Physics for Scientists & Engineers 2

Size: px
Start display at page:

Download "Physics for Scientists & Engineers 2"

Transcription

1 Review Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 34! The speed of an electromagnetic wave can be expressed in terms of two fundamental constants related to electric fields and magnetic fields, the magnetic permeability and the electric permittivity of the vacuum c 1! The speed of light is constant in any reference frame Relativity! 0! For an electromagnetic wave, the wavelength and frequency of the wave are related to the speed of light c! f March 25, 2005 Physics for Scientists&Engineers 2 1 March 25, 2005 Physics for Scientists&Engineers 2 2 The Electromagnetic Spectrum Review (2) Traveling Electromagnetic Waves! Sub-atomic processes can produce electromagnetic waves such as gamma rays, X-rays, and light! Electromagnetic waves can also be produced by an oscillator connected to an antenna! The connection between the circuit and the circuit on the right is accomplished using a transformer! A dipole antenna is used to approximate an electric dipole! The voltage and current in the antenna vary sinusoidally with time and cause charge in the antenna to oscillate with frequency! of the circuit! The electromagnetic waves created by moving charges travel from the antenna with speed c and frequency f!/(2") March 25, 2005 Physics for Scientists&Engineers 2 3 March 25, 2005 Physics for Scientists&Engineers 2 4

2 Traveling Electromagnetic Waves (2)! We can think of these traveling electromagnetic waves as wave fronts spreading out spherically from the antenna! However, at a large distance from the antenna, the wave fronts will appear to be almost flat, or planar! So we can think of the electromagnetic wave in terms of our assumed form ( ) ( ) E(! r,t) E max sin kx! "t B(! r,t) B max sin kx! "t Traveling Electromagnetic Waves (3)! If we now place in the path of these electromagnetic waves, a second RLC circuit tuned to the same frequency! 0 as the emitting circuit, voltage and current will be induced in this second circuit! These induced oscillations are the basic idea of radio transmission and reception! If the second circuit has! 0,2 1/ LC "! 0! smaller voltages and currents will be induced, providing selective tuning for different frequencies! This principle of transmission of electromagnetic waves was discovered by German physicist Heinrich Hertz ( ) in 1888, and then used by Italian physicist Guglielmo Marconi ( ) to transmit wireless signals March 25, 2005 Physics for Scientists&Engineers 2 5 March 25, 2005 Physics for Scientists&Engineers 2 6 Energy Transport! When we walk out into the sunlight, we feel warmth! If we stay out too long in the bright sunshine, we will get sunburn! These phenomena are related to electromagnetic waves emitted from the Sun! These electromagnetic waves carry energy generated in the nuclear reactions of the Sun to our skin! The rate of energy transported by an electromagnetic wave is usually defined as! S 1!! E! B! This quantity is called the Poynting vector after British physicist John Poynting ( ) who first discussed its properties Energy Transport (2)! The magnitude of the Poynting vector is related to the instantaneous rate at which energy transported by an electromagnetic wave over a given area more simply, the instantaneous power per unit area S S!! " power area $ % &! The units of the Poynting vector are W/m 2! For an electromagnetic wave, in which B is perpendicular to E, we can write S 1 EB instantaneous March 25, 2005 Physics for Scientists&Engineers 2 7 March 25, 2005 Physics for Scientists&Engineers 2 8

3 Energy Transport (3)! We know that the magnitude of the electric field and the magnetic field are directly related via E/B c! We can express the instantaneous power per unit area of an electromagnetic wave in terms of the magnitude the electric field or the magnetic field! However, usually it is easier to measure an electric field than a magnetic field so we express the instantaneous power per unit area as S 1 c E 2! We can now substitute a sinusoidal form for the electric field and obtain an expression for the transmitted power per unit area E E max sin( kx! "t) Energy Transport (4)! The usual method of describing the power per unit area in an electromagnetic wave is the intensity I of the wave given by! I S ave " power area! The units of intensity are the same as the units of the Poynting vector, W/m 2! The average of sin 2 (kx-!t) over time is 1/2 $ % & ave! So we can express the intensity as I 1 2 E rms c 1 2 E max cµ )* sin 2 ( kx ' (t) +,ave 0 ( E rms E max / 2 ) March 25, 2005 Physics for Scientists&Engineers 2 9 March 25, 2005 Physics for Scientists&Engineers 2 10 Energy Transport (5) Energy Transport (6)! Because the magnitude of the electric and magnetic fields of the electromagnetic wave are related by E cb, and c is such a large number, one might conclude that the energy transported by the electric field is much larger than the energy transmitted by the magnetic field! Actually the energy transported by the electric field is the same as the energy transported by the magnetic field! We can understand this fact by remembering that the energy density of an electric field is given by! If we substitute E cb c 1! 0! We get u E 1 2! cb 0 1 2! " 0 $ B % '! 0 & B 2 u B u E 1 2! 0E 2! And the energy density of a magnetic field is given by u B 1 2 B 2 March 25, 2005 Physics for Scientists&Engineers 2 11! We obtain the result that the energy density of electric field is the same as the energy density of the magnetic field everywhere in the electromagnetic wave March 25, 2005 Physics for Scientists&Engineers 2 12

4 Radiation Pressure! When you walk out into the sunlight, you feel warmth, but you do not feel any force from the sunlight! Sunlight is exerting a pressure on you, but that pressure is small enough that you do not notice it! Because these electromagnetic waves are radiated from the Sun and travel to you on the Earth, we call these electromagnetic waves radiation! This type of radiation is not the same as radioactive radiation resulting from the decay of unstable nuclei! Let s calculate the magnitude of the pressure exerted by these radiated electromagnetic waves Radiation Pressure (2)! Electromagnetic waves have energy! Electromagnetic waves also have linear momentum! Let s assume that an electromagnetic wave is incident on an object and that this object totally absorbs the wave over some time interval t! The object will then gain energy U over that time interval from the radiated electromagnetic waves and we can relate the change in momentum of the object p to the change in energy by!p!u c! The change in momentum of the object will be in the same direction as the incident electromagnetic wave March 25, 2005 Physics for Scientists&Engineers 2 13 March 25, 2005 Physics for Scientists&Engineers 2 14 Radiation Pressure (3)! If instead, the object reflects the electromagnetic wave, the object will gain twice the momentum of the incident wave, because of momentum conservation, in the direction of the incident wave!p 2!U c! Newton s Second Law tells us that F!p!t! To get an expression for the pressure exerted by the electromagnetic wave in terms of the intensity of the wave, we remember that the intensity is power per unit area power is energy per unit time Radiation Pressure (4)! Therefore we can relate the intensity of the wave to the momentum transferred to the object when the electromagnetic wave is absorbed I! which gives us an expression for the force exerted by the radiation on the object F!p!t IA c! The pressure is defined as force per unit area so we can write the radiation pressure due to a totally absorbed electromagnetic wave as I c!u /!t A c!p A!t March 25, 2005 Physics for Scientists&Engineers 2 15 March 25, 2005 Physics for Scientists&Engineers 2 16

5 Radiation Pressure (5)! If the electromagnetic wave is reflected the radiation pressure is 2I c! The radiation pressure from sunlight is small! The intensity of sunlight is at most 1400 W/m 2! Thus maximum the radiation pressure for sunlight that is totally absorbed is I c 1400 W/m2 3!10 8 m/s 4.67!10"6 N/m 2! However, physicists using very intense lasers focused to a small area can exert pressure on small objects such as DNA molecules. These devices are called laser tweezers! Using laser tweezers, DNA molecules can be stretched or molecules can be inserted in the strands March 25, 2005 Physics for Scientists&Engineers 2 17

Lecture 34: MON 13 APR Ch ,5

Lecture 34: MON 13 APR Ch ,5 Physics 2102 Jonathan Dowling James Clerk Maxwell (1831-1879) Lecture 34: MON 13 APR Ch.33.1 3,5 3,5 7: E&M Waves MT03 Avg: 65/100 Q1/P3 K. Schafer Office hours: MW 1:30-2:30 pm 222B Nicholson P1/Q2 J.

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Light as Waves Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 41! In the previous chapter we discussed light as rays! These rays traveled in a straight line except when they were reflected

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves Waves If we wish to talk about electromagnetism or light we must first understand wave motion. If you drop a rock into the water small ripples are seen on the surface of

More information

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave.

Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Today s agenda: Electromagnetic Waves. Energy Carried by Electromagnetic Waves. Momentum and Radiation Pressure of an Electromagnetic Wave. Maxwell s Equations Recall: EdA Eds q enclosed o d dt B Bds=μ

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

PHYS 1444 Section 003 Lecture #23

PHYS 1444 Section 003 Lecture #23 PHYS 1444 Section 3 Lecture #3 Monday, Nov. 8, 5 EM Waves from Maxwell s Equations Speed of EM Waves Light as EM Wave Electromagnetic Spectrum Energy in EM Waves Energy Transport The epilogue Today s homework

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves

Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Physics 2113 Jonathan Dowling Heinrich Hertz (1857 1894) Lecture 38: FRI 24 APR Ch.33 Electromagnetic Waves Maxwell Equations in Empty Space: E da = 0 S B da = 0 S C C B ds = µ ε 0 0 E ds = d dt d dt S

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell s Equations: Maxwell s Equations James Clerk Maxwell 1831 1879 Scottish theoretical physicist Developed the electromagnetic theory

More information

ELECTROMAGNETIC WAVES WHAT IS LIGHT?

ELECTROMAGNETIC WAVES WHAT IS LIGHT? VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES WHAT IS LIGHT? James Clerk Maxwell (1831-1879), was a Scottish mathematician and theoretical physicist. He had an unquenchable curiosity

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 32 Electromagnetic Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 32 To learn why a light

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

CHAPTER 32: ELECTROMAGNETIC WAVES

CHAPTER 32: ELECTROMAGNETIC WAVES CHAPTER 32: ELECTROMAGNETIC WAVES For those of you who are interested, below are the differential, or point, form of the four Maxwell s equations we studied this semester. The version of Maxwell s equations

More information

100 Physics Facts. 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) s (seconds)

100 Physics Facts. 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) s (seconds) 100 Physics Facts 1. The standard international unit (SI unit) for mass (m) is. kg (kilograms) 2. The standard international unit (SI unit) for time (t) is. s (seconds) 3. The standard international unit

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 12 Electricity and Magnetism 1. AC circuits and EM waves The Electromagnetic Spectrum The Doppler Effect 6/20/2007 Modern Physics 1. Relativity Galilean Relativity Speed

More information

Electromagnetic Waves Properties. The electric and the magnetic field, associated with an electromagnetic wave, propagating along the z=axis. Can be represented by E = E kˆ, = iˆ E = E ˆj, = ˆj b) E =

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

Exam 3: Tuesday, April 18, 5:00-6:00 PM

Exam 3: Tuesday, April 18, 5:00-6:00 PM Exam 3: Tuesday, April 18, 5:-6: PM Test rooms: Instructor Sections Room Dr. Hale F, H 14 Physics Dr. Kurter, N 15 CH Dr. Madison K, M 199 Toomey Dr. Parris J, L -1 ertelsmeyer Mr. Upshaw A, C, E, G G-3

More information

1, 2, 3, 4, 6, 14, 17 PS1.B

1, 2, 3, 4, 6, 14, 17 PS1.B Correlations to Next Generation Science Standards Physical Science Disciplinary Core Ideas PS-1 Matter and Its Interactions PS1.A Structure and Properties of Matter Each atom has a charged substructure

More information

Physics Lecture 40: FRI3 DEC

Physics Lecture 40: FRI3 DEC Physics 3 Physics 3 Lecture 4: FRI3 DEC Review of concepts for the final exam Electric Fields Electric field E at some point in space is defined as the force divided by the electric charge. Force on charge

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

3.3 The Wave Nature of Light

3.3 The Wave Nature of Light 3.3 The Wave Nature of Light Much of the history of physics is concerned with the evolution of our ideas about the nature of light. The speed of light was first measured with some accuracy in 1675, by

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

Clicker Question. Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no

Clicker Question. Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following equation a solution to the wave equation: y(x,t)=a sin(kx-ωt) (a) yes (b) no Is the following

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from the one crest of a wave to the next. I. Electromagnetic

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Lecture 14 (Poynting Vector and Standing Waves) Physics Spring 2018 Douglas Fields

Lecture 14 (Poynting Vector and Standing Waves) Physics Spring 2018 Douglas Fields Lecture 14 (Poynting Vector and Standing Waves) Physics 6-01 Spring 018 Douglas Fields Reading Quiz For the wave described by E E ˆsin Max j kz t, what is the direction of the Poynting vector? A) +x direction

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

GCSE PHYSICS REVISION LIST

GCSE PHYSICS REVISION LIST GCSE PHYSICS REVISION LIST OCR Gateway Physics (J249) from 2016 Topic P1: Matter P1.1 Describe how and why the atomic model has changed over time Describe the structure of the atom and discuss the charges

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions

Maxwell s equations. Kyoto. James Clerk Maxwell. Physics 122. James Clerk Maxwell ( ) Unification of electrical and magnetic interactions Maxwell s equations Physics /5/ Lecture XXIV Kyoto /5/ Lecture XXIV James Clerk Maxwell James Clerk Maxwell (83 879) Unification of electrical and magnetic interactions /5/ Lecture XXIV 3 Φ = da = Q ε

More information

Maxwell s Equations & Hertz Waves

Maxwell s Equations & Hertz Waves Maxwell s Equations & Hertz Waves XI. Maxwell & Electromagnetic Waves A. Maxwell s Equations Dr. Bill Pezzaglia B. Hertz Waves & Poynting C. Polarization Updated: 3Aug5 A. Maxwell s Equations 3. Hints

More information

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves Chapter 21.8-13(not.9-.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 21-22 Office hours: My office hours today

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

16 ELECTROMAGNETIC WAVES

16 ELECTROMAGNETIC WAVES Chapter 16 Electromagnetic Waves 699 16 ELECTROMAGNETIC WAVES Figure 16.1 The pressure from sunlight predicted by Maxwell s equations helped produce the tail of Comet McNaught. (credit: modification of

More information

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves

The Sine Wave. You commonly see waves in the environment. Light Sound Electricity Ocean waves The Sine Wave Mathematically, a function that represents a smooth oscillation For example, if we drew the motion of how the weight bobs on the spring to the weight we would draw out a sine wave. The Sine

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

Chapter 25 & 28 Solutions

Chapter 25 & 28 Solutions Chapter 25 & 28 Solutions Q25.9. Reason: The original field is into the page within the loop and is changing strength. The induced, counterclockwise current produces a field out of the page within the

More information

11 SEPTEMBER This document consists of printed pages.

11 SEPTEMBER This document consists of printed pages. S 11 SEPTEMBER 2017 6 Write your name, centre number, index number and class in the spaces at the top of this page and on all work you hand in. Write in dark blue or black pen on both sides of the paper.

More information

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both. Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

More information

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions

UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Name St.No. - Date(YY/MM/DD) / / Section UNIT 102-6: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Hey diddle diddle, what kind of riddle Is this nature of light? Sometimes

More information

PHYS 1441 Section 001 Lecture #24 Wednesday, Dec. 6, 2017 Dr. Animesh Chatterjee

PHYS 1441 Section 001 Lecture #24 Wednesday, Dec. 6, 2017 Dr. Animesh Chatterjee PHYS 1441 Section 1 Lecture #4 Dr. Animesh Chatterjee Chapter 3: Inductance AC Circuit W/ LRC Chapter 31: Maxwell s Equations Expansion of Ampere s Law Gauss Law for Magnetism Production of EM Waves Light

More information

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves Spectroscopy Interaction of electromagnetic radiation with matter yields that energy is absorbed or emitted by matter in discrete quantities (quanta). Measurement of the frequency or (wave length) of the

More information

Fundamental Forces of the Universe

Fundamental Forces of the Universe Fundamental Forces of the Universe There are four fundamental forces, or interactions in nature. Strong nuclear Electromagnetic Weak nuclear Gravitational Strongest Weakest Strong nuclear force Holds the

More information

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below.

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below. 1. An electron has a mass of 9.11 x 10-31 kg and its charge is -1.6 x 10-19 C. The electron is released from rest in a vacuum between two flat, parallel metal plates that are 10 cm apart. The potential

More information

Physics Principles with Applications 7 th Edition, AP Edition, 2014 Giancoli

Physics Principles with Applications 7 th Edition, AP Edition, 2014 Giancoli A Correlation of Physics Principles with Applications 7 th Edition, AP Edition, 2014 Giancoli To the AP Physics 1 and AP Physics 2 Curriculum Framework AP is a trademark registered and/or owned by the

More information

RADIATION and the EM Spectrum

RADIATION and the EM Spectrum RADIATION and the EM Spectrum Radioactivity is the of high-energy particles and/or of energy from a substance as a result of of its atoms. There are several types of radiation. Radiation from the sun is

More information

Lecture Sound Waves EM Waves. Physics Help Q&A: tutor.leiacademy.org. The Doppler Effect 11/11/2014

Lecture Sound Waves EM Waves. Physics Help Q&A: tutor.leiacademy.org. The Doppler Effect 11/11/2014 Lecture 1102 Sound Waves EM Waves Physics Help Q&A: tutor.leiacademy.org The Doppler Effect The Doppler effect (or Doppler shift) is the change in frequency (or wavelength) of a wave for an observer moving

More information

BLUE-PRINT II XII Physics

BLUE-PRINT II XII Physics BLUE-PRINT II XII Physics S.No. UNIT VSA SA I SA II LA Total (1 Mark) (2 Marks) (3Marks) (5 Marks) 1. Electrostatics 1(1) 4(2) 3(1) - 8(4) 2. Current Electricity - 2(1) - 5(1) 7(2) 3. Magnetic Effect of

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES UNIT V ELECTROMAGNETIC WAVES Weightage Marks : 03 Displacement current, electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves. Electromagnetic

More information

第 1 頁, 共 8 頁 Chap32&Chap33 1. Test Bank, Question 2 Gauss' law for magnetism tells us: the net charge in any given volume that the line integral of a magnetic around any closed loop must vanish the magnetic

More information

Properties of Waves. Before You Read. What are the features of a wave?

Properties of Waves. Before You Read. What are the features of a wave? Properties of Waves Textbook pages 134 143 Before You Read Section 4.1 Summary In this section, you will find out about waves, such as water waves, sound waves, and radio waves. On the lines below, list

More information

E.M.WAVES 1. Taller the antenna longer is the coverage of television broadcast. Justify this statement with the help of a figure. 2.If v g, v x v m represents the speed of gamma rays, X-rays microwaves

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 of 19 Boardworks Ltd 2016 The Electromagnetic Spectrum 2 of 19 Boardworks Ltd 2016 Detecting waves beyond the visible spectrum 3 of 19 Boardworks Ltd 2016 Invisible light

More information

Top 40 Missed Regents Physics Questions Review

Top 40 Missed Regents Physics Questions Review Top 40 Missed Regents Physics Questions - 2015 Review 1. Earth s mass is approximately 81 times the mass of the Moon. If Earth exerts a gravitational force of magnitude F on the Moon, the magnitude of

More information

Chapter 4 - Light. Name: Block:

Chapter 4 - Light. Name: Block: Chapter 4 Notes: Light Name: Block: Properties of Waves Waves are a repeating disturbance or movement that energy through matter or space without causing any displacement of material Features of a wave:

More information

Physics 208 Final Exam May 12, 2008

Physics 208 Final Exam May 12, 2008 Page 1 Name: Solutions Student ID: Section #: Physics 208 Final Exam May 12, 2008 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer

More information

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics Matter, Models and Density What is a typical size of an atom? Choose from the following. 10 15 m 10 12 m 10 10 m Matter, Models and Density The size of an atom is of the order of 10 10 m. 1 1 Temperature

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Units of Chapter 25 The Production of Electromagnetic

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 32 Electromagnetic Waves Assignment is due at 2:00am on Wednesday, March 28, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 40 Fall 003: Final Exam Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be

More information

Nature of Light. Objectives. What is light What are the different forms

Nature of Light. Objectives. What is light What are the different forms Nature of Light Objectives What is light What are the different forms Light s Importance Light contributes 99% of all observations in Astronomy Light is a form of energy Light is electromagnetic radiation

More information

High School Curriculum Standards: Physics

High School Curriculum Standards: Physics High School Curriculum Standards: Physics Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical

More information

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom.

Chemistry Terms. atomic number The atomic number of an element is the number of protons in the nucleus of each atom. Chemistry Terms atomic number The atomic number of an element is the number of protons in the nucleus of each atom. chemical reaction A process in which atoms and molecules interact, resulting in the alteration

More information

Physics GCSE (9-1) Energy

Physics GCSE (9-1) Energy Topic Student Checklist R A G Define a system as an object or group of objects and State examples of changes in the way energy is stored in a system Describe how all the energy changes involved in an energy

More information

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons???

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? no mass travel in a wave like pattern move at the speed of light contain a certain amount (or bundle) of energy

More information

Introduction. Introduction. Forces An. Forces An. Forces in Action. Forces in Action. Pressure and Pressure. Pressure and Pressure.

Introduction. Introduction. Forces An. Forces An. Forces in Action. Forces in Action. Pressure and Pressure. Pressure and Pressure. Forces An Introduction A force is a vector quantity. What does this mean? Forces An Introduction A vector quantity, such as force, has a direction as well as a magnitude. 1 1 Forces in Action The moment

More information

Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years.

Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years. Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years. a) If a sample shows only one-fourth of its estimated

More information

E or B? It Depends on Your Perspective

E or B? It Depends on Your Perspective E or B? It Depends on Your Perspective Alec sees a moving charge, and he knows that this creates a magnetic field. From Brittney s perspective, the charge is at rest, so the magnetic field is zero. Is

More information

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium Chapter 16 Sound Waves Sound waves are caused by vibrations and carry energy through a medium An example of a compressional wave Waves can spread out in all directions Their speed depends on its medium

More information

Integrated Chemistry-Physics

Integrated Chemistry-Physics Standard 1: Principles of Integrated Chemistry - Physics Students begin to conceptualize the general architecture of the atom and the roles played by the main constituents of the atom in determining the

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission M 36 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2005 PHYSICS HIGHER LEVEL MONDAY, 20 JUNE MORNING 9.30 to 12.30 Answer three questions from section A and

More information

FALL 2004 Final Exam, Part A

FALL 2004 Final Exam, Part A Physics 152 FALL 2004 Final Exam, Part A Roster No.: Score: 23 pts. possible Exam time limit: 2 hours. You may use a calculator and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

Topic Student Checklist R A G

Topic Student Checklist R A G Personalised Learning Checklist AQA TRILOGY Physics (8464) from 2016 Topics T6.1. Energy Topic Student Checklist R A G 6.1.1 Energy changes in a system, and the ways energy is stored before and after such

More information

22-1 Maxwell s Equations

22-1 Maxwell s Equations -1 Maxwell s Equations In the 19 th century, many scientists were making important contributions to our understanding of electricity, magnetism, and optics. For instance, the Danish scientist Hans Christian

More information