Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Size: px
Start display at page:

Download "Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University"

Transcription

1 Path Diagrams James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Path Diagrams 1 / 24

2 Path Diagrams 1 Introduction 2 Path Diagram Basics 3 Exceptions and Ambiguities James H. Steiger (Vanderbilt University) Path Diagrams 2 / 24

3 Introduction Introduction Path Diagrams play an important role in communication and visualization of structural equation models You can sometimes see things easily in a path diagram that are more difficult to see from a set of written equations. As useful as they are in some instances, path diagrams can also be counterproductive: 1 Inconsistent and/or conflicting diagramming conventions can induce confusion and error. 2 As the number of variables in the diagram increases, the diagram may become visually confusing and/or impossible to read. In what follows, I shall discuss the most common path diagramming conventions used in the classic covariance structure modeling framework. A thorough understanding of these conventions will prove useful in deciphering more complex types of models. James H. Steiger (Vanderbilt University) Path Diagrams 3 / 24

4 Path Diagram Basics Path Diagram Basics Path diagrams are like flowcharts. They show variables interconnected with lines that are used to indicate causal flow. In the most general type of diagram, each path involves two variables (in either boxes or ovals) connected by either arrows (lines, usually straight, with an arrowhead on one end) or wires (lines, usually curved, with no arrowhead), or slings (with two arrowheads). Arrows are used to indicate directed relationships, or linear relationships between two variables. An arrow from X to Y indicates a linear relationship where Y is the dependent variable and X the independent variable. Wires or Slings are used to represent undirected relationships, which represent variances (if the line curves back from a variable to itself) or covariances (if the line curves from one variable to another). James H. Steiger (Vanderbilt University) Path Diagrams 4 / 24

5 Path Diagram Basics Path Diagram Basics Simple Bivariate Regression One can think of a path diagram as a device for showing which variables cause changes in other variables. However, path diagrams need not be thought of strictly in this way. They may also be given a narrower, more specific interpretation. Consider the classic linear regression equation Here is the path diagram representation. Y = ax + e (1) James H. Steiger (Vanderbilt University) Path Diagrams 5 / 24

6 Path Diagram Basics Path Diagram Basics Simple Bivariate Regression σ 2 e E σ 2 x X a Y James H. Steiger (Vanderbilt University) Path Diagrams 6 / 24

7 Path Diagram Basics Path Diagram Basics Simple Bivariate Regression Such diagrams establish a simple isomorphism. All variables in the equation system are placed in the diagram, either in boxes or ovals. Manifest variables are in boxes, latent variables (including error terms) in ovals. Each equation is represented on the diagram as follows: 1 All independent variables (the variables on the right side of an equation) have arrows pointing to the dependent variable. 2 The weighting coefficients are placed in clear proximity to the arrows. James H. Steiger (Vanderbilt University) Path Diagrams 7 / 24

8 Path Diagram Basics Path Diagram Basics Variable Types Besides being either manifest or latent, a variable is either exogenous or endogenous. A variable is endogenous if and only if it has at least one arrow pointing to it, i.e., if it is on the receiving end of a directed relationship. A variable is exogenous if an only if it has no arrows pointing to it and at least one arrow pointing away from it. Note a variable can be endogenous and still have arrows pointing away from it. James H. Steiger (Vanderbilt University) Path Diagrams 8 / 24

9 Path Diagram Basics Path Diagram Basics Variable Types Note, then, that a variable is one of 4 types: 1 Manifest-Exogenous 2 Manifest-Endogenous 3 Latent-Exogenous 4 Latent-Endogenous James H. Steiger (Vanderbilt University) Path Diagrams 9 / 24

10 Path Diagram Basics Path Diagram Basics Variable Types If random variables are related by linear equations, then variables which are endogenous have variances and covariances which are determinate functions of the variables on which they regress. For example, if X and Y are orthogonal and W = ax + by (2) then it must be the case that σ 2 W = a2 σ 2 X + b2 σ 2 Y (3) James H. Steiger (Vanderbilt University) Path Diagrams 10 / 24

11 Path Diagram Basics Path Diagram Basics Variable Types One way of guaranteeing that a diagram can account for variances and covariances among all its variables is to require: 1 Representation of all variances and covariances among exogenous variables, 2 No variances or covariances to be directly represented in the diagram for endogenous variables, and 3 All variables in the diagram be involved in at least one relationship. James H. Steiger (Vanderbilt University) Path Diagrams 11 / 24

12 Path Diagram Basics Path Diagram Basics Variable Types Unfortunately, there is a significant practical problem with many path diagrams lack of space. In many cases, there are so many exogenous variables that there is simply not enough room to represent, adequately, the variances and covariances among them. Diagrams which try often end up looking like piles of spaghetti. One way of compensating for this problem is to include rules for default variances and covariances which allow a considerable number of them to be represented implicitly in the diagram. One consistent standard for basic structural equation models is represented in the rules shown in the next section James H. Steiger (Vanderbilt University) Path Diagrams 12 / 24

13 Path Diagram Rules Path Diagram Rules I 1 Manifest variables are always represented in boxes (squares or rectangles) while latent variables are always in ovals or circles. 2 Each directed relationship is represented explicitly by an arrow between two variables. 3 Undirected relationships need not be represented explicitly. (See rule 9 below regarding implicit representation of undirected relationships.) 4 Undirected relationships, when represented explicitly, are shown by a sling (two-headed arrow) or wire from a variable to itself, or from one variable to another. 5 Endogenous variables may never have slings/wires connected to them. 6 Free parameter numbers or labels for a sling/wire or arrow are always represented with integers or labels placed on, near, or slightly above the middle of the wire or arrowline. A free parameter is a number whose value is estimated by the program. Two free parameters having the same parameter number or label are required to have the same value. James H. Steiger (Vanderbilt University) Path Diagrams 13 / 24

14 Path Diagram Rules Path Diagram Rules II 7 Fixed values for a wire or arrow are always represented with a floating point number containing a decimal point. The number is generally placed on, near, or slightly above the middle of the sling/wire or arrow line. A fixed value is assigned by the user. (There are default values that are applicable in various situations.) 8 Different statistical populations are represented by a line of demarcation and the words Group 1 (for the first population or group), Group 2, etc., in each diagram section. 9 All exogenous variables must have their variances and covariances represented either explicitly or implicitly by either free parameters or fixed values. If variances and covariances are not represented explicitly, then the following rules hold: Among latent exogenous variables, variances not explicitly represented in the diagram are assumed to be fixed values of 1.0, and covariances not explicitly represented are assumed to be fixed values of 0. James H. Steiger (Vanderbilt University) Path Diagrams 14 / 24

15 Path Diagram Rules Path Diagram Rules III Among manifest exogenous variables, variances and covariances not explicitly represented are assumed to be free parameters each having a different parameter number. These parameter numbers are not equal to any number appearing explicitly in the diagram. Constants (intercept terms) are generally represented as triangular exogenous variables. James H. Steiger (Vanderbilt University) Path Diagrams 15 / 24

16 Exceptions and Ambiguities Exceptions and Ambiguities By adopting a consistent standard for path diagrams, we can facilitate clear communication of path models, regardless of what system is used to analyze them. The typical beginning student of SEM will attempt to reproduce results from published papers employing a wide variety of standards for their path diagrams. In some cases this approach will create no problems. However, experience indicates that it is often useful to translate published diagrams into diagram that obeys rules 1 9 in the previous section, before specifying the model for estimation. Frequently the translation process will draw attention to errors or ambiguities in the published diagram. James H. Steiger (Vanderbilt University) Path Diagrams 16 / 24

17 Exceptions and Ambiguities Exceptions and Ambiguities The figure on the next slide shows a portion of a path diagram which is quite typical of what is found in the literature. This is not a complete diagram and it does not conform to diagramming rules in the preceding section. James H. Steiger (Vanderbilt University) Path Diagrams 17 / 24

18 Exceptions and Ambiguities Exceptions and Ambiguities X 1 D 1 D 2 X 4 X 2 L 1 L 2 X 5 X 3 X 6 James H. Steiger (Vanderbilt University) Path Diagrams 18 / 24

19 Exceptions and Ambiguities Exceptions and Ambiguities Some of the diagram is clear and routine, but what do we make of the symbols D 1 and D 2? Variable L 1 is a latent exogenous variable. It has arrows pointing away from it and no arrows pointing to it. Since, by rule 9 for diagrams (see above), all exogenous variables must have their variances and covariances explained, the most reasonable assumption is that D 1 stands for the variance of latent variable L 1. James H. Steiger (Vanderbilt University) Path Diagrams 19 / 24

20 Exceptions and Ambiguities Exceptions and Ambiguities Hence, the diagram is modified to make D1 a parameter attached to a wire from L1 to itself. But what is the status of D2? In the diagram it looks just like D1, but closer inspection reveals it must mean something different. D2 is connected to L2, and L2 is an endogenous latent variable. Consequently, the most reasonable interpretation is that D2 represents an error variance for latent variable L2. It is represented with an error latent variable E2 with variance D2. James H. Steiger (Vanderbilt University) Path Diagrams 20 / 24

21 Exceptions and Ambiguities Exceptions and Ambiguities The revised path diagram, more accurately reflecting the author s model, is shown in the figure on the next slide. Notice, however, that the diagram is still not fully explicit. Each of the manifest variables is endogenous, and, as such, needs an error (or residual) variance. Many path diagrams, for the sake of compactness, will not include these paths. James H. Steiger (Vanderbilt University) Path Diagrams 21 / 24

22 Exceptions and Ambiguities Exceptions and Ambiguities D 2 X 1 D 1 E 1 X 4 X 2 L 1 L 2 X 5 X 3 X 6 James H. Steiger (Vanderbilt University) Path Diagrams 22 / 24

23 Exceptions and Ambiguities Exceptions and Ambiguities In some cases you will have to be creative, tenacious, and lucky to figure out what the author of a path diagram intended. Even the most accomplished and generally careful authors will leave out paths, forget to mention that some values were fixed rather than free parameters, or simply misrepresent the model actually tested. Sometimes the only way to figure out what the author actually did is to try several models, until you find coefficients which agree with the published values. These difficulties are compounded by the occasional typographical errors that appear in published covariance and correlation matrices. James H. Steiger (Vanderbilt University) Path Diagrams 23 / 24

24 Exceptions and Ambiguities Exceptions and Ambiguities The RAM Diagramming System Some path diagrams do not represent the error variance attached to endogenous latent variables at all they leave this to the reader to figure out for him/herself. Whenever an endogenous latent variable has no error term, you should suspect that an error latent variable has been left out, especially if your degrees of freedom don t agree with those of the published paper. The later version of the RAM system developed by Jack McArdle adds an additional twist to this. A residual variable is an exogenous variable that has a directed path to one (and only one) endogenous variable. In the RAM system, residual variables are not represented explicitly in the diagram. Rather, their variances are shown as two-headed arrows (or slings ) attached to the variable they point to. Of course, this means that slings can mean one thing in one part of the diagram, and another thing in a different part of the same diagram. James H. Steiger (Vanderbilt University) Path Diagrams 24 / 24

Key Algebraic Results in Linear Regression

Key Algebraic Results in Linear Regression Key Algebraic Results in Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Key Algebraic Results in

More information

Introduction to Linear Regression

Introduction to Linear Regression Introduction to Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Introduction to Linear Regression 1 / 46

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

Approximations - the method of least squares (1)

Approximations - the method of least squares (1) Approximations - the method of least squares () In many applications, we have to consider the following problem: Suppose that for some y, the equation Ax = y has no solutions It could be that this is an

More information

Structural Equa+on Models: The General Case. STA431: Spring 2015

Structural Equa+on Models: The General Case. STA431: Spring 2015 Structural Equa+on Models: The General Case STA431: Spring 2015 An Extension of Mul+ple Regression More than one regression- like equa+on Includes latent variables Variables can be explanatory in one equa+on

More information

Variance Partitioning

Variance Partitioning Lecture 12 March 8, 2005 Applied Regression Analysis Lecture #12-3/8/2005 Slide 1 of 33 Today s Lecture Muddying the waters of regression. What not to do when considering the relative importance of variables

More information

Variance Partitioning

Variance Partitioning Chapter 9 October 22, 2008 ERSH 8320 Lecture #8-10/22/2008 Slide 1 of 33 Today s Lecture Test review and discussion. Today s Lecture Chapter 9: Muddying the waters of regression. What not to do when considering

More information

Introduction To Confirmatory Factor Analysis and Item Response Theory

Introduction To Confirmatory Factor Analysis and Item Response Theory Introduction To Confirmatory Factor Analysis and Item Response Theory Lecture 23 May 3, 2005 Applied Regression Analysis Lecture #23-5/3/2005 Slide 1 of 21 Today s Lecture Confirmatory Factor Analysis.

More information

Section 2.7 Solving Linear Inequalities

Section 2.7 Solving Linear Inequalities Section.7 Solving Linear Inequalities Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Add and multiply an inequality. Solving equations (.1,.,

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Structural Equa+on Models: The General Case. STA431: Spring 2013

Structural Equa+on Models: The General Case. STA431: Spring 2013 Structural Equa+on Models: The General Case STA431: Spring 2013 An Extension of Mul+ple Regression More than one regression- like equa+on Includes latent variables Variables can be explanatory in one equa+on

More information

Regression and the 2-Sample t

Regression and the 2-Sample t Regression and the 2-Sample t James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Regression and the 2-Sample t 1 / 44 Regression

More information

Structural Model Equivalence

Structural Model Equivalence Structural Model Equivalence James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Structural Model Equivalence 1 / 34 Structural

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM)

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SEM is a family of statistical techniques which builds upon multiple regression,

More information

The Matrix Algebra of Sample Statistics

The Matrix Algebra of Sample Statistics The Matrix Algebra of Sample Statistics James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) The Matrix Algebra of Sample Statistics

More information

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE Dr. James (Jim) D. Doyle March 19, 2014 Structural equation modeling or SEM 1971-1980: 27 1981-1990: 118 1991-2000:

More information

Review of Basic Probability Theory

Review of Basic Probability Theory Review of Basic Probability Theory James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 35 Review of Basic Probability Theory

More information

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is SEM? When should we use SEM? What can SEM tell us? SEM Terminology and Jargon Technical Issues Types of SEM Models Limitations

More information

The 3 Indeterminacies of Common Factor Analysis

The 3 Indeterminacies of Common Factor Analysis The 3 Indeterminacies of Common Factor Analysis James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) The 3 Indeterminacies of Common

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

A study on new customer satisfaction index model of smart grid

A study on new customer satisfaction index model of smart grid 2nd Annual International Conference on Electronics, Electrical Engineering and Information Science (EEEIS 2016) A study on new index model of smart grid Ze-San Liu 1,a, Zhuo Yu 1,b and Ai-Qiang Dong 1,c

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Instrumental Variables

Instrumental Variables Instrumental Variables James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Instrumental Variables 1 / 10 Instrumental Variables

More information

Introduction to Physics Physics 114 Eyres

Introduction to Physics Physics 114 Eyres What is Physics? Introduction to Physics Collecting and analyzing experimental data Making explanations and experimentally testing them Creating different representations of physical processes Finding

More information

UNIT 4 : Minimum Rational Work Element:

UNIT 4 : Minimum Rational Work Element: UNIT 4 : Minimum Rational Work Element: In order to spread the job to be done on the line among its stations, the job must be divided into its component tasks. The minimum rational work elements are the

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

STA 431s17 Assignment Eight 1

STA 431s17 Assignment Eight 1 STA 43s7 Assignment Eight The first three questions of this assignment are about how instrumental variables can help with measurement error and omitted variables at the same time; see Lecture slide set

More information

Assignment 1. SEM 2: Structural Equation Modeling

Assignment 1. SEM 2: Structural Equation Modeling Assignment 1 SEM 2: Structural Equation Modeling 2 Please hand in a.pdf file containing your report and a.r containing your codes or screenshots of every Jasp analysis. The deadline of this assignment

More information

Chapter 6. Logistic Regression. 6.1 A linear model for the log odds

Chapter 6. Logistic Regression. 6.1 A linear model for the log odds Chapter 6 Logistic Regression In logistic regression, there is a categorical response variables, often coded 1=Yes and 0=No. Many important phenomena fit this framework. The patient survives the operation,

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients 2. The Basics Overview 1. Terms and Definitions 2. Model Identification 3. Path Coefficients 2.1 Terms and Definitions 2.1 Terms & Definitions. Structural equation model = observed, latent, composite Direct

More information

In this module I again consider compositing. This module follows one entitled, Composites and Formative Indicators. In this module, I deal with a

In this module I again consider compositing. This module follows one entitled, Composites and Formative Indicators. In this module, I deal with a In this module I again consider compositing. This module follows one entitled, Composites and Formative Indicators. In this module, I deal with a special situation where there is an endogenous link that

More information

Conceptual Explanations: Simultaneous Equations Distance, rate, and time

Conceptual Explanations: Simultaneous Equations Distance, rate, and time Conceptual Explanations: Simultaneous Equations Distance, rate, and time If you travel 30 miles per hour for 4 hours, how far do you go? A little common sense will tell you that the answer is 120 miles.

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 STRUCTURAL EQUATION MODELING Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 Introduction: Path analysis Path Analysis is used to estimate a system of equations in which all of the

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions

More information

Take the Anxiety Out of Word Problems

Take the Anxiety Out of Word Problems Take the Anxiety Out of Word Problems I find that students fear any problem that has words in it. This does not have to be the case. In this chapter, we will practice a strategy for approaching word problems

More information

Instrumental Variables

Instrumental Variables James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Introduction 2 3 4 Instrumental variables allow us to get a better estimate of a causal

More information

Introduction to Estimation Theory

Introduction to Estimation Theory Introduction to Statistics IST, the slides, set 1 Introduction to Estimation Theory Richard D. Gill Dept. of Mathematics Leiden University September 18, 2009 Statistical Models Data, Parameters: Maths

More information

Lab 2: Static Response, Cantilevered Beam

Lab 2: Static Response, Cantilevered Beam Contents 1 Lab 2: Static Response, Cantilevered Beam 3 1.1 Objectives.......................................... 3 1.2 Scalars, Vectors and Matrices (Allen Downey)...................... 3 1.2.1 Attribution.....................................

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis Multivariate Methods in Education ERSH 8350 Lecture #12 November 16, 2011 ERSH 8350: Lecture 12 Today s Class An Introduction to: Confirmatory Factor Analysis

More information

Direct Proof and Counterexample I:Introduction

Direct Proof and Counterexample I:Introduction Direct Proof and Counterexample I:Introduction Copyright Cengage Learning. All rights reserved. Goal Importance of proof Building up logic thinking and reasoning reading/using definition interpreting :

More information

Direct Proof and Counterexample I:Introduction. Copyright Cengage Learning. All rights reserved.

Direct Proof and Counterexample I:Introduction. Copyright Cengage Learning. All rights reserved. Direct Proof and Counterexample I:Introduction Copyright Cengage Learning. All rights reserved. Goal Importance of proof Building up logic thinking and reasoning reading/using definition interpreting statement:

More information

2.2 Graphs of Functions

2.2 Graphs of Functions 2.2 Graphs of Functions Introduction DEFINITION domain of f, D(f) Associated with every function is a set called the domain of the function. This set influences what the graph of the function looks like.

More information

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February RESMA course Introduction to LISREL Harry Ganzeboom RESMA Data Analysis & Report #4 February 17 2009 LISREL SEM: Simultaneous [Structural] Equations Model: A system of linear equations ( causal model )

More information

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations Math 138: Introduction to solving systems of equations with matrices. Pedagogy focus: Concept of equation balance, integer arithmetic, quadratic equations. The Concept of Balance for Systems of Equations

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Path Analysis. PRE 906: Structural Equation Modeling Lecture #5 February 18, PRE 906, SEM: Lecture 5 - Path Analysis

Path Analysis. PRE 906: Structural Equation Modeling Lecture #5 February 18, PRE 906, SEM: Lecture 5 - Path Analysis Path Analysis PRE 906: Structural Equation Modeling Lecture #5 February 18, 2015 PRE 906, SEM: Lecture 5 - Path Analysis Key Questions for Today s Lecture What distinguishes path models from multivariate

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

Today we begin the first technical topic related directly to the course that is: Equilibrium Carrier Concentration.

Today we begin the first technical topic related directly to the course that is: Equilibrium Carrier Concentration. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 3 Equilibrium and Carrier Concentration Today we begin the

More information

Random Vectors, Random Matrices, and Matrix Expected Value

Random Vectors, Random Matrices, and Matrix Expected Value Random Vectors, Random Matrices, and Matrix Expected Value James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 16 Random Vectors,

More information

Figure 9.1: A Latin square of order 4, used to construct four types of design

Figure 9.1: A Latin square of order 4, used to construct four types of design 152 Chapter 9 More about Latin Squares 9.1 Uses of Latin squares Let S be an n n Latin square. Figure 9.1 shows a possible square S when n = 4, using the symbols 1, 2, 3, 4 for the letters. Such a Latin

More information

Computational Tasks and Models

Computational Tasks and Models 1 Computational Tasks and Models Overview: We assume that the reader is familiar with computing devices but may associate the notion of computation with specific incarnations of it. Our first goal is to

More information

AP PHYSICS 1 SUMMER PREVIEW

AP PHYSICS 1 SUMMER PREVIEW AP PHYSICS 1 SUMMER PREVIEW Name: Your summer homework assignment is to read through this summer preview, completing the practice problems, and completing TASK 1 and Task 2. It is important that you read

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

Law of Trichotomy and Boundary Equations

Law of Trichotomy and Boundary Equations Law of Trichotomy and Boundary Equations Law of Trichotomy: For any two real numbers a and b, exactly one of the following is true. i. a < b ii. a = b iii. a > b The Law of Trichotomy is a formal statement

More information

1 Motivation for Instrumental Variable (IV) Regression

1 Motivation for Instrumental Variable (IV) Regression ECON 370: IV & 2SLS 1 Instrumental Variables Estimation and Two Stage Least Squares Econometric Methods, ECON 370 Let s get back to the thiking in terms of cross sectional (or pooled cross sectional) data

More information

1 Least Squares Estimation - multiple regression.

1 Least Squares Estimation - multiple regression. Introduction to multiple regression. Fall 2010 1 Least Squares Estimation - multiple regression. Let y = {y 1,, y n } be a n 1 vector of dependent variable observations. Let β = {β 0, β 1 } be the 2 1

More information

Propensity Score Matching

Propensity Score Matching Methods James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 Methods 1 Introduction 2 3 4 Introduction Why Match? 5 Definition Methods and In

More information

1.1 Linear Equations and Inequalities

1.1 Linear Equations and Inequalities 1.1 Linear Equations and Inequalities Linear Equation in 1 Variable Any equation that can be written in the following form: ax + b = 0 a,b R, a 0 and x is a variable Any equation has a solution, sometimes

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

Young s Modulus of Elasticity. Table 1. Length of the wire a /m b /m ±

Young s Modulus of Elasticity. Table 1. Length of the wire a /m b /m ± Joe Chow Partner: Sam Elliott 15 section # 3 Desk # 7 3 July 010 Young s Modulus of Elasticity Purpose To determine Young s Modulus for a metal wire. Apparatus micrometer # 7, metric measuring tape Properly

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

SEM 2: Structural Equation Modeling

SEM 2: Structural Equation Modeling SEM 2: Structural Equation Modeling Week 2 - Causality and equivalent models Sacha Epskamp 15-05-2018 Covariance Algebra Let Var(x) indicate the variance of x and Cov(x, y) indicate the covariance between

More information

Chapter 3 Representations of a Linear Relation

Chapter 3 Representations of a Linear Relation Chapter 3 Representations of a Linear Relation The purpose of this chapter is to develop fluency in the ways of representing a linear relation, and in extracting information from these representations.

More information

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Correlation Linear correlation and linear regression are often confused, mostly

More information

Electrical Circuits Question Paper 1

Electrical Circuits Question Paper 1 Electrical Circuits Question Paper 1 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type Alternative to Practical Booklet Question Paper

More information

B. Weaver (24-Mar-2005) Multiple Regression Chapter 5: Multiple Regression Y ) (5.1) Deviation score = (Y i

B. Weaver (24-Mar-2005) Multiple Regression Chapter 5: Multiple Regression Y ) (5.1) Deviation score = (Y i B. Weaver (24-Mar-2005) Multiple Regression... 1 Chapter 5: Multiple Regression 5.1 Partial and semi-partial correlation Before starting on multiple regression per se, we need to consider the concepts

More information

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3.

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS SECTION 3.1 Predicates and Quantified Statements I Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Predicates

More information

8.1.1 Theorem (Chain Rule): Click here to View the Interactive animation : Applet 8.1. Module 3 : Differentiation and Mean Value Theorems

8.1.1 Theorem (Chain Rule): Click here to View the Interactive animation : Applet 8.1. Module 3 : Differentiation and Mean Value Theorems Module 3 : Differentiation and Mean Value Theorems Lecture 8 : Chain Rule [Section 8.1] Objectives In this section you will learn the following : Differentiability of composite of functions, the chain

More information

Math 302 Module 4. Department of Mathematics College of the Redwoods. June 17, 2011

Math 302 Module 4. Department of Mathematics College of the Redwoods. June 17, 2011 Math 302 Module 4 Department of Mathematics College of the Redwoods June 17, 2011 Contents 4 Integer Exponents and Polynomials 1 4a Polynomial Identification and Properties of Exponents... 2 Polynomials...

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Secondary Curriculum Maps

Secondary Curriculum Maps Secondary Curriculum Maps Cumberland Valley School District Soaring to Greatness, Committed to Excellence Algebra CVSD Math Curriculum Map ~ Algebra PA Core Standard CC.2.2.8.B.3 Analyze and solve linear

More information

Analysis of Variance and Co-variance. By Manza Ramesh

Analysis of Variance and Co-variance. By Manza Ramesh Analysis of Variance and Co-variance By Manza Ramesh Contents Analysis of Variance (ANOVA) What is ANOVA? The Basic Principle of ANOVA ANOVA Technique Setting up Analysis of Variance Table Short-cut Method

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals Chapter 8 Linear Regression Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8-1 Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Fat Versus

More information

Section 2.6 Solving Linear Inequalities

Section 2.6 Solving Linear Inequalities Section 2.6 Solving Linear Inequalities INTRODUCTION Solving an inequality is much like solving an equation; there are, though, some special circumstances of which you need to be aware. In solving an inequality

More information

SEM with observed variables: parameterization and identification. Psychology 588: Covariance structure and factor models

SEM with observed variables: parameterization and identification. Psychology 588: Covariance structure and factor models SEM with observed variables: parameterization and identification Psychology 588: Covariance structure and factor models Limitations of SEM as a causal modeling 2 If an SEM model reflects the reality, the

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques CS 30, Winter 2011 Morphology of Proof: An introduction to rigorous proof techniques 1 Methodology of Proof An example Deep down, all theorems are of the form If A then B, though they may be expressed

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Diagnostics and Transformations Part 2

Diagnostics and Transformations Part 2 Diagnostics and Transformations Part 2 Bivariate Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University Multilevel Regression Modeling, 2009 Diagnostics

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Probability Distributions

Probability Distributions CONDENSED LESSON 13.1 Probability Distributions In this lesson, you Sketch the graph of the probability distribution for a continuous random variable Find probabilities by finding or approximating areas

More information

Chapter 3 Representations of a Linear Relation

Chapter 3 Representations of a Linear Relation Chapter 3 Representations of a Linear Relation The purpose of this chapter is to develop fluency in the ways of representing a linear relation, and in extracting information from these representations.

More information

Graphs. 1. Graph paper 2. Ruler

Graphs. 1. Graph paper 2. Ruler Graphs Objective The purpose of this activity is to learn and develop some of the necessary techniques to graphically analyze data and extract relevant relationships between independent and dependent phenomena,

More information

IE 316 Exam 1 Fall 2011

IE 316 Exam 1 Fall 2011 IE 316 Exam 1 Fall 2011 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Suppose the actual diameters x in a batch of steel cylinders are normally

More information

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Name (Print): Student Number: Signature: Last/Surname First /Given Name UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Aids allowed: Calculator

More information

Chapter 1. Vectors. 1.1 Vectors that You Know

Chapter 1. Vectors. 1.1 Vectors that You Know version of January 3, 2000 c S A Fulling 1995 9 Chapter 1 Vectors 11 Vectors that You Know Vectors (and things made out of vectors or related to them) are the main subject matter of this book Instead of

More information

Liquid-in-glass thermometer

Liquid-in-glass thermometer Liquid-in-glass thermometer Objectives The objective of this experiment is to introduce some basic concepts in measurement, and to develop good measurement habits. In the first section, we will develop

More information

Singlet State Correlations

Singlet State Correlations Chapter 23 Singlet State Correlations 23.1 Introduction This and the following chapter can be thought of as a single unit devoted to discussing various issues raised by a famous paper published by Einstein,

More information

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation? Did You Mean Association Or Correlation? AP Statistics Chapter 8 Be careful not to use the word correlation when you really mean association. Often times people will incorrectly use the word correlation

More information

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression. 10/3/011 Functional Connectivity Correlation and Regression Variance VAR = Standard deviation Standard deviation SD = Unbiased SD = 1 10/3/011 Standard error Confidence interval SE = CI = = t value for

More information

Circle constant is a turn

Circle constant is a turn Lulzim Gjyrgjialli The mathematical constant pi (π) is given as the ratio π = C/D 3.14, where C is a circle s circumference and D is its diameter. I agree with Bob Palais, Joseph Lindenberg and Michael

More information

Systematic error, of course, can produce either an upward or downward bias.

Systematic error, of course, can produce either an upward or downward bias. Brief Overview of LISREL & Related Programs & Techniques (Optional) Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised April 6, 2015 STRUCTURAL AND MEASUREMENT MODELS:

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Find the point of intersection for each pair of lines: a) y = 4x + 7 and 5y = 2x 1 b) y = 5x 1 and 3x + 7y = 11 c) 2x 5y =

More information