C. (2001). Disance-dependen filering of background error covariance esimaes in an ensemble Kalman filer. Monhly Weaher Review, 129: Houekamer, P. L. and Michell, H. L. (1998). Daa assimilaion using an ensemble Kalman filer echnique. Monhly Weaher Review, 126: Houekamer, P. L. and Michell, H. L. (2001). A sequenial ensemble Kalman filer for amospheric daa assimilaion. Monhly Weaher Review, 129: Kalman, R. (1960). A new approach o linear filering and predicion problems. Journal of Basic Engineering, 82(1): Kazfuss, M., Sroud, J. R., and Wikle, C. K. (2016). Undersanding he ensemble Kalman filer. The American Saisician, 70(4): Kazfuss, M., Sroud, J. R., and Wikle, C. K. (2017). Exended ensemble Kalman filers for high-dimensional hierarchical sae-space models. Technical repor, ArXiv: Lei, J. and Bickel, P. (2011). A momen maching ensemble filer for nonlinear non-gaussian daa assimilaion. Monhly Weaher Review, 139: Jonahan Sroud (Georgeown) Exended EnKFs 29 / 31

35 Conclusions References III Lei, J., Bickel, P., and Snyder, C. (2010). Comparison of ensemble Kalman filers under non-gaussianiy. Monhly Weaher Review, 138: Li, H., Kalnay, E., and Miyoshi, T. (2009). Simulaneous esimaion of covariance inflaion and observaion errors wihin an ensemble Kalman filer. Quarerly Journal of he Royal Meerological Sociey, 135: Lien, G.-Y., Kalnay, E., and Miyoshi, T. (2013). Effecive assimilaion of global precipiaion: Simulaion experimens. Tellus A, 65: Michell, H. L. and Houekamer, P. L. (2000). An adapive ensemble Kalman filer. Monhly Weaher Review, 128: Miyoshi, T. (2011). The Gaussian approach o adapive covariance inflaion and is implemenaion wih he local ensemble ransform Kalman filer. Monhly Weaher Review, 139: O, E., Hun, B. R., Szunyogh, I., Zimin, A. V., Koselich, E. J., Corazza, M., Kalnay, E., Pail, D. J., and Yorke, J. A. (2004). A local ensemble Kalman filer for amospheric daa assimilaion. Tellus, 56A: Poerjoy, J. (2016). A localized paricle filer for high-dimensional nonlinear sysems. Monhly Weaher Review, 144: Roh, S., Genon, M. G., Jun, M., Szunyogh, I., and Hoei, I. (2013). Observaion qualiy conrol wih a robus ensemble Kalman filer. Monhly Weaher Review, 141(12): Slivinski, L. and Snyder, C. (2016). Exploring pracical esimaes of he ensemble size necessary for paricle filers. Monhly Weaher Review, 144: Slivinski, L., Spiller, E., Ape, A., and Sandsede, B. (2015). A hybrid paricle-ensemble Kalman filer for Lagrangian daa assimilaion. Monhly Weaher Review, 143: Snyder, C., Bengsson, T., Bickel, P., and Anderson, J. L. (2008). Obsacles o high-dimensional paricle filering. Monhly Weaher Review, 136: Sroud, J. R. and Bengsson, T. (2007). Sequenial sae and variance esimaion wihin he ensemble Kalman filer. Monhly Weaher Review, 135: Sroud, J. R., Kazfuss, M., and Wikle, C. K. (2018). A Bayesian adapive ensemble Kalman filer for sequenial sae and parameer esimaion. Monhly Weaher Review, 146(1): Jonahan Sroud (Georgeown) Exended EnKFs 30 / 31

36 Conclusions References IV Tippe, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whiaker, J. S. (2003). Ensemble square-roo filers. Monhly Weaher Review, 131: van Leeuwen, P. J. (2010). Nonlinear daa assimilaion in Geosciences: An exremely efficien paricle filer. Quarerly Journal of he Royal Meeorological Sociey, 136: Whiaker, J. S. and Hamill, T. M. (2002). Ensemble daa assimilaion wihou perurbed observaions. Monhly Weaher Review, 130: Zhang, F., Snyder, C., and Sun, J. (2004). Impacs of iniial esimae and observaion availabiliy on convecive scale daa assimilaion wih an ensemble Kalman filer. Monhly Weaher Review, 132: Jonahan Sroud (Georgeown) Exended EnKFs 31 / 31

Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models Ensemble Kalman mehods for high-dimensional hierarchical dynamic space-ime models Mahias Kazfuss Jonahan R. Sroud Chrisopher K. Wikle arxiv:1704.06988v2 [sa.me] 8 Aug 2018 Absrac We propose a new class

More information

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani Feb 6-8, 208 Recen Developmens In Evoluionary Daa Assimilaion And Model Uncerainy Esimaion For Hydrologic Forecasing Hamid Moradkhani Cener for Complex Hydrosysems Research Deparmen of Civil, Consrucion

More information

Understanding the Ensemble Kalman Filter

Understanding the Ensemble Kalman Filter THE AMERICAN STATISTICIAN 2016, VOL. 70, NO. 4, 350 357 hp://dx.doi.org/10.1080/00031305.2016.1141709 Undersanding he Ensemble Kalman Filer Mahias Kazfuss a, Jonahan R. Sroud b, and Chrisopher K. Wikle

More information

The complexity of climate model drifts

The complexity of climate model drifts The complexiy of climae model drifs Davide Zanchein Angelo Rubino Maeregu Arisido Carlo Gaean Universiy of Venice, Dep. of Environmeal Sc., Informaics and Saisics A conribuion o PREFACE-WP10: (Saisical

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Joint state and parameter estimation with an iterative ensemble Kalman smoother Join sae and parameer esimaion wih an ieraive ensemble Kalman smooher Marc Bocque 1,2, Pavel Sakov 3 1 Universié Paris-Es, CEREA, join lab École des Pons ParisTech and EdF R&D, France 2 INRIA, Paris-Rocquencour

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM Robo Moion Model EKF based Localizaion EKF SLAM Graph SLAM General Robo Moion Model Robo sae v r Conrol a ime Sae updae model Noise model of robo conrol Noise model of conrol Robo moion model

More information

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS SEIF, EnKF, EKF SLAM Pieer Abbeel UC Berkeley EECS Informaion Filer From an analyical poin of view == Kalman filer Difference: keep rack of he inverse covariance raher han he covariance marix [maer of

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

An iterative ensemble Kalman smoother

An iterative ensemble Kalman smoother An ieraive ensemble Kalman smooher Marc Bocque 1,2, Pavel Sakov 3 1 Universié Paris-Es, CEREA, join lab École des Pons ParisTech and EdF R&D, France 2 INRIA, Paris-Rocquencour Research cener, France 3

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Marginalized Particle Filtering Framework for Tuning of Ensemble Filters

Marginalized Particle Filtering Framework for Tuning of Ensemble Filters NOVEMBER 2011 Š M Í D L A N D H O F M A N 3589 Marginalized Paricle Filering Framework for Tuning of Ensemble Filers VÁCLAV ŠMÍDL AND RADEK HOFMAN Insiue of Informaion Theory and Auomaion, Prague, Czech

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Andrew C Lorenc 07/20/14. Met Oce Prepared for DAOS meeting, August 2014, Montreal.

Andrew C Lorenc 07/20/14. Met Oce Prepared for DAOS meeting, August 2014, Montreal. Ensemble Forecas Sensiiviy o Observaions EFSO) and Flow-Following Localisaion in 4DEnVar Andrew C Lorenc 07/20/14 Me Oce andrew.lorenc@meoce.gov.uk Prepared for DAOS meeing, Augus 2014, Monreal. Inroducion

More information

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading Daa Assimilaion Alan O Neill Naional Cenre for Earh Observaion & Universiy of Reading Conens Moivaion Univariae scalar) daa assimilaion Mulivariae vecor) daa assimilaion Opimal Inerpoleion BLUE) 3d-Variaional

More information

An iterative ensemble Kalman smoother

An iterative ensemble Kalman smoother An ieraive ensemble Kalman smooher Marc Bocque 1,2 Pavel Sakov 3 1 Universié Paris-Es, CEREA, join lab École des Pons ParisTech and EdF R&D, France 2 INRIA, Paris-Rocquencour Research cener, France 3 Bureau

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error Filering Turbulen Signals Using Gaussian and non-gaussian Filers wih Model Error June 3, 3 Nan Chen Cener for Amosphere Ocean Science (CAOS) Couran Insiue of Sciences New York Universiy / I. Ouline Use

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Data assimilation for local rainfall near Tokyo on 18 July 2013 using EnVAR with observation space localization

Data assimilation for local rainfall near Tokyo on 18 July 2013 using EnVAR with observation space localization Daa assimilaion for local rainfall near Tokyo on 18 July 2013 using EnVAR wih observaion space localizaion *1 Sho Yokoa, 1 Masaru Kunii, 1 Kazumasa Aonashi, 1 Seiji Origuchi, 2,1 Le Duc, 1 Takuya Kawabaa,

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

HPCFinance research project 8

HPCFinance research project 8 HPCFinance research projec 8 Financial models, volailiy risk, and Bayesian algorihms Hanxue Yang Tampere Universiy of Technology March 14, 2016 Research projec 8 12/2012 11/2015, Tampere Universiy of Technology,

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

CSE-473. A Gentle Introduction to Particle Filters

CSE-473. A Gentle Introduction to Particle Filters CSE-473 A Genle Inroducion o Paricle Filers Bayes Filers for Robo Localizaion Dieer Fo 2 Bayes Filers: Framework Given: Sream of observaions z and acion daa u: d Sensor model Pz. = { u, z2, u 1, z 1 Dynamics

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

arxiv: v1 [math.na] 26 Sep 2017

arxiv: v1 [math.na] 26 Sep 2017 Ineracing paricle filers for simulaneous sae and parameer esimaion Angwenyi David, Insiu für ahemaik Universiä Posdam Email: kipkoej@gmail.com Jana de Wiljes, Insiu für ahemaik Universiä Posdam Email:

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

2016 Possible Examination Questions. Robotics CSCE 574

2016 Possible Examination Questions. Robotics CSCE 574 206 Possible Examinaion Quesions Roboics CSCE 574 ) Wha are he differences beween Hydraulic drive and Shape Memory Alloy drive? Name one applicaion in which each one of hem is appropriae. 2) Wha are he

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Monte Carlo Filter Particle Filter

Monte Carlo Filter Particle Filter 205 European Conrol Conference (ECC) July 5-7, 205. Linz, Ausria Mone Carlo Filer Paricle Filer Masaya Muraa, Hidehisa Nagano and Kunio Kashino Absrac We propose a new realizaion mehod of he sequenial

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

Rao-Blackwellized Auxiliary Particle Filters for Mixed Linear/Nonlinear Gaussian models

Rao-Blackwellized Auxiliary Particle Filters for Mixed Linear/Nonlinear Gaussian models Rao-Blackwellized Auxiliary Paricle Filers for Mixed Linear/Nonlinear Gaussian models Jerker Nordh Deparmen of Auomaic Conrol Lund Universiy, Sweden Email: jerker.nordh@conrol.lh.se Absrac The Auxiliary

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Monte Carlo data association for multiple target tracking

Monte Carlo data association for multiple target tracking Mone Carlo daa associaion for muliple arge racking Rickard Karlsson Dep. of Elecrical Engineering Linköping Universiy SE-58183 Linköping, Sweden E-mail: rickard@isy.liu.se Fredrik Gusafsson Dep. of Elecrical

More information

Tom Heskes and Onno Zoeter. Presented by Mark Buller

Tom Heskes and Onno Zoeter. Presented by Mark Buller Tom Heskes and Onno Zoeer Presened by Mark Buller Dynamic Bayesian Neworks Direced graphical models of sochasic processes Represen hidden and observed variables wih differen dependencies Generalize Hidden

More information

Particle Filtering. 1 Introduction. Michael Johannes and Nicholas Polson

Particle Filtering. 1 Introduction. Michael Johannes and Nicholas Polson Paricle Filering Michael Johannes and Nicholas Polson Absrac This chaper provides an overview of paricle filers. Paricle filers generae approximaions o filering disribuions and are commonly used in non-linear

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

Temporal probability models. Chapter 15, Sections 1 5 1

Temporal probability models. Chapter 15, Sections 1 5 1 Temporal probabiliy models Chaper 15, Secions 1 5 Chaper 15, Secions 1 5 1 Ouline Time and uncerainy Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic Bayesian

More information

SMC in Estimation of a State Space Model

SMC in Estimation of a State Space Model SMC in Esimaion of a Sae Space Model Dong-Whan Ko Deparmen of Economics Rugers, he Sae Universiy of New Jersey December 31, 2012 Absrac I briefly summarize procedures for macroeconomic Dynamic Sochasic

More information

Understanding the asymptotic behaviour of empirical Bayes methods

Understanding the asymptotic behaviour of empirical Bayes methods Undersanding he asympoic behaviour of empirical Bayes mehods Boond Szabo, Aad van der Vaar and Harry van Zanen EURANDOM, 11.10.2011. Conens 2/20 Moivaion Nonparameric Bayesian saisics Signal in Whie noise

More information

An EM based training algorithm for recurrent neural networks

An EM based training algorithm for recurrent neural networks An EM based raining algorihm for recurren neural neworks Jan Unkelbach, Sun Yi, and Jürgen Schmidhuber IDSIA,Galleria 2, 6928 Manno, Swizerland {jan.unkelbach,yi,juergen}@idsia.ch hp://www.idsia.ch Absrac.

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Particle Filtering and Smoothing Methods

Particle Filtering and Smoothing Methods Paricle Filering and Smoohing Mehods Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 3 rd Ocober 2012 A. Douce (UCL Maserclass Oc. 2012) 3 rd Ocober 2012 1 / 46 Sae-Space Models

More information

A Sequential Smoothing Algorithm with Linear Computational Cost

A Sequential Smoothing Algorithm with Linear Computational Cost A Sequenial Smoohing Algorihm wih Linear Compuaional Cos Paul Fearnhead David Wyncoll Jonahan Tawn May 9, 2008 Absrac In his paper we propose a new paricle smooher ha has a compuaional complexiy of O(N),

More information

Temporal probability models

Temporal probability models Temporal probabiliy models CS194-10 Fall 2011 Lecure 25 CS194-10 Fall 2011 Lecure 25 1 Ouline Hidden variables Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

EKF SLAM vs. FastSLAM A Comparison

EKF SLAM vs. FastSLAM A Comparison vs. A Comparison Michael Calonder, Compuer Vision Lab Swiss Federal Insiue of Technology, Lausanne EPFL) michael.calonder@epfl.ch The wo algorihms are described wih a planar robo applicaion in mind. Generalizaion

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

Tracking. Announcements

Tracking. Announcements Tracking Tuesday, Nov 24 Krisen Grauman UT Ausin Announcemens Pse 5 ou onigh, due 12/4 Shorer assignmen Auo exension il 12/8 I will no hold office hours omorrow 5 6 pm due o Thanksgiving 1 Las ime: Moion

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Anti-Disturbance Control for Multiple Disturbances

Anti-Disturbance Control for Multiple Disturbances Workshop a 3 ACC Ani-Disurbance Conrol for Muliple Disurbances Lei Guo (lguo@buaa.edu.cn) Naional Key Laboraory on Science and Technology on Aircraf Conrol, Beihang Universiy, Beijing, 9, P.R. China. Presened

More information

7630 Autonomous Robotics Probabilistic Localisation

7630 Autonomous Robotics Probabilistic Localisation 7630 Auonomous Roboics Probabilisic Localisaion Principles of Probabilisic Localisaion Paricle Filers for Localisaion Kalman Filer for Localisaion Based on maerial from R. Triebel, R. Käsner, R. Siegwar,

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

Exploitation of particle filter for forecast error covariance structure estimation

Exploitation of particle filter for forecast error covariance structure estimation Exploiaion of paricle filer for forecas error covariance srucure esimaion Radek Hofman Insiue of Informaion Theory and Auomaion ASCR Pod Vodárenskou věží 4 18208 Praha 8 hofman@uia.cas.cz Absrac The paper

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Sequential Bayesian Learning for Merton s Jump Model with Stochastic Volatility

Sequential Bayesian Learning for Merton s Jump Model with Stochastic Volatility Sequenial Bayesian Learning for Meron s Jump Model wih Sochasic Volailiy arxiv:1610.09750v1 [sa.ap] 31 Oc 2016 Eric Jacquier Boson Universiy, Quesrom School of Business Nicholas Polson The Universiy of

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Appendix to Creating Work Breaks From Available Idleness

Appendix to Creating Work Breaks From Available Idleness Appendix o Creaing Work Breaks From Available Idleness Xu Sun and Ward Whi Deparmen of Indusrial Engineering and Operaions Research, Columbia Universiy, New York, NY, 127; {xs2235,ww24}@columbia.edu Sepember

More information

On using Likelihood-adjusted Proposals in Particle Filtering: Local Importance Sampling

On using Likelihood-adjusted Proposals in Particle Filtering: Local Importance Sampling On using Likelihood-adjused Proposals in Paricle Filering: Local Imporance Sampling Péer Torma Eövös Loránd Universiy, Pázmány Péer séány /c 7 Budapes, Hungary yus@axelero.hu Csaba Szepesvári Compuer and

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006 2.160 Sysem Idenificaion, Esimaion, and Learning Lecure Noes No. 8 March 6, 2006 4.9 Eended Kalman Filer In many pracical problems, he process dynamics are nonlinear. w Process Dynamics v y u Model (Linearized)

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data

Inference of Sparse Gene Regulatory Network from RNA-Seq Time Series Data Inference of Sparse Gene Regulaory Nework from RNA-Seq Time Series Daa Alireza Karbalayghareh and Tao Hu Texas A&M Universiy December 16, 2015 Alireza Karbalayghareh GRN Inference from RNA-Seq Time Series

More information

RAO-BLACKWELLIZED PARTICLE SMOOTHERS FOR MIXED LINEAR/NONLINEAR STATE-SPACE MODELS

RAO-BLACKWELLIZED PARTICLE SMOOTHERS FOR MIXED LINEAR/NONLINEAR STATE-SPACE MODELS RAO-BLACKWELLIZED PARICLE SMOOHERS FOR MIXED LINEAR/NONLINEAR SAE-SPACE MODELS Fredrik Lindsen, Pee Bunch, Simon J. Godsill and homas B. Schön Division of Auomaic Conrol, Linköping Universiy, Linköping,

More information

A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS

A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS MARTA MARRÓN, ELECTRONICS. ALCALÁ UNIV. SPAIN mara@depeca.uah.es MIGUEL A. SOTELO, ELECTRONICS. ALCALÁ UNIV. SPAIN soelo@depeca.uah.es

More information

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl

Time series model fitting via Kalman smoothing and EM estimation in TimeModels.jl Time series model fiing via Kalman smoohing and EM esimaion in TimeModels.jl Gord Sephen Las updaed: January 206 Conens Inroducion 2. Moivaion and Acknowledgemens....................... 2.2 Noaion......................................

More information

Frequency independent automatic input variable selection for neural networks for forecasting

Frequency independent automatic input variable selection for neural networks for forecasting Universiä Hamburg Insiu für Wirschafsinformaik Prof. Dr. D.B. Preßmar Frequency independen auomaic inpu variable selecion for neural neworks for forecasing Nikolaos Kourenzes Sven F. Crone LUMS Deparmen

More information

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean Journal of Modern Applied Saisical Mehods Volume 5 Issue Aricle --005 A Robus Exponenially Weighed Moving Average Conrol Char for he Process Mean Michael B. C. Khoo Universii Sains, Malaysia, mkbc@usm.my

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

arxiv: v2 [math.na] 20 Sep 2016

arxiv: v2 [math.na] 20 Sep 2016 ANALYSIS OF THE ENSEMBLE KALMAN FILTER FOR INVERSE PROBLEMS CLAUDIA SCHILLINGS AND ANDREW M. STUART arxiv:162.22v2 [mah.na] 2 Sep 216 Absrac. The ensemble Kalman filer (EnKF) is a widely used mehodology

More information

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation Moivaion CSE57 Roboics Bayes Filer Implemenaions Paricle filers So far, we discussed he Kalman filer: Gaussian, linearizaion problems Paricle filers are a way o efficienly represen nongaussian disribuions

More information

Diagnostic tests for frailty

Diagnostic tests for frailty Diagnosic ess for fraily P. Economou and C. Caroni Deparmen of Mahemaics School of Applied Mahemaics and Physical Sciences Naional Technical Universiy of Ahens 9 Iroon Polyechniou, Zografou 155 80 Ahens,

More information

PARTICLE FILTERS FOR SYSTEM IDENTIFICATION OF STATE-SPACE MODELS LINEAR IN EITHER PARAMETERS OR STATES 1

PARTICLE FILTERS FOR SYSTEM IDENTIFICATION OF STATE-SPACE MODELS LINEAR IN EITHER PARAMETERS OR STATES 1 PARTICLE FILTERS FOR SYSTEM IDENTIFICATION OF STATE-SPACE MODELS LINEAR IN EITHER PARAMETERS OR STATES 1 Thomas Schön and Fredrik Gusafsson Division of Auomaic Conrol and Communicaion Sysems Deparmen of

More information