INCOMPATIBILITY OF THE QUARK-FIELD [U(6) 8 U(6)] COMMUTATION RELATIONS WITH VECTOR MESON DOMINANCE IN nodecay

Size: px
Start display at page:

Download "INCOMPATIBILITY OF THE QUARK-FIELD [U(6) 8 U(6)] COMMUTATION RELATIONS WITH VECTOR MESON DOMINANCE IN nodecay"

Transcription

1 SLAC-PUB-382 INCOMPATIBILITY OF THE QUARK-FIELD [U(6) 8 U(6)] COMMUTATION RELATIONS WITH VECTOR MESON DOMINANCE IN nodecay George W. Barry The Enrico Fermi Institute and the Department of Physics University of Chicago, Chicago, Illinois J. J. Sakuraif Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT Using the Bjorken limit theorem, we demonstrate that the commutation relations of the free-field quark model [or U(6) 8 U(6) commutation relations] are incompatible with the vector meson dominance of the a0-2y amplitude. The gauge field algebra does not suffer from this difficulty. The present status of vector meson dominance in r decay is also reviewed. Submitted to Phys. Rev. Letters *Work supported in part by the U0 S, Atomic Energy Commission. ton leave from the Enrico Fermi Institute and the Department of Physics, University of Chicago, Chicago, Illinois

2 I If the commutation relations of the vector and axial-vector currents are really part of the basic laws of physics, it is disturbing that as yet there has been no unanimity of opinions on the nature of the commutator between two space components of various current densities. For instance, the free-field quark model [or U(6) X U(6)] leads to 1 (x, 0), jzrn (0) = -2ie2 d( )(z) eopv7 [ (2/3) 3/2.O 1 j3 J57- * 3 5T t- S.T. (1) whereas the same commutator is given in the gauge field algebra2 by (2, 0), jr (0) 3 = 0 + ST., (2) where S. T. stands for the Schwinger terms (which are irrelevant in the present discussion). * We wish to point out that if the success of vector meson dominance in?r decay is not accidental, the commutation relations of the gauge field algebra must be favored. According to Bjorkeny the high energy behavior of the matrix element for can be evaluated as follows: 7r (9)-y(k) + ~4% (q = k + W M =i d xe CLV s -ik*x < 0 1 T (j;i1 (x) j; (0)) 1 7r > I ko--a: I -- 1 ko s d3xe-ii;o;f < 0 0), j; (0) II To > (3) where the limit is to be taken in such a way that c, zl, < and q. are kept finite -2 -

3 as we let lkol cz 1 kb 1 go to infinity. The quark-field commutation relation (1) then gives EoplJTq7- (4) (where ct is the charged pion decay constant numerically sult already obtained by B. -L, Young. 4 equal to 94 MeV), a re- We now note that the behavior (4) is incompatible with the vector meson dom- inance model for r decay, If the r decay amplitude is dominated by p and w (in the sense of Gell-Mann, Sharp and Wagner), 536 we expect + (s-s ) (5) where F(s) s ) is defined by M PV =EpVhT k k AT F(s,s )/m, 6% with s = -k2, s1 = -kf2 and Ap =emz I fp, AU= - (emi/2fy)sin Oy. (7) As I 01 = I 01 1~ goes to infinity withif, %!, < and q. finite, M cly based on (5) goes like l/k%, in contradiction with the behavior (4). In contrast, the commutation relation of the gxuge field algebra is consistent with the high-energy behavior of the vector meson dominance model since Eq. (2) requires the absence of the l/k0 term in the Bjorken limit. Note also that any additional form factor effect one may care to consider in conjunction with the vector-meson dominance model tends to strengthen our argument against the quark-field commutation relations. -3-

4 Next we comment on the paper of Young, 4 who claims to have shown that the observed pion lifetime is in good agreement with the quark-field commutation relation (1). Being aware of the incompatibility between the no-subtraction assumption for F(a,s ) and the quark-field commutation relation, he proceeds to write down a once-subtracted dispersion relation in s and s : F(s,s )-F(O,O)= + higher mass contributions (8) where F(O,O) is directly related to the 7r Met.i me via ~(7 r -.yy) = (1/64n) (9) Comparing (8) with the Bjorken limit (3), he obtains 7r, Wa) g Pw= _ fpfw-yn e 2 + fpc7rmn 6rnE (lob) where m o=mpand A f PPV =A wwy-rr f have been used* and the higher mass contributions have been neglected. At this point, however, Young uses an obsolete value for AW I hp characteristic of unbroken SU(6), viz. AU I hp = - l/3; instead, one should take into account symmetry-breaking effects provided by spectral-function sum rules of the Weinberg type, which yield h w I hp = -0.81/3. Thus we get in the -4-

5 I free-field quark model 10 1 F(os )lquark = (3.9 * 0.4) x 1o-3 (2.6 * 0.4) X 1O-3, 0.25 f 0.06 Wb) if The predictions of the gauge field algebra can be obtained simply by setting % = 0 in Eqs, (loa) and (lob); we then recover the results of the vector meson dominance model (as we must). Numerically IF(0, O)jVMD = (3.3 f 0.4) x 1o-3 (=a) dip - = 0.4OrtO T (1W Eirperimentally, the observed pion lifetime = (0.89 f 0.18) X set 1 corresponds to IWWIexp = (3.3 f 0.4) x 1o-3 (13) which coincides exactly with (12a). Thus we see that the gauge field algebra (or the vector meson dominance model) is in even better agreement 7r lifetime. 11 with the observed One of us (J. J. Sakurai) wishes to thank Professors W. K. H, Panofsky and S. D. Drell for their hospitality at the Stanford Linear Accelerator Center, -5 -

6 I REFERENCES 1. R. P. Feynman, M. Gell-Mann and G. Zweig, Phys. Rev. Letters l.3-, 678 (1964). 2. T. D. Lee, S. Weinberg and B. Zumino, Phys. Rev. Letters l8-, 1029 (1967). 3. J. D. Bjorken, Phys. Rev. 148, 1467 (1966), 4. B.-L. Young, Phys. Rev. 161, 1615 (1967). 5. M. Gell-Mann, D. Sharp and W. G. Wagner, Phys. Rev. Letters 5, 216 (1962). See also M. Gell-Mann and F. Zachariasen, Phys. Rev. 1.24, 953 (1961). 6. We ignore the $ meson contribution because the p+7i coupling appears to be anomalously weak. 7. Our vector-meson coupling constants fp and fy are normalized as in the papers of J. J. Sakurai [Annals of Phys. 11, 1(1960)] and N. M. Kroll, T. D. Lee and B. Zumino [Phys. Rev. 157, 1376 (1967)]. The constants gpwr, fpynand fwyrr are all dimensionless since we have taken out the factor l/n+ 8. It may be mentioned that once we abandon vector meson dominance, the re- lation hpfp ~ =h f w wy7i is more difficult to justi@- 9. R. J. Oakesand 5, J. Sakurai, Phys, Rev. Letters 19, 1266 (1967); and references therein. 10. For numerical estimates we use p 47r = 2.6 and fiyn 4n = 0.15cY f f l I The major contribution to the errors in F(O,O) and gp we comes from T(w -n r). 11. Models based on integrally charged triplets [such as that of K. Johnson, F, E. Low and I-I. Suura, Phys. Rev. Letters l8-, 1224 (1967)] are in worse agreement than the quark model.

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS IC/69/63 INTEENAL REPORT (Limited distribution) INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS A RIGOROUS LOWER BOUND ' ON THE KSFR RELATION FROM FIELD THEORY: THE STATUS

More information

ON SPECTRAL FUNCTIONS SUM RULES

ON SPECTRAL FUNCTIONS SUM RULES IC/68/61 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON SPECTRAL FUNCTIONS SUM RULES C. G. BOLLINI AND J. J. GIAMBIAGI 1968 MIRAMARE - TRIESTE IC/68/01 INTERNATIONAL

More information

Connecting nonleptonic and weak radiative hyperon decays

Connecting nonleptonic and weak radiative hyperon decays Connecting nonleptonic and weak radiative hyperon decays arxiv:hep-ph/02053v2 5 Jun 2002 P. Żenczykowski Dept. of Theoretical Physics, Institute of Nuclear Physics Radzikowskiego 52, 3-342 Kraków, Poland

More information

SLAC-PUB-2058 December 1977 (T)

SLAC-PUB-2058 December 1977 (T) I SLAC-PUB-2058 December 1977 (T) COMMENT ON THE ABSENCE OF THE PIONIC XODE IN T DECAY' :t Yongzik Ahn Department of Physics, Seoul National University Seoul 151, Korea and * * Jewan Kim Department of

More information

RATIOS OF p-wave AMPLITUDES IN HYPERON DECAYS* (Revised Version) J. Weyers**

RATIOS OF p-wave AMPLITUDES IN HYPERON DECAYS* (Revised Version) J. Weyers** RATIOS OF p-wave AMPLITUDES IN HYPERON DECAYS* (Revised Version) by J. Weyers** Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT Assuming a current x current Hamiltonian

More information

EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California. July 1966 ABSTRACT

EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California. July 1966 ABSTRACT SIAC-PUB-202 EXAMPLE OF AN INELASTIC BOUND STATE * J. B. Bronzan t Stanford Linear Accelerator Stanford, California Center July 1966 ABSTRACT An example is given of a bound state which occurs in a channel

More information

z + N4 V -+ Monojet*

z + N4 V -+ Monojet* -.. -._ SLAC - PUB - 4270 March 1987 T/E z + N4 V -+ Monojet* SUN HONG RHIE Stanford Linear Accelerator Center Stanford University, Stanford, California, 94305 ABSTRACT We discuss flavor-changing 2 decays

More information

FORM-FACTOR DUE TO SYMMETRY BREAKING*

FORM-FACTOR DUE TO SYMMETRY BREAKING* SLAC-PUB-577 April 1969 VW FIRST ORDER RENORMALIZATION OF THE WEAK MAGNETIC FORM-FACTOR DUE TO SYMMETRY BREAKING* Elliot Lehman Stanford Linear Accelerator Center and Department of Physics, Stanford University

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

LEPTON-HADRON PROCESSES CORRECT??* J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California

LEPTON-HADRON PROCESSES CORRECT??* J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California SLAC-PUB-1049 (7X) and (EXP) May 1972 IS THE ADLER SUM RULE FOR INELASTIC LEPTON-HADRON PROCESSES CORRECT??* J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

More information

A NEW CLASS OF SUPERALGEBRAS AND LOCAL GAUGE GROUPS IN SUPERSPACE*

A NEW CLASS OF SUPERALGEBRAS AND LOCAL GAUGE GROUPS IN SUPERSPACE* SLAC-PUB-1983 July 1977 (9 A NEW CLASS OF SUPERALGEBRAS AND LOCAL GAUGE GROUPS IN SUPERSPACE* Freydoon Mansouri Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 ABSTRACT

More information

Quark Model History and current status

Quark Model History and current status Quark Model History and current status Manon Bischoff Heavy-Ion Seminar 2013 October 31, 2013 Manon Bischoff Quark Model 1 Outline Introduction Motivation and historical development Group theory and the

More information

A Sum Rule for Deep Inelastic Electroproduction. from Polarized Protons

A Sum Rule for Deep Inelastic Electroproduction. from Polarized Protons SLAC-m-1288 Errata to A Sum Rule for Deep Inelastic Electroproduction from Polarized Protons John Ellis and Robert Jaffe Page 4, Eq. 2 and following equation, replace fi by 1. J-i Page 4, bottom equation,

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion

OUTLINE. CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion Weak Interactions OUTLINE CHARGED LEPTONIC WEAK INTERACTION - Decay of the Muon - Decay of the Neutron - Decay of the Pion CHARGED WEAK INTERACTIONS OF QUARKS - Cabibbo-GIM Mechanism - Cabibbo-Kobayashi-Maskawa

More information

Strong isospin violation and mixing in [A S I = 1 weak transition

Strong isospin violation and mixing in [A S I = 1 weak transition Pramina, Vol. 17, No. 5, November 1981, pp. 405-414. ~) Printed in India. Strong isospin violation and mixing in [A S I = 1 weak transition BIJAN K BAGCHI Department of Theoretical Physics, Indian Association

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification Weak Interactions Outline Charged Leptonic Weak Interaction Decay of the Muon Decay of the Neutron Decay of the Pion Charged Weak Interactions of Quarks Cabibbo-GIM Mechanism Cabibbo-Kobayashi-Maskawa

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY. Synchrotron Laboratory Pasadena, California BROKEN SYMMETRIES AND BARE COUPLING CONSTANTS

CALIFORNIA INSTITUTE OF TECHNOLOGY. Synchrotron Laboratory Pasadena, California BROKEN SYMMETRIES AND BARE COUPLING CONSTANTS Report CTSL-19 CALIFORNIA INSTITUTE OF TECHNOLOGY Synchrotron Laboratory Pasadena, California BROKEN SYMMETRIES AND BARE COUPLING CONSTANTS Murray Gell-Mann and Fredrik Zachariasen March 14, 1961 * Research

More information

NUCLEAR OPTICAL MODEL FOR VIRTUAL PIONS* J. S. Bell f. Stanford Linear Accelerator Center Stanford University, Stanford, California

NUCLEAR OPTICAL MODEL FOR VIRTUAL PIONS* J. S. Bell f. Stanford Linear Accelerator Center Stanford University, Stanford, California NUCLEAR OPTICAL MODEL FOR VIRTUAL PIONS* J. S. Bell f Stanford Linear Accelerator Center Stanford University, Stanford, California (To be submitted to Physical Review Letters) * Suppor;ed by the U. S.

More information

Models of Dynamical Supersymmetry Breaking from a SU(2k+3) Gauge Model* Abstract

Models of Dynamical Supersymmetry Breaking from a SU(2k+3) Gauge Model* Abstract SLAC-PUB-7174 hep-th/9605119 May 1996 Models of Dynamical Supersymmetry Breaking from a SU(2k+3) Gauge Model* Chih-Lung Chou Stanford Linear Accelerator Center Stanford University, Stanford, California

More information

Another view of the Gell-Mann-Okubo mass formula

Another view of the Gell-Mann-Okubo mass formula 3 February 017 Another view of the Gell-Mann-Okubo mass formula Jean Pestieau 1 The Gell-Mann-Okubo mass formula for light hadrons assumes that mass effective operator is in the 8 representation of flavour

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

AND THE BJORKEN-JOHNSON-LOW. Ahmed Ali The Stevens Institute of Technology Hoboken, New Jersey and

AND THE BJORKEN-JOHNSON-LOW. Ahmed Ali The Stevens Institute of Technology Hoboken, New Jersey and SLAC-PUB-1474 September 1974 CT) FINITE YANG-MILLS THEORIES AND THE BJORKEN-JOHNSON-LOW LIMIT* Ahmed Ali The Stevens Institute of Technology Hoboken, New Jersey 07030 Stanford Linear Accelerator Center

More information

DIRECT LEPION PRODUCTION AND THE DRBLL-YAN MECHANISM. J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

DIRECT LEPION PRODUCTION AND THE DRBLL-YAN MECHANISM. J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-m-1631 August 1975 (T/E) DIRECT LEPION PRODUCTION AND THE DRBLL-YAN MECHANISM J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 and H. Weisberg Department

More information

HIGHER MESON RESONANCES AND THE

HIGHER MESON RESONANCES AND THE it/65/23 ;.; INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS HIGHER MESON RESONANCES AND THE 4212 + MULTIPLET OF SUC12) R. DELBOURGO 1965 PIAZZA OBERDAN TRIESTE lc/65/23

More information

Tai Ho Tan. Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

Tai Ho Tan. Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-596 May 1969 (EXP) A STUDY OF AP MASS SPECTRUM FROM THE REACTON: K-D---PA AT REST* Tai Ho Tan Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 (Submitted to the

More information

arxiv:hep-lat/ v2 18 Jul 2006

arxiv:hep-lat/ v2 18 Jul 2006 The Effect of Reduced Spatial Symmetries on Lattice States: Results for Non-zero Linear Momentum David C. Moore, George T. Fleming arxiv:hep-lat/0607005v 8 Jul 006 Sloane Physics Laboratory, Yale University,

More information

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING

OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING OBSERVED BEHAVIOR OF HIGHLY INELASTIC ELECTRON-PROTON SCATTERING SLAC-pm-650 August 1969 (EXP) and (TH) M. Breidenbach, J. I. Friedman, H. W. Kendall Department of Physics and Laboratory for Nuclear Science,

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

Test of T and CP Violation in Leptonic Decay of. Yung Su Tsai. Stanford University, Stanford, California ABSTRACT

Test of T and CP Violation in Leptonic Decay of. Yung Su Tsai. Stanford University, Stanford, California ABSTRACT SLAC{PUB{95{6916 Test of T and CP Violation in Leptonic Decay of Yung Su Tsai Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 ABSTRACT hep-ph/95065 The, highly polarized

More information

Coulomb Scattering of an Electron by a Monopole*

Coulomb Scattering of an Electron by a Monopole* SLAC-PUB-5424 May 1991 P/E) Rev Coulomb Scattering of an Electron by a Monopole* DAVID FRYBERGER Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 A classical Lagrangian

More information

arxiv:hep-ph/ v2 15 Oct 2001

arxiv:hep-ph/ v2 15 Oct 2001 THE EIGHTFOLD WAY 1 Jonathan L. Rosner arxiv:hep-ph/0109241v2 15 Oct 2001 The Eightfold Way is the name coined by Murray Gell-Mann (1961) to describe a classification scheme of the elementary particles

More information

CP-Violation in the Renormalizable Interaction. Author(s) Kobayashi, Makoto; Maskawa, Citation Progress of Theoretical Physics (19

CP-Violation in the Renormalizable Interaction. Author(s) Kobayashi, Makoto; Maskawa, Citation Progress of Theoretical Physics (19 Title CP-Violation in the Renormalizable Interaction Author(s) Kobayashi, Makoto; Maskawa, Toshihi Citation Progress of Theoretical Physics (19 Issue Date 1973-02 URL http://hdl.handle.net/2433/66179 RightCopyright

More information

QCD and Models : introduction

QCD and Models : introduction [169/105] HUGS Summer School Jun, 2010 QCD and Models : introduction Eric Swanson Theodore Wulf (1910) Too Many Hadrons! Quarks and the Eightfold Way Quarks and the Eightfold Way Three quarks for

More information

Spin, Isospin and Strong Interaction Dynamics

Spin, Isospin and Strong Interaction Dynamics October, 11 PROGRESS IN PHYSICS Volume 4 Spin, Isospin and Strong Interaction Dynamics Eliahu Comay Charactell Ltd. P.O. Box 3919, Tel Aviv 6139 Israel. E-mail: elicomay@post.tau.ac.il The structure of

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS

DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS IC/68/54 0^ 19. JUL1B6b) 5^1 2 INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS DISPERSION CALCULATION OF THE JT- JT SCATTERING LENGTHS N. F. NASRALLAH 1968 MIRAMARE - TRIESTE

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Quantum ChromoDynamics (Nobel Prize 2004) Chris McLauchlin

Quantum ChromoDynamics (Nobel Prize 2004) Chris McLauchlin Quantum ChromoDynamics (Nobel Prize 2004) Chris McLauchlin Outline The Four Fundamental Forces The Strong Force History of the Strong Force What These People Did Experimental Support 1 Fundamental Forces

More information

Evidence for the Strong Interaction

Evidence for the Strong Interaction Evidence for the Strong Interaction Scott Wilbur Scott Wilbur Evidence for the Strong Interaction 1 Overview Continuing search inside fundamental particles Scott Wilbur Evidence for the Strong Interaction

More information

CP. Violation in the Renormalizahle Theory of Weak Interaction

CP. Violation in the Renormalizahle Theory of Weak Interaction 652 Progress of Theoretical Physics, Vol. 49, No. 2, February 1973 CP. Violation in the Renormalizahle Theory of Weak Interaction Makoto KOBAYASHI and Toshihide MASKAWA Department of Physics, Kyoto University,

More information

Geoffrey B. West? Stanford Linear Accelerator Center, Stanford University, Stanford, California ABSTRACT

Geoffrey B. West? Stanford Linear Accelerator Center, Stanford University, Stanford, California ABSTRACT SLAC-PUB-1186 ITP-429 (TH) and (EXP) February 1973 SCALING IN DEEP INELASTIC PION ELECTROPRODUCTION* Geoffrey B. West? Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

More information

Light front Treatment of Nuclei and Deep Inelastic Scattering

Light front Treatment of Nuclei and Deep Inelastic Scattering SLAC-PUB-7552 June 1997 Light front Treatment of Nuclei and Deep Inelastic Scattering G. A. Miller Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Presented at the New Non-Perturbative

More information

TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 SLAC-PUB-2489 March 1980 (T/E) TARGET MASS CORRECTIONS IN QCD* W. R. Fraser? and J. F. Gunion 9 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT We employ the

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 76 4 MARCH 1996 NUMBER 10 Finite-Size Scaling and Universality above the Upper Critical Dimensionality Erik Luijten* and Henk W. J. Blöte Faculty of Applied Physics, Delft

More information

Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory

Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory High Energy Physics Volume 215, Article ID 83232, 4 pages http://dx.doi.org/1.1155/215/83232 Research Article Scalar Form Factor of the Pion in the Kroll-Lee-Zumino Field Theory C. A. Dominguez, 1 M. Loewe,

More information

Gravitational Waves from the Electroweak Phase Transition

Gravitational Waves from the Electroweak Phase Transition Gravitational Waves from the Electroweak Phase Transition A Semi-Analytic Calculation arxiv:0911.0687 John Kehayias University of California, Santa Cruz And Santa Cruz Institute of Particle Physics November

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

FROM HYDROGEN AT ENERGIES FROM 6.5 GeV TO 17.8 GeV* W. G. Jones? and D. Kreinick California Institute of Technology Pasadena, California

FROM HYDROGEN AT ENERGIES FROM 6.5 GeV TO 17.8 GeV* W. G. Jones? and D. Kreinick California Institute of Technology Pasadena, California SLAC-PUB-439 June 1968 (Ew FORWARD PHOTOPRODUCTON OF VECTOR MESONS FROM HYDROGEN AT ENERGES FROM 6.5 GeV TO 17.8 GeV* W. G. Jones? and D. Kreinick California nstitute of Technology Pasadena, California

More information

THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY

THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY THE MANDELSTAM REPRESENTATION IN PERTURBATION THEORY P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor University of Cambridge, Cambridge, England (presented by J. C. Polkinghorne) 1. METHODS The aim

More information

DIFFERENCE OF NUCLEON AND PION ELECTROMAGNETIC RADII*

DIFFERENCE OF NUCLEON AND PION ELECTROMAGNETIC RADII* SLAC PUB 404 April 1968 DIFFERENCE OF NUCLEON AND PION ELECTROMAGNETIC RADII* S. D. Drell and Dennis J. Silverman Stanford Linear Accelerator Stanford University Stanford, California Center ABSTRACT The

More information

Volume 9813, number 4 PHYSICS LETTERS 15 January 1981

Volume 9813, number 4 PHYSICS LETTERS 15 January 1981 Volume 983, number 4 PHYSICS LETTERS 5 January 98 A DYNAMICAL THEORY FOR THE RISHON MODEL ~ Haim HARARI and Nathan SEIBERG Department of Nuclear Physics, Weizmann Institute of Science, Rehovot, Israel

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

QUARK LINE RULE FOR NON-LEPTONIC DECAYS* I. Bigi CERNT CH-1211 Geneva 23, Switzerland. and

QUARK LINE RULE FOR NON-LEPTONIC DECAYS* I. Bigi CERNT CH-1211 Geneva 23, Switzerland. and SLAC-PUB-2410, October 1979 (T/E) Addendum QUARK LINE RULE FOR NON-LEPTONIC DECAYS* I. Bigi CERNT CH-1211 Geneva 23, Switzerland and L. Stodolsky Stanford Linear Accelerator Center Stanford University,

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

Fleischer Mannel analysis for direct CP asymmetry. Abstract

Fleischer Mannel analysis for direct CP asymmetry. Abstract Fleischer Mannel analysis for direct CP asymmetry SLAC-PUB-8814 hep-ph/yymmnnn Heath B. O Connell Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309, USA hoc@slac.stanford.edu (8

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

GAUGE CONDITIONS IN DUAL RESONANCE MODELS* F. Mansouri Enrico Fermi Institute for Nuclear Studies University of Chicago, Chicago, Illinois 60637

GAUGE CONDITIONS IN DUAL RESONANCE MODELS* F. Mansouri Enrico Fermi Institute for Nuclear Studies University of Chicago, Chicago, Illinois 60637 GAUGE CONDITIONS IN DUAL SLAC-PUB-1025 COO-264-606 PH) March 1972 RESONANCE MODELS* F. Mansouri Enrico Fermi Institute for Nuclear Studies University of Chicago, Chicago, Illinois 60637 Y. Nambu ** Stanford

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL NUC-MINN-96/3-T February 1996 arxiv:hep-ph/9602400v1 26 Feb 1996 PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL Sangyong Jeon and Joseph Kapusta School of Physics and Astronomy

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

r PAIR PHOTOPRODUCTION CROSS SECTION* Yung Su Tsai Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT

r PAIR PHOTOPRODUCTION CROSS SECTION* Yung Su Tsai Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT $x&-pub-2356 July 1979 T/E (Rev.) r PAIR PHOTOPRODUCTION CROSS SECTION* Yung Su Tsai Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT The 'c pair photoproduction

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

arxiv:nucl-th/ v1 21 Jan 1999

arxiv:nucl-th/ v1 21 Jan 1999 EPJ manuscript No. will be inserted by the editor) Model independent constraints from vacuum and in-medium QCD Sum Rules arxiv:nucl-th/99158v1 21 Jan 1999 F. Klingl and W. Weise a Physik-Department, Theoretische

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

H. Pierre Noyes. Stanford Linear Accelerator Center, Stanford University, Stanford, California ABSTRACT

H. Pierre Noyes. Stanford Linear Accelerator Center, Stanford University, Stanford, California ABSTRACT SLAC -PUB-238 December 1966 THE ABSOLUTE PROTON-PROTON VALUE OF Axx (90 ) FOR SCATTERING AT 11.4 MeV H. Pierre Noyes Stanford Linear Accelerator Center, Stanford University, Stanford, California ABSTRACT

More information

Feynman and the quarkparton

Feynman and the quarkparton Feynman and the quarkparton models 1968-74 Finn Ravndal, Dept of Physics, University of Oslo. 1968 - graduate student at Caltech The quark model The parton model - jets 1974 - QCD and leaving Caltech 1971

More information

Measurements%of%Parity%Viola9on%in%Electron%ScaWering%

Measurements%of%Parity%Viola9on%in%Electron%ScaWering% Paul%E.%Reimer% Physics%Division,%Argonne%Na9onal%Laboratory% HUGS,%4B22%June%2012% (%E,k")% (%E,k )% θ Really two%separate%topics%unified%by%my%interests% I. Flavor%Structure%of%the%Proton% A. Proton%structure

More information

Weak Interactions Made Simple

Weak Interactions Made Simple Weak Interactions Made Simple P. R. Silva Retired associated professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com ABSTRACT A very simplified way of calculating

More information

arxiv: v2 [physics.hist-ph] 7 May 2008

arxiv: v2 [physics.hist-ph] 7 May 2008 The Color Charge Degree of Freedom in Particle Physics arxiv:0805.0289v2 [physics.hist-ph] 7 May 2008 O.W. Greenberg 1 Center for Fundamental Physics Department of Physics University of Maryland College

More information

n> -nn+n?r- AND AN ESTIMATE OF THE A2 3 WIDTH*

n> -nn+n?r- AND AN ESTIMATE OF THE A2 3 WIDTH* summ-690 November 1969 (TH) ana (EXP) PHOTOPRODUCTION OF THE A MESON IN THE REACTION n> -nn+n?r- AND AN ESTIMATE OF THE A 3 WIDTH* Y. Eisenberg, B. Haber, B. Horovitz, E. Peleg, E. E. Ronat, A. Shapira,

More information

EFFECTS OF CHARGED HIGGS IN r DECAY* Yung Su Tsai ABSTRACT

EFFECTS OF CHARGED HIGGS IN r DECAY* Yung Su Tsai ABSTRACT SLAC-PUB-5003 July 1989 (T/E) EFFECTS OF CHARGED HIGGS IN r DECAY* Yung Su Tsai Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 ABSTRACT An experiment to test the effect of

More information

Beyond the Quark Model: Tetraquarks and. Pentaquarks

Beyond the Quark Model: Tetraquarks and. Pentaquarks Beyond the Quark Model: Tetraquarks and Pentaquarks in completion of Drexel University s Physics 502 Final Tyler Rehak March 15, 2016 The Standard Model of particle physics is continually being tested

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

PROPERTIES OF HADRON DISTRIBUTIONS IN REACTIONS CONTAINING VERY HEAVY QUARKS*

PROPERTIES OF HADRON DISTRIBUTIONS IN REACTIONS CONTAINING VERY HEAVY QUARKS* &AC-PUB-1992 August 1977 (T/E) - PROPERTIES OF HADRON DISTRIBUTIONS IN REACTIONS CONTAINING VERY HEAVY QUARKS* J. D. Bjorken Stanford Linear Accelerator Center Stanford University, Stanford, California

More information

LEADING LOGARITHMS FOR THE NUCLEON MASS

LEADING LOGARITHMS FOR THE NUCLEON MASS /9 LEADING LOGARITHMS FOR THE NUCLEON MASS O(N + ) Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt/ QNP5 - Universidad Técnica Federico Santa María UTFSMXI

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

Lecture 3: Quarks and Symmetry in Quarks

Lecture 3: Quarks and Symmetry in Quarks Lecture 3: Quarks and Symmetry in Quarks Quarks Cross Section, Fermions & Bosons, Wave Eqs. Symmetry: Rotation, Isospin (I), Parity (P), Charge Conjugate (C), SU(3), Gauge symmetry Conservation Laws: http://faculty.physics.tamu.edu/kamon/teaching/phys627/

More information

AT 15 GeV/c * ABSTRACT. with polarized and unpolarized single pion photoproduction data. emphasis is placed upon the behavior of the differential

AT 15 GeV/c * ABSTRACT. with polarized and unpolarized single pion photoproduction data. emphasis is placed upon the behavior of the differential SIAC-PUB-885 March 1971 A COMPARISON OF n-p* P n WITH SINGLE PION PHOTOPRODUCTION AT 15 GeV/c * F. Bulos, R. K. Carnegie, G. E. Fischer, E. E. Kluge, D.W.G.S. Leith, H. L. Lynch, B. Ratcliff, B. Richter,

More information

NAMBU STRING VERSUS DIRAC STRING IN EXTENDED QCD * ABSTRACT

NAMBU STRING VERSUS DIRAC STRING IN EXTENDED QCD * ABSTRACT SLAC-PUB3188 August 1983 V) NAMBU STRING VERSUS DIRAC STRING IN EXTENDED QCD * Y. M. CHO + Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT Motivated by a recent

More information

Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks*

Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks* SLAC-PUB-6226 CALT-68-1868 UCSD/PTH 93-11 May 1993 T/E Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks* Adam F. Falk Stanford Linear Accelerator Center Stanford University, Stanford, California

More information

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of Preface p. xiii Acknowledgements p. xiv An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of G[subscript 0] p. 4 SU(3) and its representations

More information

Note on Un"tary Symmetry in Strong Interaction. II

Note on Untary Symmetry in Strong Interaction. II 24 Progress of Theoretical Physics, Vol, 28, No. 1, July 1962 Note on Un"tary Symmetry in Strong Interaction. II --Excited States of Baryons-- Susumu OKUBO Department of Physzcs, University of Tokyo, Tokyo

More information

Murray Gell-Mann Quarks and QCD. A Life of Symmetry

Murray Gell-Mann Quarks and QCD. A Life of Symmetry Murray Gell-Mann Quarks and QCD A Life of Symmetry Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

NUCLEON FORM FACTORS IN A RELATIVISTIC QUARK MODEL* Abstract We demonstrate that a relativistic constituent-quark

NUCLEON FORM FACTORS IN A RELATIVISTIC QUARK MODEL* Abstract We demonstrate that a relativistic constituent-quark SLAC-PUB-5968 November1992 CT).-. NUCLEON FORM FACTORS IN A RELATIVISTIC QUARK MODEL* Felix Schlumpf StanfonE Linear Accelerator Center, Stanford University, Stanford, California 94309 Abstract We demonstrate

More information

YUNGSu TSAI. Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT

YUNGSu TSAI. Stanford Linear Accelerator Center Stanford University, Stanford, California ABSTRACT SLAC-PUB-95-6916 June 1995 Test of T and CP Violation in Leptonic Decay of T** YUNGSu TSAI Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 ABSTRACT The T*, highly polarized

More information

Charmed Baryons A Review of Doubly Charmed Baryons & New Results

Charmed Baryons A Review of Doubly Charmed Baryons & New Results Charmed Baryons A Review of Doubly Charmed Baryons & New Results Fermi National Accelerator Laboratory Batavia, IL 1 Double Charm Baryons: SU(4) QCD: isodoublet of (ccq) baryons Models agree: ground state

More information

Is there a Scalar Sector?

Is there a Scalar Sector? Is there a Scalar Sector? Roberto Peccei Cornwall Symposium UCLA November 2009 Is there a Scalar Sector? The Cornwall Norton Paper Technicolor and its Troubles Difficulties with CP Concluding Remarks The

More information

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD The decay constants f B + and f D + from three-flavor lattice QCD C. Bernard a, C. DeTar b, M. Di Pierro c, A.X. El-Khadra d, R.T. Evans d, E. Freeland e, S. Gottlieb f, U.M. Heller g, J.E. Hetrick h,

More information

THEORY OF LARGE ANGLE SCATTERING AND NEW TESTS OF PARTON CONCEPTS

THEORY OF LARGE ANGLE SCATTERING AND NEW TESTS OF PARTON CONCEPTS SLAC-PUB-1037 (TH) and (EXP) COMPOSII E THEORY OF LARGE ANGLE SCATTERING AND NEW TESTS OF PARTON CONCEPTS J. F. Gunion, S. J. Brodsky and R. Blankenbecler Stanford Linear Act eleratbr Center Stanford University,

More information