the initial and nal photons. These selection rules are based on the collinear inematics of photon splitting in the case of the subcritical magnetic el

Size: px
Start display at page:

Download "the initial and nal photons. These selection rules are based on the collinear inematics of photon splitting in the case of the subcritical magnetic el"

Transcription

1 Photon Splitting in a Strong Magnetic Field M.V. Chistyaov, A.V. Kuznetsov and N.V. Miheev Division of Theoretical Physics, Department of Physics, Yaroslavl State University, Sovietsaya 14, Yaroslavl, Russian Federation Abstract The process of photon splitting! in a strong magnetic eld is investigated both below and above the pair creation threshold.the partial amplitudes and the splitting probabilities are calculated taing account of the photon dispersion and large radiative corrections near the resonance. The non-linear electromagnetic process of the photon splitting in external eld is one of the most exiting eect of the quantum electrodynamics. It is interesting to note that possible manifestations of this process belong to the two completely oposite elds of our physical world. On one hand this eect could manifest itself in the microcosm, in the electric eld of a heavy atoms. On the other hand, possible manistations of this process in macrocosm are discussed during a long time, namely, in the astrophysical objects, where strong magnetic elds could exist. In this tal we consider the procees of the photon splitting in the strong magnetic eld. Theoretical study of this process has a rather long history [1,, 3]. Adler was the rst who considers the photon splitting as a possible mechanism of the production linearly polarized photons in a pulsar magnetic eld. In his wor the comprehensive investigation of this process was carried out for the magnetic eld below the critical value, B e = m =e ' 4: G (m is the electron mass, e > 0 is the elementary charge). There were found the selection rules connected whith the defenite polarization states of 1

2 the initial and nal photons. These selection rules are based on the collinear inematics of photon splitting in the case of the subcritical magnetic eld. The recent progress in astrophysics has drawn attention again to the photon splitting induced by a magnetic eld. It has found application in the study of the spectral formation of gamma ray burst (GRB) from neutron stars and has also been used in models of soft gamma ray repeaters (SGR), where it soften the photon spectrum. It is supposed for these objects to have very strong magnetic eld which can exceed essentialy the critical value. The good review on this topic could be found in [4]. Therefore the study of the photon splitting has been continued. In some recent papers [5, 6] this process was studied in the magnetic eld much greater than the critical value. In our opinion there are some facts which are not taen into account in this wors. The limit of the collinear inematics is not aplicable in the strong magnetic eld (B B e ). Therefore ones cannot use Adler's selection rules. The radiative corrections can give a large contribution near the pair creation threshold. In this tal, photon splitting in a strong magnetic eld is investigated both below and above the pair-creation threshold, with taing account of the noncollinearity of the inematics and large radiative corrections. 1 The inematic of photon splitting. The inematic of the photon splitting in magnetic eld is dened by the vacuum polarization. The dispersion relations for the photons of dierent polarizations could be found from the following equations! () ; ;P =0 (1) where P are the eigenvalues of the photon polarization operator. Only two of these equations correspond to the real photons with the polarization vectors " () = (') q " (?)? = ( ~') q ()

3 These are the so-called parallel and perpendicular modes in Adler's notation. Here ' = F =B ~' = 1" ' are the dimensionless tensor of the external magnetic eld and the dual tensor, =! ; 3? = 1 +. Magnetic eld is directed along the third axes, B =(0 0 B). The corresponding eigenvalues P are singular at the points of the socalled cyclotron resonances. In the limit of the strong magnetic eld (B B e )thelowest of them is only essential and corresponds to the pair creation threshold, = 4m p. Therefore we shall further analyse the inematical region < (m + m +eb). In this region P tae the following oneloop approximate form P '; 3 P? ';! 4m eb H (3) where H(z) = H(z) =; 1 z 1 p arctan p ; 1 z>1 z ; 1 z ; 1 z p ln 1+p! 1 ; z 1 ; z 1 ; p 1 ; z ++i z p z<1: 1 ; z One can consider the eigenvalues of the polarization operator as a photon eective masses squared, m eff. There is the eective mass of photon which denes the inematics of the photon splitting. This process is inematically allowed only when one of the nal photons of the?-mode is created in the inematic region < 4m. Realy, if all photons are in the region > 4m the limit of the collinear inematic is realized because of the relatively small (jm effj! ) eective massesof the photons in this region. The photon of the?-mode aquares positive and the photon of the -mode negative eective mass squared. It means, that only?-mode could split. On the other hand it is nown, see [], that only transition!??is allowed in the collinear inematic. Therefore the photon splitting is forbidden when > 4m for all photons in the procces. If the nal photon of the?-mode is created in the region < 4m the inematic of photon splitting could be far from collinearity. This is due to the fact that the photon of this mode aquares signicant eective mass, m eff < 0 jm effj!, in this region. Moreover, the large value of the polarization operator near the resonance 3

4 leads to the neccessity of taing acount a large radiative corrections which reduce to renormalization of photon wave-function. " () q! " () Z Z ;1 =? The Amplitude of the Process! in the Strong Magnetic Field. The process of the photon splitting in the magnetic eld is depicted by two Feinman diagrams, see the Fig.1. The amplitude of this process can be written in the following form M = e 3 Z d 4 Xd 4 Y Spf^"() ^S(Y )^"( 00 ) ^S(;X ; Y )^"( 0 ) ^S(X)g e ;ie (XFY )= e i(0 X; 00 Y ) +("( 0 ) 0 $ "( 00 ) 00 ) (5) X = z ; x Y = x ; y where = (! ) is the 4-vector of the momentum of initial photon with the polarization vector ", 0 and 00 are the 4-momenta of nal photons, S(X) is the electron propagator in the magnetic eld [7]. In the case of the strong eld it is advantegeous to use the asymptotic expression of the electron propagator which could be presented in the following form ^S(X)' S a (X)= ieb exp(;ebx? 4 d p = p 0 p 3 ; = 1 (1 ; i 1 ): Z ) d p () (p) + m p ; m ;e ;i(px) (6) Substituting this in Eq. (5) and integrating, one would expect to obtain the amplitude which depends linearly on the eld strength, namely, as B 3 =B, where B in the denominator arises from the integration over d X? d Y?. However, two parts of the amplitude (5) cancel each other exactly. Thus, the asymptotic form of the electron propagator (6) only shows that the linearon-eld part of the amplitude is zero and provides no way of extracting the next term of expansion over the eld strength. As the analysis shows, that could be done by the insertion of two asymptotic (6) and one exact propagator ^S(x) into the amplitude (5), with all 4

5 interchanges. It is worthwhile now to turn from the general amplitude (5) to the partial amplitudes corresponding to denite photon modes, and?, which are just the stationary photon states with denite dispersion relations in a magnetic eld. There are 6 independent amplitudes and only two of them are of physical interest. We have obtained the following expressions, to the terms of order 1=B 3= ( M 0 ' 00 )( 0 ~' 00 ) 4m!? = i4 [( 0 ) ( 00 H )??] 1= ( 0 ) 3= ( M 0!?? = i4 e 00 ( ) [( 0 ) ( 00 ( 00 )H )?] 1= + ( 0 )H 4m ( 00 )!) As for remaining amplitudes, we note that M!! (7) 4m ( 0 ) (8)! is equal to zero in this approximation. On the other hand, the photon of the? mode due to its dispersion can split into two photons only in the inematic region > 4m where the tree-channel?! e + e ; [8] strongly dominates. 3 The Probability of the Photon Splitting. Although the process involves three particles, its amplitude is not a constant, because it contains the external eld tensor in addition to the photon 4- momenta. The general expression for the splitting probability can be written in the form W! 0 00 = g Z jm! 3! 00j 0 Z Z 0Z 00 (! () ;! 0( 0 ) ;! 00( ; 0 )) d3 0 (9)! 0! 00 where the factor g =1; is inserted to account for possible identity of the nal photons. The factors Z account for the large radiative corrections which reduce to the wave-function renormalization of a real photon with definite dispersion! =! (). The integration over phase space of two nal photons in Eq. (9) has to be performed using the photon energy dependence 5

6 on the momenta,! =! (), which can be found from the dispersion equations (1). A calculation of the splitting probability (9) is rather complicated in the general case. In the limit m! sin eb, where is an angle between the initial photon momentum and the magnetic eld direction, we derive the following analytical expression for the probability of the channel!? : W!? ' 3! sin (1 ; x)[1 ; x +x + (1 ; x)(1 + x) ln(1 + x) ; 16 ; x ; x 1 ; x ln 1 m ] x = x! sin 1: (10) Within the same approximation we obtain the spectrum of nal photons in the frame where the initial photon momentum is orthogonal to the eld direction: dw!? d! 0 ' 3 q! 0 +! ; m! <!0 <!; m (! ;! 0 ) ; 4m (11) q(! 0 ;!) ; 4m where!! 0 are the energies of the initial and nal photons of the mode. We have made numerical calculations of the process probabilities for both channels, which are valid in the limit! sin eb. Our results are represented in Figs.,3. The photon splitting probabilities below and near the pair-creation threshold are depicted in Fig.. In this region the channel!?? (allowed in the collinear limit) is seen to dominate the channel!? (forbidden in this limit). For comparison we show here the probability obtained without considering the noncollinearity of the inematics and radiative corrections (the dotted line 3 )which is seen to be inadequate. For example, this probability becomes innite just above the threshold. As is seen from Fig. 3, both channels give essential contributions to the probability at high photon energies, with the \forbidden" channel dominating. It should be stressed that taing account of the photon polarization leads to the essential dependence of the splitting probabilities on the magnetic eld, while the amplitudes (7), (8) do not depend on the eld strength value. 6

7 4 Conclusions The collinear limit is inadequate approximation for the photon splitting! in a strong magnetic eld (B B e ), because of the signicant deviation of the photon dispersion in the strong eld from the vacuum dispersion. The \allowed" channel!?? is not comprehensive for the splitting in the strong eld. The \forbiden" channel!? is also essential, moreover, it dominates at high energies of the initial photon. The partial amplitudes and the splitting probabilities are calculated in the strong eld limit for both channels. The amplitudes do not depend on the eld strength value, while the probabilities do depend essentially, due to the photon polarization in the strong magnetic eld. This wor was supported in part by the INTAS Grant N and by the Russian Foundation for Basic Research Grant N References [1] S.L. Adler, J.N. Bahcall, C.G. Callan and M.N. Rosenbluth, Phys. Rev. Lett. 5 (1970) 1061 Z. Bialynica-Birula and I. Bialynica-Birula, Phys. Rev. D (1970) 341. [] S.L. Adler, Ann. Phys. N.Y. 67 (1971) 599. [3] V.O. Papanian and V.I. Ritus, Sov. Phys. JETP 34 (197) 1195, 38 (1974) 879 R.J. Stoneham, J. Phys. A1 (1979) 187 V.N. Baier, A.I. Milstein and R.Zh. Shaisultanov, Sov. Phys. JETP 63 (1986) 66. [4] A.C. Harding, M.G. Baring and P.L. Gonthier, Astrophys.J. 476 (1997) 46. [5] V.N. Baier, A.I. Milstein and R.Zh. Shaisultanov, Phys. Rev. Lett. 77 (1996) [6] C. Wile and G. Wunner, Phys. Rev. D55 (1997)

8 [7] J. Schwinger, Phys.Rev V.8. P.664. [8] N.P. Klepiov, Zh. Esp. Teor. Fiz. 6 (1954) 19. () ; ; ; ; ; x ' & u $ ;;;;; % u Q Q z y ( 0) ( 00) + ( 0 $ 00) Figure 1: The Feynman diagram for photon splitting in a magnetic eld. The double line corresponds to the exact propagator of an electron in an external eld. 8

9 0. W W 0 sin 3 a 0.15 b 0.1 1a b ! sin m Figure : The dependence of the probability of photon splitting! on energy, below and near the pair-creation threshold: 1a 1b { for the \forbidden" channel!? and for the magnetic eld strength B =10 B e and 10 3 B e, correspondingly a b { for the \allowed" channel!?? for the eld strength B = 10 B e and 10 3 B e 3 { for the channel!?? in the collinear limit without taing account of large radiative corrections. Here W 0 =(=) 3 m. 9

10 W W 0 sin 0 1a 15 1b 10 5 b a ! sin m Figure 3: The probability of photon splitting above the pair-creation threshold: 1a 1b {for the \forbidden" channel!? and for the magnetic eld strength B =10 B e and 10 3 B e, correspondingly a b { for the \allowed" channel!?? for the eld strength B =10 B e and 10 3 B e. 10

Photon splitting in a strongly magnetized plasma

Photon splitting in a strongly magnetized plasma Photon splitting in a strongly magnetized plasma M. V. Chistyakov, D. A. Rumyantsev Division of Theoretical Physics, Yaroslavl State (P.G. Demidov) University, Sovietskaya 4, 50000 Yaroslavl, Russian Federation

More information

General amplitude of the n vertex one-loop process in a strong magnetic field

General amplitude of the n vertex one-loop process in a strong magnetic field Yaroslavl State University Preprint YARU-HE-0/09 hep-ph/01009 arxiv:hep-ph/01009v 1 Mar 003 General amplitude of the n vertex one-loop process in a strong magnetic field A. V. Kuznetsov, N. V. Mikheev,

More information

Lepton pair production by high-energy neutrino in an external electromagnetic field

Lepton pair production by high-energy neutrino in an external electromagnetic field Yaroslavl State University Preprint YARU-HE-00/03 hep-ph/000316 Lepton pair production by high-energy neutrino in an external electromagnetic field A.V. Kuznetsov, N.V. Mikheev, D.A. Rumyantsev Division

More information

INTERACTION OF ELECTROMAGNETIC RADIATION WITH SUPERCRITICAL MAGNETIC FIELD

INTERACTION OF ELECTROMAGNETIC RADIATION WITH SUPERCRITICAL MAGNETIC FIELD INTERACTION OF ELECTROMAGNETIC RADIATION WITH SUPERCRITICAL MAGNETIC FIELD A. E. SHAAD P.N.Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia shabad@td.lpi.ru It is pointed, that for

More information

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field

Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field Chapter 2 Solutions of the Dirac Equation in an External Electromagnetic Field In this chapter, the solutions of the Dirac equation for a fermion in an external electromagnetic field are presented for

More information

arxiv: v1 [hep-th] 10 Dec 2015

arxiv: v1 [hep-th] 10 Dec 2015 arxiv:52.03203v [hep-th] 0 Dec 205 Influence of an Electric Field on the Propagation of a Photon in a Magnetic field V.M. Katkov Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia e-mail:

More information

Energy and momentum losses in the process of neutrino scattering on plasma electrons with the presence of a magnetic field.

Energy and momentum losses in the process of neutrino scattering on plasma electrons with the presence of a magnetic field. Energy and momentum losses in the process of neutrino scattering on plasma electrons with the presence of a magnetic field. Nickolay V. Mikheev and Elena N. Narynskaya Division of Theoretical Physics,

More information

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr

ψ( ) k (r) which take the asymtotic form far away from the scattering center: k (r) = E kψ (±) φ k (r) = e ikr Scattering Theory Consider scattering of two particles in the center of mass frame, or equivalently scattering of a single particle from a potential V (r), which becomes zero suciently fast as r. The initial

More information

Influence of an Electric Field on the Propagation of a Photon in a Magnetic field

Influence of an Electric Field on the Propagation of a Photon in a Magnetic field Journal of Physics: Conference Series PAPER OPEN ACCESS Influence of an Electric Field on the Propagation of a Photon in a Magnetic field To cite this article: V M Katkov 06 J. Phys.: Conf. Ser. 73 0003

More information

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey.

SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK. Physics Department, Middle East Technical University. Ankara,Turkey. RADIATIVE B! B and D! D DECAYS IN LIGHT CONE QCD SUM RULES. T.M.ALIEV, D. A. DEMIR, E.ILTAN,and N.K.PAK Physics Department, Middle East Technical University Ankara,Turkey November 6, 995 Abstract The radiative

More information

Nonlinear Quantum Electrodynamics

Nonlinear Quantum Electrodynamics Nonlinear Quantum Electrodynamics Nikolay B. Narozhny National Research Nuclear University MEPHI, Russia Résidence de France Moscou, 26 avril 2013 Today, two exawatt class facilities in Europe are already

More information

Publikationsliste (Dr. Lubov Vassilevskaya)

Publikationsliste (Dr. Lubov Vassilevskaya) Publikationsliste (Dr. Lubov Vassilevskaya) 1. A.V. Kuznetsov, N.V. Mikheev, G.G. Raffelt and L.A. Vassilevskaya, Neutrino dispersion in external magnetic fields, Phys. Rev. D73, 023001 (2006) [arxiv:hep-ph/0505092].

More information

Gravity - Balls. Daksh Lohiya. Inter University Centre for Astromony and Astrophysics. Poona, INDIA. Abstract

Gravity - Balls. Daksh Lohiya. Inter University Centre for Astromony and Astrophysics. Poona, INDIA. Abstract Gravity - Balls Daksh Lohiya Inter University Centre for Astromony and Astrophysics [IUCAA], Postbag 4, Ganeshkhind Poona, INDIA Abstract The existence of non trivial, non topological solutions in a class

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

48 K. B. Korotchenko, Yu. L. Pivovarov, Y. Takabayashi where n is the number of quantum states, L is the normalization length (N = 1 for axial channel

48 K. B. Korotchenko, Yu. L. Pivovarov, Y. Takabayashi where n is the number of quantum states, L is the normalization length (N = 1 for axial channel Pis'ma v ZhETF, vol. 95, iss. 8, pp. 481 { 485 c 01 April 5 Quantum Eects for Parametric X-ray Radiation during Channeling: Theory and First Experimental Observation K. B. Korotchenko 1), Yu. L. Pivovarov,

More information

/95 $ $.25 per page

/95 $ $.25 per page Fields Institute Communications Volume 00, 0000 McGill/95-40 gr-qc/950063 Two-Dimensional Dilaton Black Holes Guy Michaud and Robert C. Myers Department of Physics, McGill University Montreal, Quebec,

More information

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract MZ-TH-95-0 November 995 Two loopo(n f s )corrections to the decay width of the Higgs boson to two massive fermions. K. Melnikov Institut fur Physik, THEP, Johannes Gutenberg Universitat, Staudinger Weg

More information

hep-ph/ Jul 94

hep-ph/ Jul 94 Thermal versus Vacuum Magnetization in QED Goteborg ITP 94-3 June 994 Per Elmfors,,a Per Liljenberg, 2,b David Persson 3,b and Bo-Sture Skagerstam 4,b,c a NORDITA, Blegdamsvej 7, DK-200 Copenhagen, Denmark

More information

^p 2 p 2. k + q + + T (t; s; m 1 ; m 2 ) = ^p 1 p 1. (a) (b) (c) (d) (a) (e) (g) Figure 1

^p 2 p 2. k + q + + T (t; s; m 1 ; m 2 ) = ^p 1 p 1. (a) (b) (c) (d) (a) (e) (g) Figure 1 ^p 2 p 2 q T (t; s; m 1 ; m 2 ) = + q + q + + ^p 1 p 1 (a) (b) (c) (d) ^T 1 (t) = + + + (a) (e) (f) (g) Figure 1 q 1 q 1 q 4 q 2 q 3 q 2 q 3 (a) (b) pinch (c) (d) pinch (e) (f) Figure 2 Q = 1 (a) (b) (c)

More information

Cyclotron Institute and Physics Department. Texas A&M University, College Station, Texas Abstract

Cyclotron Institute and Physics Department. Texas A&M University, College Station, Texas Abstract Subthreshold kaon production and the nuclear equation of state G. Q. Li and C. M. Ko Cyclotron Institute and Physics Department Texas A&M University, College Station, Texas 77843 Abstract We reexamine

More information

Vacuum Birefringence in Strong Magnetic Fields

Vacuum Birefringence in Strong Magnetic Fields Vacuum Birefringence in Strong Magnetic Fields Walter Dittrich and Holger Gies Institut für theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany Abstract Table of

More information

EM radiation: wave nature and particle nature (Grade 12) *

EM radiation: wave nature and particle nature (Grade 12) * OpenStax-CNX module: m39511 1 EM radiation: wave nature and particle nature (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

hep-ph/ Sep 1998

hep-ph/ Sep 1998 Some Aspects of Trace Anomaly Martin Schnabl Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, C-8000 Praha 8, Czech Republic July 998 hep-ph/9809534 25 Sep 998

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

Application of Small-Angular Magnetooptic Polarimetry for Study of Magnetogyration in (Ga 0.3 In 0.7 ) 2 Se 3 and SiO 2 Crystals

Application of Small-Angular Magnetooptic Polarimetry for Study of Magnetogyration in (Ga 0.3 In 0.7 ) 2 Se 3 and SiO 2 Crystals Application of Small-Angular Magnetooptic Polarimetry for Study of Magnetogyration in (Ga.3 In.7 ) 2 Se 3 and SiO 2 Crystals O. Krupych, Yu. Vasyliv, D. Adameno, R. Vloh and O. Vloh Institute of Physical

More information

Birefringence and Dichroism of the QED Vacuum

Birefringence and Dichroism of the QED Vacuum Birefringence and Dichroism of the QED Vacuum Jeremy S. Heyl, Lars Hernquist Lick Observatory, University of California, Santa Cruz, California 9564, USA We use an analytic form for the Heisenberg-Euler

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Gluons. ZZ γz z

Gluons. ZZ γz z 3 Gluons WW ZZ γz γγ...3.4.5.6.7.8.9 5 down quars 4 3 WW γγ ZZ γz...3.4.5.6.7.8.9 5 4 FF 3 ESF FF ESF...3.4.5.6.7 QCD STRUCTURE OF LEPTONS BNL-684 Wojciech S LOMI NSKI and Jery SZWED y Physics Department,

More information

The State Research Center of Russian Federation. I.B. Khriplovich, A.A. Pomeransky CENTER-OF-MASS COORDINATE AND RADIATION OF COMPACT BINARY SYSTEMS

The State Research Center of Russian Federation. I.B. Khriplovich, A.A. Pomeransky CENTER-OF-MASS COORDINATE AND RADIATION OF COMPACT BINARY SYSTEMS The State Research Center of Russian Federation BUDKER INSTITUTE OF NUCLEAR PHYSICS I.B. Khriplovich, A.A. Pomeransky GRAVITATIONAL INTERACTION OF SPINNING BODIES, CENTER-OF-MASS COORDINATE AND RADIATION

More information

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Ground state and low excitations of an integrable chain with alternating spins St Meinerz and B - D Dorfelx Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Invalidenstrae 110,

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Novel solutions of RG equations for α(s) and β(α) in the large N c limit

Novel solutions of RG equations for α(s) and β(α) in the large N c limit Novel solutions of RG equations for α(s) and β(α) in the large N c limit Yu.A. Simonov Abstract General solution of RG equations in the framework of background perturbation theory is written down in the

More information

toy model. A.A.Penin and A.A.Pivovarov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow , Russia Abstract

toy model. A.A.Penin and A.A.Pivovarov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow , Russia Abstract On a subtle point of sum rules calculations: toy model. PostScript processed by the SLAC/DESY Libraries on 31 Mar 1995. A.A.Penin and A.A.Pivovarov Institute for Nuclear Research of the Russian Academy

More information

QED plasma in the early universe

QED plasma in the early universe https://doi.org/0.007/s40065-08-0232-6 Arabian Journal of Mathematics Samina S. Masood QED plasma in the early universe Received: 7 September 208 / Accepted: 2 December 208 The Author(s) 209 Abstract Renormalization

More information

p 3 A = 12 C s A = 16 O s d E η m η (MeV)

p 3 A = 12 C s A = 16 O s d E η m η (MeV) PRODUCTION AND DECAY OF ETA-MESIC NUCLEI A. I. L'VOV P. N. Lebedev Physical Institute, Russian Academy of Sciences Leninsky Prospect 5, Moscow 79, Russia Using the Green function method, binding eects

More information

Thermally Induced Photon Splitting

Thermally Induced Photon Splitting SUITP-97-16 Theoretical Physics Seminar in Trondheim No 13 1997 Thermally Induced Photon Splitting Per Elmfors a and Bo-Sture Skagerstam b a Department of Physics, Stockholm University, S-113 85 Stockholm,

More information

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University One-Loop Integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions CALC 2012 Samara State University 1. Basic examples and an idea for extended Higgs potentials

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaros

Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaros Stabilization of the Electroweak String by the Bosonic Zero Mode V.B. Svetovoy Department of Physics, Yaroslavl State University, Sovetskaya 14, Yaroslavl 15, Russia Abstract In the minimal standard model

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory

Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory Physica A 3 2002 141 152 www.elsevier.com/locate/physa Recursive graphical construction of Feynman diagrams and their weights in Ginzburg Landau theory H. Kleinert a;, A. Pelster a, B. VandenBossche a;b

More information

U U B U P x

U U B U P x Smooth Quantum Hydrodynamic Model Simulation of the Resonant Tunneling Diode Carl L. Gardner and Christian Ringhofer y Department of Mathematics Arizona State University Tempe, AZ 8587-184 Abstract Smooth

More information

fnlp) Two-photon production of e* pairs in a strong magnetic field I. ( 1 1 (3) A. A. Kozlenkov and I. G. Mitrofanov

fnlp) Two-photon production of e* pairs in a strong magnetic field I. ( 1 1 (3) A. A. Kozlenkov and I. G. Mitrofanov Two-photon production of e* pairs in a strong magnetic field A. A. Kozlenkov and I. G. Mitrofanov Institute of Space Research, USSR Academy of Sciences (Submitted 26 March 1986) Zh. Eksp. Teor. Fiz. 91,

More information

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( )

Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) IL NUOVO CIMENTO Vol. 119 B, N. 2 Febbraio 2004 DOI 10.1393/ncb/i2004-10051-8 Quantum electrodynamics in the squeezed vacuum state: Electron mass shift( ) V. Putz( 1 )( )andk. Svozil( 2 )( ) ( 1 ) Max-Planck-Institute

More information

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary PhD Thesis Nuclear processes in intense laser eld PhD Thesis summary Dániel Péter Kis BME Budapest, 2013 1 Background Since the creation of the rst laser light, there has been a massive progress in the

More information

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b

parameter symbol value beam energy E 15 GeV transverse rms beam size x;y 25 m rms bunch length z 20 m charge per bunch Q b 1nC electrons per bunch N b LCLS{TN{98{2 March 1998 SLAC/AP{109 November 1997 Ion Eects in the LCLS Undulator 1 Frank Zimmermann Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Abstract I calculate the

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

Two particle elastic scattering at 1-loop

Two particle elastic scattering at 1-loop Two particle elastic scattering at 1-loop based on S-20 Let s use our rules to calculate two-particle elastic scattering amplitude in, theory in 6 dimensions including all one-loop corrections: For the

More information

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017

arxiv: v1 [cond-mat.quant-gas] 23 Oct 2017 Conformality Lost in Efimov Physics Abhishek Mohapatra and Eric Braaten Department of Physics, The Ohio State University, Columbus, OH 430, USA arxiv:70.08447v [cond-mat.quant-gas] 3 Oct 07 Dated: October

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II January 22, 2016 9:00 a.m. 1:00 p.m. Do any four problems. Each problem is worth 25 points.

More information

hep-ph/ May 1998

hep-ph/ May 1998 Tagged photons in DIS with next-to-leading accuracy H. Anlauf 1 Fachbereich Physik, Siegen University, 5768 Siegen, Germany A.B. Arbuzov, E.A. Kuraev Bogoliubov Laboratory of Theoretical Physics, JINR,

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Non-Abelian Berry phase and topological spin-currents

Non-Abelian Berry phase and topological spin-currents Non-Abelian Berry phase and topological spin-currents Clara Mühlherr University of Constance January 0, 017 Reminder Non-degenerate levels Schrödinger equation Berry connection: ^H() j n ()i = E n j n

More information

74 JIN Meng and LI Jia-Rong Vol. 39 From the path integral principle, the partition function can be written in the following form [13] = [d ][d ][d][d

74 JIN Meng and LI Jia-Rong Vol. 39 From the path integral principle, the partition function can be written in the following form [13] = [d ][d ][d][d Commun. Theor. Phys. (Beijing, China) 39 (23) pp. 73{77 c International Academic Publishers Vol. 39, No. 1, January 15, 23 Inuence of Vacuum Eect on Behavior of Hot/Dense Nulcear Matter JIN Meng y and

More information

Effective Magnetic Moment of Neutrinos in Strong Magnetic Fields. Abstract

Effective Magnetic Moment of Neutrinos in Strong Magnetic Fields. Abstract Effective Magnetic Moment of Neutrinos in Strong Magnetic Fields Samina.S.Masood 1,,A.Pérez-Martínez,3, H. Perez Rojas 3 R. Gaitán 4 and S. Rodriguez-Romo 4 1.International Center for Theoretical Physics

More information

Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry

Imry-Ma disordered state induced by defects of random local anisotropy type in the system with O(n) symmetry 1 Imry-Ma disordered state induced by defects of "random local anisotropy" type in the system with O(n) symmetry A.A. Berzin 1, A.I. Morosov 2, and A.S. Sigov 1 1 Moscow Technological University (MIREA),

More information

On the Ter-Mikaelian and Landau Pomeranchuk effects for induced soft gluon radiation in a QCD medium

On the Ter-Mikaelian and Landau Pomeranchuk effects for induced soft gluon radiation in a QCD medium On the Ter-Miaelian and Landau Pomeranchu effects for induced soft gluon radiation in a QCD medium B. Kämpfer 1, O.P. Pavleno 1,2 1 Forschungszentrum Rossendorf, PF 10119, 01314 Dresden, Germany 2 Institute

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen

More information

SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the De

SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the De SLAC{PUB{7776 October 1998 Energy Spectrum of Electron-Positron Pairs Produced via the Trident Process, with Application to Linear Colliders in the Deep Quantum Regime Kathleen A. Thompson and Pisin Chen

More information

M =(L+) () for the string Regge trajectory, were L is the orbital momentum, is the vibrational quantum number, and is the string tension. Placing quar

M =(L+) () for the string Regge trajectory, were L is the orbital momentum, is the vibrational quantum number, and is the string tension. Placing quar Hybrid mesons: old prejudices and new spectroscopy Yu:S:Kalashnikova a a Institute of Theoretical and Experimental Physics, 11759, Moscow, Russia The models for hybrid mesons are discussed, in which the

More information

The concept of free electromagnetic field in quantum domain

The concept of free electromagnetic field in quantum domain Tr. J. of Physics 23 (1999), 839 845. c TÜBİTAK The concept of free electromagnetic field in quantum domain Alexander SHUMOVSKY and Özgür MÜSTECAPLIOĞLU Physics Department, Bilkent University 06533 Ankara-TURKEY

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

Helium fine structure Ingvar Lindgren (mod )

Helium fine structure Ingvar Lindgren (mod ) Helium fine structure Ingvar Lindgren 2004.09.20 (mod. 2005.01.23) The leading contributions to the helium fine structure beyond the first-order relativistic contribution were first derived by Araki [1]

More information

Conformal factor dynamics in the 1=N. expansion. E. Elizalde. Department ofphysics, Faculty of Science, Hiroshima University. and. S.D.

Conformal factor dynamics in the 1=N. expansion. E. Elizalde. Department ofphysics, Faculty of Science, Hiroshima University. and. S.D. Conformal factor dynamics in the =N expansion E. Elizalde Department ofphysics, Faculty of Science, Hiroshima University Higashi-Hiroshima 74, Japan and S.D. Odintsov Department ECM, Faculty ofphysics,

More information

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb

More information

Intense laser-matter interaction: Probing the QED vacuum

Intense laser-matter interaction: Probing the QED vacuum Intense laser-matter interaction: Probing the QED vacuum Hartmut Ruhl Physics Department, LMU Munich, Germany ELI-NP, Bucharest March 11, 2011 Experimental configuration Two laser pulses (red) collide

More information

XV Mexican Workshop on Particles and Fields

XV Mexican Workshop on Particles and Fields XV Mexican Workshop on Particles and Fields Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED Dra. Yajaira Concha Sánchez, Michoacana University, México 2-6 November 2015 Mazatlán,

More information

arxiv: v2 [astro-ph] 27 Dec 2010

arxiv: v2 [astro-ph] 27 Dec 2010 Astronomy Letters, 27, Vol. 33, No. 1, pp. 66 672. ELECTRON-POSITRON PLASMA GENERATION IN A MAGNETAR MAGNETOSPHERE arxiv:71.1v2 [astro-ph] 27 Dec 21 Ya. N. Istomin 1,2 and D. N. Sobyanin 1 1 Moscow Institute

More information

Limits on Tunneling Theories of Strong-Field Ionization

Limits on Tunneling Theories of Strong-Field Ionization Limits on Tunneling Theories of Strong-Field Ionization H. R. Reiss Max Born Institute, 12489 Berlin, Germany American University, Washington, D.C. 20016-8058, USA (Received 6 March 2008; published 22

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions PHYSICAL REVIEW D VOLUME 53, NUMBER 9 1 MAY 1996 Two loop O N f s corrections to the decay width of the Higgs boson to two massive fermions K Melnikov Institut für Physik, THEP, Johannes Gutenberg Universität,

More information

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993)

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) Start of body part published in Russian in: Yadernaya Fizika, 56 (1993) 45-5 translated in English in: Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) A METHOD FOR CALCULATING THE HEAT KERNEL

More information

An Introduction to Hyperfine Structure and Its G-factor

An Introduction to Hyperfine Structure and Its G-factor An Introduction to Hyperfine Structure and Its G-factor Xiqiao Wang East Tennessee State University April 25, 2012 1 1. Introduction In a book chapter entitled Model Calculations of Radiation Induced Damage

More information

On particle production by classical backgrounds

On particle production by classical backgrounds On particle production by classical backgrounds arxiv:hep-th/0103251v2 30 Mar 2001 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute, P.O.B. 180, HR-10002 Zagreb, Croatia hrvoje@faust.irb.hr

More information

Electromagnetic effects in the K + π + π 0 π 0 decay

Electromagnetic effects in the K + π + π 0 π 0 decay Electromagnetic effects in the K + π + π 0 π 0 decay arxiv:hep-ph/0612129v3 10 Jan 2007 S.R.Gevorkyan, A.V.Tarasov, O.O.Voskresenskaya March 11, 2008 Joint Institute for Nuclear Research, 141980 Dubna,

More information

Coupled quantum oscillators within independent quantum reservoirs

Coupled quantum oscillators within independent quantum reservoirs Coupled quantum oscillators within independent quantum reservoirs Illarion Dorofeyev * Institute for Physics of Microstructures, Russian Academy of Sciences, 6395, GSP-5 Nizhny Novgorod, Russia Abstract

More information

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen On a non-cp-violating electric dipole moment of elementary particles J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D-3773 Gottingen (e-mail: giesentheo-phys.gwdg.de) bstract description of

More information

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland

MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS. Janusz Adamowski AGH University of Science and Technology, Kraków, Poland MAGNETISM OF ATOMS QUANTUM-MECHANICAL BASICS Janusz Adamowski AGH University of Science and Technology, Kraków, Poland 1 The magnetism of materials can be derived from the magnetic properties of atoms.

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly PHY 396 K. Solutions for problem set #10. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where and Ĥ 0 = Ĥfree Φ

More information

determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A

determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A DESY 96015 4.5. TESTS OF THE LORENTZ STRUCTURE OF TAU DECAYS 99 determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A interaction of the ; vertex [224]: b meas

More information

Identical Particles. Bosons and Fermions

Identical Particles. Bosons and Fermions Identical Particles Bosons and Fermions In Quantum Mechanics there is no difference between particles and fields. The objects which we refer to as fields in classical physics (electromagnetic field, field

More information

astro-ph/ Dec 1994

astro-ph/ Dec 1994 TU-474 ICRR-Report-333-94-8 astro-phxxxx Electromagnetic Cascade in the Early Universe and its Application to the Big-Bang Nucleosynthesis M. Kawasaki 1 and T. Moroi y 1 Institute for Cosmic Ray Research,

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

Soon after the discovery of the cosmic background radiation (CBR), Greisen [1], and independently, Zatsepin amd Kuz'min [2], realized that it limits t

Soon after the discovery of the cosmic background radiation (CBR), Greisen [1], and independently, Zatsepin amd Kuz'min [2], realized that it limits t HUTP-98/A075 Evading the GZK Cosmic{Ray Cuto Sidney Coleman and Sheldon L. Glashow y Lyman Laboratory of Physics Harvard University Cambridge, MA 02138 Explanations of the origin of ultra-high energy cosmic

More information

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x)

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x) QED; and the Standard Model We have calculated cross sections in lowest order perturbation theory. Terminology: Born approximation; tree diagrams. At this order of approximation QED (and the standard model)

More information

M. Beneke. Randall Laboratory of Physics. Abstract. The relation between the pole quark mass and the MS-renormalized mass is governed

M. Beneke. Randall Laboratory of Physics. Abstract. The relation between the pole quark mass and the MS-renormalized mass is governed UM-TH-94-3 August 994 hep-ph/94838 More on ambiguities in the pole mass M. Beneke Randall Laboratory of Physics University of Michigan Ann Arbor, Michigan 489, U.S.A. Abstract The relation between the

More information

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG

OPAL =0.08) (%) (y cut R 3. N events T ρ. L3 Data PYTHIA ARIADNE HERWIG. L3 Data PYTHIA ARIADNE HERWIG CR-244 15 May 1996 QCD-RESULTS AND STUDIES OF FOUR FERMION PROCESSES AT THE INTERMEDIATE LEP ENERGY SCALE p s = 130{136 GEV Hans-Christian Schultz-Coulon Universitat Freiburg, Fakultat fur Physik Hermann-Herder-Strae

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum 1 Photons 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers, specifically massive

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

maximally charged black holes and Hideki Ishihara Department ofphysics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152, Japan

maximally charged black holes and Hideki Ishihara Department ofphysics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152, Japan Quasinormal modes of maximally charged black holes Hisashi Onozawa y,takashi Mishima z,takashi Okamura, and Hideki Ishihara Department ofphysics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information