THz polarization control with chiral metamaterials

Size: px
Start display at page:

Download "THz polarization control with chiral metamaterials"

Transcription

1 THz polarization control with chiral etaaterials M. Kafesaki, G. Kenanakis,. N. conoou and C. M. Soukoulis Foundation for Research & Technology, Hellas (FORTH), Crete, Greece, & University of Crete, Greece Aes Lab & Iowa State University (ISU), USA Artificial, structured (in subwavelength scale) aterials with unique electroagnetic properties (not encountered in natural aterials) lectroagnetic properties derive fro shape and distribution of building blocks (usually etallic) Giant to negative electrical perittivity Giant to negative pereability Unusual anisotropy Giant chirality, Possibility to engineer electroagnetic properties 1

2 Why THz? Unique for security and sensing Security Drug detection Picture fro Qinetiq Kodo Kawase group, Japan Molecular rotations Hydrogen Bonds, Torsions, collective vibrational odes Plastic, paper, clothes are transparent in the THz region Many aterials exhibit spectral fingerprints in the THz region Slide by S. Tzortzakis Passive and dynaic THz polarization control? Polarization THz optics (filters, polarizers, waveplates, ) Polarization dynaical odulators Polarization THz switches Zheludev s group Possible with chiral etaaterials! For dynaic coponents: Chiral etaaterials cobined with photoconducting seiconductors 2

3 Outline Introduction to chiral etaaterials Our flexible THz chiral structures Towards tunable/switchable chiral etaaterials for dynaic polarization control Structures of reduced syetry: additional polarization control capabilities (asyetric transission) Chiral etaaterials Chiral structure: not-identical to its irror iage + D 0 i( / c) H B H i( / c) 0 Magnetoelectric coupling - p igenodes: circularly polarized waves ( xˆ iyˆ) n Different index for left- and right-handed circularly polarized waves Alternative path to achieve negative index (Pendry, Tretyakov) 3

4 Chiral etaaterial interesting effects Optical activity (polarization rotation) Rotation angle 1 = [arg( T+ ) arg( T- )] 2 T + : Transission of right-handed circularly polarized waves (T - : of left-handed) Circular dichrois (different abosrption for left- and right-handed circularly polarized waves) Degree of ellipticity η= 1 sin -1 2 T T +T T o η = 0: linear, η = 45 : circular Bilayer planar chiral structures Pair of conductors utually twisted etal etal etal Chiral response: due to electroagnetic coupling of back and front conductor Advantages: asy fabrication with lithographic techniques Multiple low frequency resonances associated with strong chiral response Southapton, Bilkent, KIT, ISU, FORTH, In GHz Negative index Large polarization rotation Large circular dichrois 4

5 Our designs (unit cells) Yellow: etal (a) (b) (c) (d) (e) µ scale fabricated by UV lithography (MRG-FORTH) Pair of conductors encapsulated in polyiide ebrane (thickness ~12 µ) G. Kenanakis et. al, Opt. Mat. xpr. 2, 1702 (2012) Basic principle of bilayer chiral structures p j H j Magnetic dipole oent p lectric dipole oent p j p 5

6 Designs and linear transission results Siulation xperient Total saple area 15 x 15 Unit cell ~20 µ. Thickness ~12 µ Solid lines: co-polarized T++ T 1 T +T +it -T T -T -it +T + = Dashed lines: cross-polarized T T T 2 T -T +it +T T +T -it -T xx yy xy yx xx yy xy yx + xx yy xy yx xx yy xy yx Characterized by FTIR spectroscopy sending linearly polarized waves, i.e. obtain T xx, T yx Kenanakis et al, Opt. Mat. xpress 2, 1702 (2012) Cross-pair transission for linear polarization Siulation xperient,x Co-polarized Cross-polarized Co-polarized Cross-polarized H, y Large cross-polarization 6

7 Cross-pair chiral features Optical activity llipticity Very large optical activity (70 o ) with negligible ellipticity Cross-pair refractive indices n +, n_ Negative index for both circular polarizations Index close to zero with high transittance 7

8 Inverse gaadion odified: Transission Unit cell 26 x 26 µ Metal thickness=spacer thickness= 0.5 µ Total thickness =12 µ Siulation Co-polarized Cross-polarized xperient Co-polarized Cross-polarized Inverse gaadion propagation features ~90 o optical activity with negligible ellipticity and high transittance Optical activity llipticity 8

9 U-SRR circular transission features Narrow-band circular polarization filter Optical activity llipticity Towards tunable/switchable chiral etaaterials Approach: Introducing a photoconducting seiconductor layer (here Si) between the two conductors of the planar chiral structures Tuning/switching by photoexcitation Metal +SiO 2 Silicon (500 n) Metal +SiO 2 & Si 3 N 4 Si Vertical profile Sapphire Fabrication by MRG (G. Deligeorgis), FORTH 9

10 Cross-pair chiral features vs Si conductivity Optical activity Optical activity llipticity llipticity Switchable ellipticity Switchable circular polarizer possibility Significant change of ellipticity at the structure resonances The structures S. He group, APL 2010 Ar length = 16 icrons Ar width = 3 icrons Unit cell (a X =a Y ) = 17 μ Silicon thickness= 0.5μ Metal thickness= 1.5μ Fabrication by MRG (G. Deligeorgis), FORTH 10

11 Bianisotropic structures Beyond chirality lectric field induces agnetic polarization of arbitrary direction Additional polarization control capabilities D 0i( / c) H B H i( / c) Our 3D structure (split-cube-resonator-pair) Asyetric transission (AT) (diode-like response) for linearly polarized waves Magnetic resonance originated AT k H Unit cell G. Kenanakis et. al., ACS Photonics 2, 287 (2015) 0 Structure fabrication 620 n Fabrication by direct laser writing (nonlinear lithography) and electroless silver coating (M. Farsari s group, FORTH) 11

12 Structure characterization: Reflection Co-polarized x Co-polarized y Cross-polarized, x k H, y Good agreeent between siulations and experients Split-Cube-Resonator asyetric transission Forward direct. Backward direct. incident T forw Transitted T back Transitted incident Close to 30% transission asyetry Polarization isolator functionality! (zero vs higher T) 12

13 Asyetric transission? Transission asyetry f T T 2 b 2 T T T x y inc Tx txx txy x inc Ty tyx tyy y y x z k, z incident T b Transitted T f Transitted k, z incident Difference in polarization conversion between Reciprocity dictates the two perpendicular incident polarizations Af Bb f b txx t xx, t A C yy t yy f 2 f 2 C D t f b B D f b txy tyx, txy t xy tyx 2 2 yx C B Menzel et al, PRL, 2010 Split-Cube-Resonator asyetric transission (2) Close to 30% transission asyetry t xx =t yy asyetric transission for linearly polarized waves only Sall co-polarized T+large cross-polarized T90 o one-way optical activity with negligible ellipticity (1-way polarization rotator) 13

14 Mechanis of cross-polarized transission Coupling of agnetic resonances of the two resonators Advantages Ipedance atch possibility high transittance Backward wave possibility Magnetic field intensity H k k H Unit cell H We deonstrated five different flexible THz chiral structures showing very large optical activity and negative refractive index The designs can give switchable ellipticity response (dynaically switchable polarization filters) A bulk anisotropic structure in THz has been deonstrated, showing significant asyetric transission for linearly polarized waves PhotoMeta SolarNano Thank you 14

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

limitations J. Zhou, E. N. Economou and C. M. Soukoulis Mesoscopic Physics in Complex Media, 01011 (010) DOI:10.1051/iesc/010mpcm01011 Owned by the authors, published by EDP Sciences, 010 Optical metamaterials: Possibilities and limitations M. Kafesaki, R.

More information

Negative refractive index due to chirality

Negative refractive index due to chirality Negative refractive index due to chirality Jiangfeng Zhou, 1 Jianfeng Dong,, 1 Bingnan Wang, 1 Thomas Koschny, 1, 3 Maria Kafesaki, 3 and Costas M. Soukoulis 1, 3 1 Ames Laboratory and Department of Physics

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece Introduction o o THz science - Motivation

More information

Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs

Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs G. Kenanakis, 1,2,* R. Zhao, 3 A. Stavrinidis, 1 G. Konstantinidis, 1 N. Katsarakis, 1,2 M. Kafesaki, 1,4 C.

More information

Towards optical left-handed metamaterials

Towards optical left-handed metamaterials FORTH Tomorrow: Modelling approaches for metamaterials Towards optical left-handed metamaterials M. Kafesaki, R. Penciu, Th. Koschny, P. Tassin, E. N. Economou and C. M. Soukoulis Foundation for Research

More information

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials ECE8: Nano-Plasonics and Its Applications Week8 Negative Refraction & Plasonic Metaaterials Anisotropic Media c k k y y ω μ μ + Dispersion relation for TM wave isotropic anisotropic k r k i, S i S r θ

More information

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer Menglin. L. N. Chen 1, Li Jun Jiang 1, Wei E. I. Sha 1 and Tatsuo Itoh 2 1 Dept. Of EEE, The University Of Hong Kong 2 EE Dept.,

More information

Controlling THz and far-ir waves with chiral and bianisotropic metamaterials

Controlling THz and far-ir waves with chiral and bianisotropic metamaterials EPJ Appl. Metamat. 2015, 2, 15 Ó G. Kenanakis et al., Published by EDP Sciences, 2016 DOI: 10.1051/epjam/2015019 Available online at: http://epjam.edp-open.org REVIEW OPEN ACCESS Controlling THz and far-ir

More information

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity

90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity 90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity Yuqian Ye 1 and Sailing He 1,2,* 1 Centre for Optical and Electromagnetic Research, State Key Laboratory

More information

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators

Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Progress In Electromagnetics Research C, Vol. 49, 141 147, 2014 Asymmetric Chiral Metamaterial Multi-Band Circular Polarizer Based on Combined Twisted Double-Gap Split-Ring Resonators Wenshan Yuan 1, Honglei

More information

Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator

Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator Progress In Electromagnetics Research, Vol. 155, 105 113, 2016 Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator Yongzhi Cheng 1, 2, *, Chenjun

More information

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities

History of photonic crystals and metamaterials. However, many serious obstacles must be overcome before the impressive possibilities TECHNICAL NOTEBOOK I back to basics BACK TO BASICS: History of photonic crystals and metamaterials Costas M. SOUKOULIS 1,2 1 Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa,

More information

Extraordinary Optical Transmission Induced by Excitation of a Magnetic Plasmon Propagation Mode in a Diatomic Chain of Slit-hole Resonators

Extraordinary Optical Transmission Induced by Excitation of a Magnetic Plasmon Propagation Mode in a Diatomic Chain of Slit-hole Resonators Extraordinary Optical Transission Induced by Excitation of a Magnetic Plason Propagation Mode in a Diatoic Chain of Slit-hole Resonators H. Liu 1, *, T. Li 1, Q. J. Wang 1, Z. H. Zhu 1, S. M. Wang 1, J.

More information

An efficient way to reduce losses of left-handed metamaterials

An efficient way to reduce losses of left-handed metamaterials An efficient way to reduce losses of left-handed metamaterials Jiangfeng Zhou 1,2,, Thomas Koschny 1,3 and Costas M. Soukoulis 1,3 1 Ames Laboratory and Department of Physics and Astronomy,Iowa State University,

More information

Left-handed materials: Transfer matrix method studies

Left-handed materials: Transfer matrix method studies Left-handed materials: Transfer matrix method studies Peter Markos and C. M. Soukoulis Outline of Talk What are Metamaterials? An Example: Left-handed Materials Results of the transfer matrix method Negative

More information

Theoretical study of left-handed behavior of composite metamaterials

Theoretical study of left-handed behavior of composite metamaterials Photonics and Nanostructures Fundamentals and Applications 4 (2006) 12 16 www.elsevier.com/locate/photonics Theoretical study of left-handed behavior of composite metamaterials R.S. Penciu a,b, *, M. Kafesaki

More information

Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial

Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial Progress In Electromagnetics Research, Vol. 145, 263 272, 2014 Dual-band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial Yong

More information

National Technical University of Athens School of Applied Mathematical and Physical sciences

National Technical University of Athens School of Applied Mathematical and Physical sciences Foundation for Research and Technology-Hellas (FORTH) Institute of Electronic structure and Laser (IESL) School of Applied Mathematical and Physical sciences School of Applied Mathematical and Physical

More information

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE

DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Progress In Electromagnetics Research M, Vol. 31, 59 69, 2013 DUAL-BAND TERAHERTZ CHIRAL METAMATERIAL WITH GIANT OPTICAL ACTIVITY AND NEGATIVE REFRACTIVE INDEX BASED ON CROSS-WIRE STRU- CURE Fang Fang

More information

Negative refractive index response of weakly and strongly coupled optical metamaterials.

Negative refractive index response of weakly and strongly coupled optical metamaterials. Negative refractive index response of weakly and strongly coupled optical metamaterials. Jiangfeng Zhou, 1 Thomas Koschny, 1, Maria Kafesaki, and Costas M. Soukoulis 1, 1 Ames Laboratory and Department

More information

Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission

Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission Coupling effect of agnetic polariton in perforated etal/dielectric layered etaaterials and its influence on negative refraction transission T. Li, H. Liu, F. M. Wang, Z. G. Dong, and S. N. Zhu Departent

More information

Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator

Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator RADIOENGINEERING, VOL. 26, NO. 3, SEPTEMBER 217 75 Polarization-Dependent Multi-Functional Metamaterial as Polarization Filter, Transparent Wall and Circular Polarizer using Ring-Cross Resonator Zhao ZHANG

More information

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime

Negative index short-slab pair and continuous wires metamaterials in the far infrared regime Negative index short-slab pair and continuous wires metamaterials in the far infrared regime T. F. Gundogdu 1,2*, N. Katsarakis 1,3, M. Kafesaki 1,2, R. S. Penciu 1, G. Konstantinidis 1, A. Kostopoulos

More information

Photonic band gaps with layer-by-layer double-etched structures

Photonic band gaps with layer-by-layer double-etched structures Photonic band gaps with layer-by-layer double-etched structures R. Biswas a) Microelectronics Research Center, Ames Laboratory USDOE and Department of Physics and Astronomy, Iowa State University, Ames,

More information

THE REFLECTION AND TRANSMISSION OF ELEC- TROMAGNETIC WAVES BY A UNIAXIAL CHIRAL SLAB

THE REFLECTION AND TRANSMISSION OF ELEC- TROMAGNETIC WAVES BY A UNIAXIAL CHIRAL SLAB Progress In Electromagnetics Research, Vol. 127, 389 44, 212 THE REFLECTION AND TRANSMISSION OF ELEC- TROMAGNETIC WAVES BY A UNIAXIAL CHIRAL SLAB J.-F. Dong * and J. Li Institute of Optical Fiber Communication

More information

ASYMMETRIC TRANSMISSION OF LINEARLY POLAR- IZED WAVES AND DYNAMICALLY WAVE ROTATION USING CHIRAL METAMATERIAL

ASYMMETRIC TRANSMISSION OF LINEARLY POLAR- IZED WAVES AND DYNAMICALLY WAVE ROTATION USING CHIRAL METAMATERIAL Progress In Electromagnetics Research, Vol. 140, 227 239, 2013 ASYMMETRIC TRANSMISSION OF LINEARLY POLAR- IZED WAVES AND DYNAMICALLY WAVE ROTATION USING CHIRAL METAMATERIAL Furkan Dincer 1, Cumali Sabah

More information

Workshop on New Materials for Renewable Energy

Workshop on New Materials for Renewable Energy 2286-6 Workshop on New Materials for Renewable Energy 31 October - 11 November 201 Metamaterials: Past, Present, and Future Nonlinear Physics Centre Research School of Physics and Engineering The Australian

More information

arxiv: v1 [physics.optics] 25 Jan 2010

arxiv: v1 [physics.optics] 25 Jan 2010 Twisted split-ring-resonator photonic metamaterial with huge optical activity M. Decker 1, R. Zhao 2,3, C.M. Soukoulis 3,4, S. Linden 1, and M. Wegener 1 arxiv:1001.4339v1 [physics.optics] 25 Jan 2010

More information

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19)

Author(s) Tamayama, Y; Nakanishi, T; Sugiyama. Citation PHYSICAL REVIEW B (2006), 73(19) Observation of Brewster's effect fo Titleelectromagnetic waves in metamateri theory Author(s) Tamayama, Y; Nakanishi, T; Sugiyama Citation PHYSICAL REVIEW B (2006), 73(19) Issue Date 2006-05 URL http://hdl.handle.net/2433/39884

More information

Terahertz Fabry-Perot interferometer constructed by metallic meshes with micrometer period and high ratio of linewidth/period

Terahertz Fabry-Perot interferometer constructed by metallic meshes with micrometer period and high ratio of linewidth/period Terahertz Fabry-Perot interferoeter constructed by etallic eshes with icroeter period and high ratio of linewidth/period Lu Zhengang 1,, Tan Jiubin, Fan Zhigang 1 1 Postdoctoral Research Station of Optical

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 3: (Crash course in) Theory of optical activity Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45

More information

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media Daniel Sjöberg Department of Electrical and Information Technology September 27, 2012 Outline 1 Introduction 2 Maxwell s equations

More information

MULTI-BAND CIRCULAR POLARIZER USING ARCHI- MEDEAN SPIRAL STRUCTURE CHIRAL METAMA- TERIAL WITH ZERO AND NEGATIVE REFRACTIVE INDEX

MULTI-BAND CIRCULAR POLARIZER USING ARCHI- MEDEAN SPIRAL STRUCTURE CHIRAL METAMA- TERIAL WITH ZERO AND NEGATIVE REFRACTIVE INDEX Progress In Electromagnetics Research, Vol. 141, 645 657, 2013 MULTI-BAND CIRCULAR POLARIZER USING ARCHI- MEDEAN SPIRAL STRUCTURE CHIRAL METAMA- TERIAL WITH ZERO AND NEGATIVE REFRACTIVE INDEX Liyun Xie,

More information

arxiv: v1 [physics.optics] 17 Jan 2013

arxiv: v1 [physics.optics] 17 Jan 2013 Three Dimensional Broadband Tunable Terahertz Metamaterials Kebin Fan,1 Andrew C. Strikwerda,2 Xin Zhang,1, and Richard D. Averitt2, arxiv:1301.3977v1 [physics.optics] 17 Jan 2013 1 Department of Mechanical

More information

Random terahertz metamaterials

Random terahertz metamaterials Random terahertz metamaterials Ranjan Singh, 1 Xinchao Lu, 1 Jianqiang Gu, 1,2 Zhen Tian, 1,2 and Weili Zhang 1,a) 1 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater,

More information

Structural-configurated magnetic plasmon bands in connected ring chains

Structural-configurated magnetic plasmon bands in connected ring chains Structural-configurated agnetic plason bands in connected ring chains T. Li 1 *, R. X. Ye 1, C. Li 1, H. Liu 1, S. M. Wang 1, J. X. Cao 1, S. N. Zhu 1 *, and X. Zhang 2 1 National Laboratory of Solid State

More information

High transmittance left-handed materials involving symmetric split-ring resonators

High transmittance left-handed materials involving symmetric split-ring resonators Photonics and Nanostructures Fundamentals and Applications 5 (2007) 149 155 www.elsevier.com/locate/photonics High transmittance left-handed materials involving symmetric split-ring resonators N. Katsarakis

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

A Dielectric Invisibility Carpet

A Dielectric Invisibility Carpet A Dielectric Invisibility Carpet Jensen Li Prof. Xiang Zhang s Research Group Nanoscale Science and Engineering Center (NSEC) University of California at Berkeley, USA CLK08-09/22/2008 Presented at Center

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,35 8,.7 M Open access books available International authors and editors Downloads Our authors

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

IN A SENSE, every material is a composite, even if the

IN A SENSE, every material is a composite, even if the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 11, NOVEMBER 1999 2075 Magnetis fro Conductors and Enhanced Nonlinear Phenoena J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,

More information

From Metamaterials to Metadevices

From Metamaterials to Metadevices From Metamaterials to Metadevices Nikolay I. Zheludev Optoelectronics Research Centre & Centre for Photonic Metamaterials University of Southampton, UK www.nanophotonics.org.uk 13 September 2012, Southampton

More information

Terahertz electric response of fractal metamaterial structures

Terahertz electric response of fractal metamaterial structures Terahertz electric response of fractal metamaterial structures F. Miyamaru, 1 Y. Saito, 1 M. W. Takeda, 1 B. Hou, 2 L. Liu, 2 W. Wen, 2 and P. Sheng 2 1 Department of Physics, Faculty of Science, Shinshu

More information

Quantization of magnetoelectric fields

Quantization of magnetoelectric fields Quantization of agnetoelectric fields E. O. Kaenetskii Microwave Magnetic Laboratory, Departent of Electrical and Coputer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel January 22,

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8 th edition 2012; Text Book Text Book Dr. Naser Abu-Zaid Page 1 9/4/2012 Course syllabus Electroagnetic 2 (63374) Seester Language Copulsory / Elective Prerequisites Course Contents Course Objectives Learning Outcoes and Copetences

More information

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0. Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.6 H 0.4 colloids. The standard derivation is 4.4 %. Supplementary

More information

GHz magnetic response of split ring resonators

GHz magnetic response of split ring resonators Photonics and Nanostructures Fundamentals and Applications 2 (2004) 155 159 www.elsevier.com/locate/photonics GHz magnetic response of split ring resonators Lei Zhang a, G. Tuttle a, C.M. Soukoulis b,

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Photonic Bandgap and Electromagnetic Metamaterials Andrew Kirk andrew.kirk@mcgill.ca ca Department of Electrical and Computer Engineering McGill Institute for Advanced Materials A Kirk 11/24/2008 Photonic

More information

Mirrors with chiral slabs

Mirrors with chiral slabs JOURNAL OF OPTOLCTRONICS AND ADVANCD MATRIALS Vol. 8, No. 5, October 6, p. 1918-194 Mirrors with chiral slabs C. SABAH *, S. UÇKUN University of Gaziantep, lectrical and lectronics ngineering Department,

More information

Gradient-index metamaterials and spoof surface plasmonic waveguide

Gradient-index metamaterials and spoof surface plasmonic waveguide Gradient-index metamaterials and spoof surface plasmonic waveguide Hui Feng Ma State Key Laboratory of Millimeter Waves Southeast University, Nanjing 210096, China City University of Hong Kong, 11 October

More information

Supporting Information. Anisotropic Electron-Phonon Interactions in Angle- Resolved Raman Study of Strained Black

Supporting Information. Anisotropic Electron-Phonon Interactions in Angle- Resolved Raman Study of Strained Black Supporting Information Anisotropic Electron-Phonon Interactions in Angle- Resolved Raman Study of Strained Black Phosphorus Weinan Zhu,* 1 Liangbo Liang,* 2 Richard H. Roberts, 3 Jung-Fu Lin, 3,4 and Deji

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

FORTH. Essential electromagnetism for photonic metamaterials. Maria Kafesaki. Foundation for Research & Technology, Hellas, Greece (FORTH)

FORTH. Essential electromagnetism for photonic metamaterials. Maria Kafesaki. Foundation for Research & Technology, Hellas, Greece (FORTH) FORTH Essential electromagnetism for photonic metamaterials Maria Kafesaki Foundation for Research & Technology, Hellas, Greece (FORTH) Photonic metamaterials Metamaterials: Man-made structured materials

More information

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures

A Study of Electromagnetic Wave Propagation. in the Foam Core Sandwich Structures ID-83 A Study of Electroagnetic Wave Propagation in the Foa Core Sandwich Structures H. J. Chun and H. S. Shin School of Electrical and Mechanical Engineering, Yonsei University 34, Shinchon-dong, Seodaeun-gu,

More information

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27.

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27. 3. Research on THz-wave applications using frequency-agile THz-wave source 3.1 Development of spectroscopic Stokes polarimeter by using tunable THz-wave source (T. Notake, H. Minamide) In THz frequency

More information

Cloaking The Road to Realization

Cloaking The Road to Realization Cloaking The Road to Realization by Reuven Shavit Electrical and Computer Engineering Department Ben-Gurion University of the Negev 1 Outline Introduction Transformation Optics Laplace s Equation- Transformation

More information

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements

Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements T. Driscoll and D. N. Basov Physics Department, University of California-San Diego, La Jolla, California

More information

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial Durdu Ö. Güney, 1,* Thomas Koschny, 1,2 and Costas M. Soukoulis 1,2 1 Ames National Laboratory, USDOE and Department

More information

Jones calculus for optical system

Jones calculus for optical system 2/14/17 Electromagnetic Processes In Dispersive Media, Lecture 6 1 Jones calculus for optical system T. Johnson Key concepts in the course so far What is meant by an electro-magnetic response? What characterises

More information

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials SUPPLEMENTARY INFORMATION Letters DOI: 10.1038/s41566-017-0002-6 In the format provided by the authors and unedited. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

More information

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells M. R. Beversluis 17 December 2001 1 Introduction For over thirty years, silicon based electronics have continued

More information

Atomic and nuclear physics

Atomic and nuclear physics Atomic and nuclear physics Atomic shell Normal Zeeman effect LEYBOLD Physics Leaflets Observing the normal Zeeman effect in transverse and longitudinal Objects of the experiment Observing the line triplet

More information

Polarization of Light and Birefringence of Materials

Polarization of Light and Birefringence of Materials Polarization of Light and Birefringence of Materials Ajit Balagopal (Team Members Karunanand Ogirala, Hui Shen) ECE 614- PHOTONIC INFORMATION PROCESSING LABORATORY Abstract-- In this project, we study

More information

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves Dan Sievenpiper, Jiyeon Lee, and Dia a Bisharat January 11, 2016 1 Outline Arbitrary Anisotropic Surface Patterning Surface wave

More information

Light Manipulation by Metamaterials

Light Manipulation by Metamaterials Light Manipulation by Metamaterials W. J. Sun, S. Y. Xiao, Q. He*, L. Zhou Physics Department, Fudan University, Shanghai 200433, China *Speaker: qionghe@fudan.edu.cn 2011/2/19 Outline Background of metamaterials

More information

Chap. 2. Polarization of Optical Waves

Chap. 2. Polarization of Optical Waves Chap. 2. Polarization of Optical Waves 2.1 Polarization States - Direction of the Electric Field Vector : r E = E xˆ + E yˆ E x x y ( ω t kz + ϕ ), E = E ( ωt kz + ϕ ) = E cos 0 x cos x y 0 y - Role :

More information

Sub-wavelength electromagnetic structures

Sub-wavelength electromagnetic structures Sub-wavelength electromagnetic structures Shanhui Fan, Z. Ruan, L. Verselegers, P. Catrysse, Z. Yu, J. Shin, J. T. Shen, G. Veronis Ginzton Laboratory, Stanford University http://www.stanford.edu/group/fan

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Electromagnetic Metamaterials Dr. Alkim Akyurtlu Center for Electromagnetic Materials and Optical Systems University of Massachusetts Lowell September 19, 2006 Objective Outline Background on Metamaterials

More information

Asymmetric transmission of terahertz waves using polar dielectrics

Asymmetric transmission of terahertz waves using polar dielectrics syetric transission of terahertz waves using polar dielectrics ndriy E. Serebryannikov,,2,* Ekel Ozbay, and Shunji Nojia 3 Nanotechnology Research Center, ilkent University, 68 nkara, urkey 2 Haburg University

More information

Mechanism of the metallic metamaterials coupled to the gain material

Mechanism of the metallic metamaterials coupled to the gain material Mechanism of the metallic metamaterials coupled to the gain material Zhixiang Huang, 1,2 Sotiris Droulias, 3* Thomas Koschny, 1 and Costas M. Soukoulis 1,3 1 Department of Physics and Astronomy and Ames

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 6: Polarization Original: Professor McLeod SUMMARY: In this lab you will become familiar with the basics of polarization and learn to use common optical elements

More information

Broadband Subwavelength Imaging with a Wire Medium Slab Loaded with Graphene Sheets

Broadband Subwavelength Imaging with a Wire Medium Slab Loaded with Graphene Sheets Broadband Subwavelength Imaging with a Wire Medium Slab Loaded with Graphene Sheets Ali Forouzmand and Alexander B. Yakovlev Center for Applied Electromagnetic Systems Research (CAESR) Department of Electrical

More information

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT

NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT Progress In Electromagnetics Research, PIER 64, 25 218, 26 NOVEL BROADBAND TERAHERTZ NEGATIVE REFRACTIVE INDEX METAMATERIALS: ANALYSIS AND EXPERIMENT N. Wongkasem and A. Akyurtlu Department of Electrical

More information

İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND ENGINEERING CURRICULUM OF THE

İZMİR INSTITUTE OF TECHNOLOGY GRADUATE SCHOOL OF ENGINEERING AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND ENGINEERING CURRICULUM OF THE GRADUATE SCHOOL OF AND SCIENCES DEPARTMENT OF PHOTONICS SCIENCE AND The Photonics Science and Engineering PhD Program is a jointly operated interdisciplinary program. The Curriculum is supported by the

More information

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence Lecture 4: Anisotropic Media Outline Dichroism Optical Activity 3 Faraday Effect in Transparent Media 4 Stress Birefringence 5 Form Birefringence 6 Electro-Optics Dichroism some materials exhibit different

More information

arxiv: v2 [cond-mat.mtrl-sci] 12 Nov 2015

arxiv: v2 [cond-mat.mtrl-sci] 12 Nov 2015 Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework M. Albooyeh and Sergei Tretyakov Department of Radio Science and Engineering, Aalto

More information

Alternative approaches to electromagnetic cloaking and invisibility

Alternative approaches to electromagnetic cloaking and invisibility Helsinki University of Technology SMARAD Centre of Excellence Radio Laboratory Alternative approaches to electromagnetic cloaking and invisibility Sergei Tretyakov and colleagues December 2007 What is

More information

Reducing ohmic losses in metamaterials by geometric tailoring

Reducing ohmic losses in metamaterials by geometric tailoring Reducing ohmic losses in metamaterials by geometric tailoring Durdu Ö. Güney, 1, * Thomas Koschny, 1,2 and Costas M. Soukoulis 1,2 1 Ames National Laboratory, USDOE and Department of Physics and Astronomy,

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Reflection and Transmission of Light in Structures with Incoherent Anisotropic Layers

Reflection and Transmission of Light in Structures with Incoherent Anisotropic Layers Optics and Spectroscopy, Vol. 87, No., 999, pp. 5. Translated from Optika i Spektroskopiya, Vol. 87, No., 999, pp. 2 25. Original Russian Text Copyright 999 by Ivanov, Sementsov. PHYSICAL AND QUANTUM OPTICS

More information

Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media

Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media Daniel Sjöberg Department of Electrical and Information Technology April 15, 2010 Outline 1 Introduction 2 Wave propagation

More information

Ferromagnetism. So that once magnetized the material will stay that way even in the absence of external current it is a permanent magnet.

Ferromagnetism. So that once magnetized the material will stay that way even in the absence of external current it is a permanent magnet. Ferroagnetis We now turn to the case where is not proportional to. We distinguish two cases: soft and hard ferroagnets. In a soft ferroagnet a graph of vs looks like If is now reduced, will retrace the

More information

Negative Index of Refraction in Optical Metamaterials

Negative Index of Refraction in Optical Metamaterials 1 Negative Index of Refraction in Optical Metamaterials V. M. Shalaev, W. Cai, U. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev School of Electrical and Computer Engineering,

More information

Wave propagation retrieval method for chiral metamaterials

Wave propagation retrieval method for chiral metamaterials Downloaded from orbit.dtu.dk on: Mar 7, 09 Wave propagation retrieval method for chiral metamaterials Andryieuski, Andrei; Malureanu, Radu; Laurynenka, Andrei Published in: Optics Express Link to article,

More information

Electromagnetic behaviour of left-handed materials

Electromagnetic behaviour of left-handed materials Physica B 394 (2007) 148 154 www.elsevier.com/locate/physb Electromagnetic behaviour of left-handed materials M. Kafesaki a,e,, Th. Koschny a,b, J. Zhou b, N. Katsarakis a,c, I. Tsiapa a, E.N. Economou

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Supplementary Information

Supplementary Information S1 Supplementary Information S2 Forward Backward Forward Backward Normalized to Normalized to Supplementary Figure 1 Maximum local field ratio and transmission coefficient. Maximum local field ratio (green

More information

sensors ISSN

sensors ISSN Sensors 2011, 11, 8060-8071; doi:10.3390/s110808060 OPEN ACCESS sensors ISSN 1424-8220 www.dpi.co/journal/sensors Article A Microring Resonator Based Negative Pereability Metaaterial Sensor Jun Sun 1,2,

More information

CHAPTER EIGHT: PHOTONIC CRYSTALS: MATERIALS, END USES, AND MARKETS, MATERIALS PROPERTIES... 78

CHAPTER EIGHT: PHOTONIC CRYSTALS: MATERIALS, END USES, AND MARKETS, MATERIALS PROPERTIES... 78 CHAPTER ONE: INTRODUCTION... 1 STUDY BACKGROUND... 1 STUDY GOALS AND OBJECTIVES... 1 INTENDED AUDIENCE... 2 SCOPE AND FORMAT... 2 INFORMATION SOURCES AND METHODOLOGY... 3 ANALYST CREDENTIALS... 4 RELATED

More information

Broadband angle- and permittivity-insensitive nondispersive optical activity based on chiral metamaterials

Broadband angle- and permittivity-insensitive nondispersive optical activity based on chiral metamaterials Broadband angle- and permittivity-insensitive nondispersive optical activity based on chiral metamaterials Kun Song, 1 Min Wang, 1 Zhaoxian Su, 1 Changlin Ding, 1 Yahong Liu, 1 Chunrong Luo, 1 Xiaopeng

More information

Negative epsilon medium based optical fiber for transmission around UV and visible region

Negative epsilon medium based optical fiber for transmission around UV and visible region I J C T A, 9(8), 2016, pp. 3581-3587 International Science Press Negative epsilon medium based optical fiber for transmission around UV and visible region R. Yamuna Devi*, D. Shanmuga Sundar** and A. Sivanantha

More information

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece University of Crete Stelios Tzortzakis Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece Introduction o o Intense laser beams

More information

Experimental competition. Thursday, 17 July /9 Experiment. To see invisible! (20 points)

Experimental competition. Thursday, 17 July /9 Experiment. To see invisible! (20 points) Experimental competition. Thursday, 17 July 2014 1/9 Experiment. To see invisible! (20 points) Introduction Many substances exhibit optical anisotropy resulting in that the refractive index turns out dependent

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design

Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center August 8 Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical

More information

Modeling of Passive Elements with ASITIC. Prof. Ali M. Niknejad Berkeley Wireless Research Center University of California, Berkeley

Modeling of Passive Elements with ASITIC. Prof. Ali M. Niknejad Berkeley Wireless Research Center University of California, Berkeley Modeling of Passive Eleents with ASITIC Prof. Ali M. Niknejad Berkeley Wireless Research Center University of California, Berkeley Outline of Presentation ASITIC Overview Electroagnetic Solution Approach

More information