SEM 2: Structural Equation Modeling

Size: px
Start display at page:

Download "SEM 2: Structural Equation Modeling"

Transcription

1 SEM 2: Structural Equation Modeling Week 2 - Causality and equivalent models Sacha Epskamp

2 Covariance Algebra Let Var(x) indicate the variance of x and Cov(x, y) indicate the covariance between x and y. The following rules can be derived: Var(x) = Cov(x, x) Cov(x, α) = 0 Cov(x, y) = Cov(y, x) Cov(αx, βy) = αβcov(x, y) Cov(x + y, z) = Cov(x, z) + Cov(y, z) Where α and β are constants (parameter) and x, y, and z are random variables.

3 Matrix Covariance Algebra Let Var(x) indicate the variance covariance matrix of vector x and Cov(x, y) indicate the covariance matrix between x and y. Then the following rules can be derived: Var(x) = Cov(x, x) Cov(Ax, By) = ACov(x, y)b Var(Bx) = BVar(x)B Cov(x + y, z) = Cov(x, z) + Cov(y, z) Where A and B are constant (parameter) matrices.

4 Path analysis θ 1 θ 2 β 1 β 2 x y 1 y 2 x is exogenous, and both y 1 and y 2 are endogenous. θ 1 is the variance of ε 1. Causal model for y 2 : y i2 = β 2 y i1 + ε i2 y i2 = β 2 (β 1 x i + ε i1 ) + ε i2

5 Tracing rules Compound paths between F and G:

6 Tracing rules Compound paths between F and G: F D B B E G, F C A B E G, and F D A B E G.

7 Tracing rules Compound paths between F and G: F D B B E G, F C A B E G, and F D A B E G. Cov (C, D) = fc(var(b))dg + fbhdg + eahgd

8 SEM model: Σ = Λ(I B) 1 Ψ(I B) 1 Λ + Θ Simply the CFA model with one extra matrix: B encoding regression parameters. Element β ij encodes the effect from variable j to variable i (note, this is opposite of how normally a directed network is encoded). The same identification rules as in CFA apply: Latent variables must be scaled by setting one factor loading or (residual) variance to 1 Model must have at least 0 degrees of freedom

9 ψ 11 ψ 22 ψ 33 β 21 β 32 η 1 η 2 η 3 1 λ 21 1 λ 42 1 λ 63 y 1 y 2 y 3 y 4 y 5 y 6 θ 11 θ 22 θ 33 θ 44 θ 55 θ λ Λ =, Ψ = ψ ψ 0 λ , B = β ψ 33 0 β λ 63 Θ diagonal as usual.

10 ψ 11 ψ 22 ψ 33 β 21 β 32 η 1 η 2 η 3 1 λ 21 1 λ 42 1 λ 63 y 1 y 2 y 3 y 4 y 5 y 6 θ 11 θ 22 θ 33 θ 44 θ 55 θ 66 Lavaan model (using sem()): eta1 =~ y1 + y2 eta2 =~ y3 + y4 eta3 =~ y5 + y6 eta2 ~ eta1 eta3 ~ eta2

11 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet

12 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet If it rains, grass always becomes wet

13 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet If it rains, grass always becomes wet If it rains, grass is more likely to be wet than if it doesn t rain

14 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet If it rains, grass always becomes wet If it rains, grass is more likely to be wet than if it doesn t rain If the grass is wet, it must be / have been raining

15 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet If it rains, grass always becomes wet If it rains, grass is more likely to be wet than if it doesn t rain If the grass is wet, it must be / have been raining If we see that the grass is wet, we can predict it might have been raining

16 Causality Given the following causal statement: Rain causes the grass to become wet Which of the below statements are plausible? If it does not rain, the grass does not become wet If it rains, grass always becomes wet If it rains, grass is more likely to be wet than if it doesn t rain If the grass is wet, it must be / have been raining If we see that the grass is wet, we can predict it might have been raining If we make the grass wet, we can predict it might have been raining

17 Causal relationships should be probabilistic Rain increases the probability a random field of grass will be wet Causal relations should be framed in terms of interventions on a model Making the grass wet does not change the probability that it rains Pearl noted that statistics has no words to express that A causes B Structural equations Graphical models to portray causal hypotheses / structural equations

18 Rain Grass wet Implies: Observing that it rains makes it more likely that the grass is wet P(grass is wet See(raining)) > P(grass is wet) Observing that the grass is wet makes it more likely that it rains P(raining See(grass is wet)) > P(raining) But making the grass wet does not make it more likely that it rains (we know after all why the grass is wet) P(raining Do(grass is wet)) = P(raining) Unfortunately, in observational data (especially without temporal ordering), we can only investigate what happens if we see one variable (conditioning)...

19 The causal hypothesis: Rain Grass wet Allows for the testable hypothesis: P(grass is wet See(raining)) > P(grass is wet) That is, rain and grass being wet should be associated (correlated). However... Correlation does not imply causation One association between two variables is saturated and always fits the data Solution: More variables and more advanced causal models imply more testable hypotheses Conditional independence relations These more advanced models can be drawn as directed acyclic graphs (DAGs) In multivariate normal data, DAGs can be parameterized as SEMs (bivariate relationships can be replaced with a latent common cause)

20 Directed Acyclic Graphs

21 Building blocks of a DAG Common Cause Chain Collider B A C A B C A C B Example: Disease (B) causes two symptoms (A and C). A C A C B Example: Insomnia (A) causes fatigue (B), which in turn causes concentration problems (C) A C A C B Example: Difficulty of class (A) and motivation of student (C) cause grade on a test (B) A C A C B

22 To identify two variables (e.g., B and F ) are conditionally independent given a third (e.g., C) or set of multiple variables: List all paths between the variables (ignore direction of edge) For each path, check if the variable to condition on is: The middle node in a chain or common cause structure Not the middle node (common effect) in a collider structure or an effect of such a common effect If so, then the path is blocked If all such paths are blocked, the two variables are d-separated and thus conditionally independent

23 A B A D C B G C, E... Testing this causal model involves testing if all these conditional independence relations hold

24 y 3 ε 3 θ 33 λ 31 ψ 11 η 1 λ 21 y 2 ε 2 θ 22 1 y1 ε1 θ 11 Local independence y 1 y 2 η 1

25 If multivariate normality holds, then the Schur complement shows that any partial covariance can be expressed solely in terms of variances and covariances: Cov (Y i, Y j X = x) = Cov (Y i, Y j ) Cov (Y i, X ) Var (X ) 1 Cov (X, Y j ) Thus, a specific structure of the correlation matrix also implies a model for all possible partial correlations. If we know Σ, we know everything we can about the relationships between variables. As a result, fitting a SEM model equals simultaneously testing all conditional independence relationships implied by the model!

26 However, if this model fits: A B C Then so do these: A B C A B C Because these models imply the same conditional independence relationships and are therefore equivalent

27 Equivalent Models Two models, with the same (observed/latent) variables are equivalent if: The models imply exactly the same conditional independence relationships The models fit exactly equally well on all datasets The models have the same number of degrees of freedom Equivalent models can not be distinguished in statistical ways All identified saturated models are equivalent! Adding more latent variables can lead to an infinite number of equivalent models

28 Which two of these models are equivalent?

29 library("lavaan") ModA <- ' F =~ y1 + y2 + y3 + y4 y3 ~~ y4 ' fita <- sem(moda, Data, sample.nobs = 500) ModB <- 'F1 =~ y1 + y2 F2 =~ y3 + y4 F1 ~~ F2' fitb <- sem(modb, Data, sample.nobs = 200) ModC <- 'F =~ y1 + y2 + y3 + y4 y2 ~~ y3' fitc <- sem(modc, Data, sample.nobs = 200)

30 lavinspect(fita, "sigma") ## y1 y2 y3 y4 ## y ## y ## y ## y lavinspect(fitb, "sigma") ## y1 y2 y3 y4 ## y ## y ## y ## y Models A and B produce the same model-implied covariance matrix

31 lavinspect(fita, "sigma") ## y1 y2 y3 y4 ## y ## y ## y ## y lavinspect(fitc, "sigma") ## y1 y2 y3 y4 ## y ## y ## y ## y the model-implied covariance matrix from Model C is different

32 A C η B A B C Equivalent models or not?

33 A C η B A B C Equivalent models or not? Both saturated models and thus equivalent. However, under certain specifications the collider can imply a negative partial correlation, which can only be obtained in the one factor model using impossible negative variances!

34 collider <- ' B ~ 0.5*A + 0.5*C A ~~ -0.1*C ' Data <- simulatedata(collider) factor <- 'f =~ A + B + C' fit <- sem(factor, Data) ## Warning in lav object post check(object): lavaan WARNING: some estimated lv variances are negative

35 parameterestimates(fit) ## lhs op rhs est se z pvalue ci.lower ci.upper ## 1 f =~ A NA NA ## 2 f =~ B ## 3 f =~ C ## 4 A ~~ A ## 5 B ~~ B ## 6 C ~~ C ## 7 f ~~ f

36

37 Replacement rule: Let X and Y be two variables with residuals ε X and ε Y The effect X Y may be replaced with ε X ε Y (and vise versa) if: If the predictors (causes) of Y are the same as or include those of X Both X and Y do not cause any predictors of X and Y In a fully connected (saturated) exogenous block (no incoming effects), any relation may be changed in direction or changed to a residual covariance

38

39 X 3 and X 4 have the same predictors

40

41 Saturated exogenous block

42

43 All equivalent models: A B C A B C A B C A B C A B C

44

45 What if we have no theory? Could we exploratively find this SEM model (a DAG)?

46 Equivalent Models

47 Equivalent Models

48 Equivalent Models

49 Equivalent Models

50 Equivalent Models

51 Equivalent Models

52 Causal models imply a set of conditional independence relationships that can be tested SEM is a powerful technique to test such a causal model in one step However, many equivalent models can fit the data equally well Be careful in explorative model modification! Be skeptic when interpreting SEM models (e.g., near saturated models do not prove a causal theory) The poor identification of directed graphical models led recent researchers (e.g., me) to use undirected graphical models instead A B C indicates A C B without troublesome causal interpretation and equivalent models More on this next week!

SEM 2: Structural Equation Modeling

SEM 2: Structural Equation Modeling SEM 2: Structural Equation Modeling Week 1 - Causal modeling and SEM Sacha Epskamp 18-04-2017 Course Overview Mondays: Lecture Wednesdays: Unstructured practicals Three assignments First two 20% of final

More information

CFA Loading Estimation and Comparison Example Joel S Steele, PhD

CFA Loading Estimation and Comparison Example Joel S Steele, PhD CFA Loading Estimation and Comparison Example Joel S Steele, PhD The Common Factor Model Figure 1: Common factor diagram Model expectations Using the tracing rules and our model above in Figure 1, we can

More information

Consequences of measurement error. Psychology 588: Covariance structure and factor models

Consequences of measurement error. Psychology 588: Covariance structure and factor models Consequences of measurement error Psychology 588: Covariance structure and factor models Scaling indeterminacy of latent variables Scale of a latent variable is arbitrary and determined by a convention

More information

General structural model Part 1: Covariance structure and identification. Psychology 588: Covariance structure and factor models

General structural model Part 1: Covariance structure and identification. Psychology 588: Covariance structure and factor models General structural model Part 1: Covariance structure and identification Psychology 588: Covariance structure and factor models Latent variables 2 Interchangeably used: constructs --- substantively defined

More information

Assignment 1. SEM 2: Structural Equation Modeling

Assignment 1. SEM 2: Structural Equation Modeling Assignment 1 SEM 2: Structural Equation Modeling 2 Please hand in a.pdf file containing your report and a.r containing your codes or screenshots of every Jasp analysis. The deadline of this assignment

More information

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients 2. The Basics Overview 1. Terms and Definitions 2. Model Identification 3. Path Coefficients 2.1 Terms and Definitions 2.1 Terms & Definitions. Structural equation model = observed, latent, composite Direct

More information

Latent variable interactions

Latent variable interactions Latent variable interactions Bengt Muthén & Tihomir Asparouhov Mplus www.statmodel.com November 2, 2015 1 1 Latent variable interactions Structural equation modeling with latent variable interactions has

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

4. Path Analysis. In the diagram: The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920.

4. Path Analysis. In the diagram: The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920. 4. Path Analysis The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920. The relationships between variables are presented in a path diagram. The system of relationships

More information

On the Identification of a Class of Linear Models

On the Identification of a Class of Linear Models On the Identification of a Class of Linear Models Jin Tian Department of Computer Science Iowa State University Ames, IA 50011 jtian@cs.iastate.edu Abstract This paper deals with the problem of identifying

More information

STAT 730 Chapter 9: Factor analysis

STAT 730 Chapter 9: Factor analysis STAT 730 Chapter 9: Factor analysis Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Data Analysis 1 / 15 Basic idea Factor analysis attempts to explain the

More information

Advanced Structural Equations Models I

Advanced Structural Equations Models I This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Inference using structural equations with latent variables

Inference using structural equations with latent variables This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Path Analysis. PRE 906: Structural Equation Modeling Lecture #5 February 18, PRE 906, SEM: Lecture 5 - Path Analysis

Path Analysis. PRE 906: Structural Equation Modeling Lecture #5 February 18, PRE 906, SEM: Lecture 5 - Path Analysis Path Analysis PRE 906: Structural Equation Modeling Lecture #5 February 18, 2015 PRE 906, SEM: Lecture 5 - Path Analysis Key Questions for Today s Lecture What distinguishes path models from multivariate

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Gov 2002: 4. Observational Studies and Confounding

Gov 2002: 4. Observational Studies and Confounding Gov 2002: 4. Observational Studies and Confounding Matthew Blackwell September 10, 2015 Where are we? Where are we going? Last two weeks: randomized experiments. From here on: observational studies. What

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis Multivariate Methods in Education ERSH 8350 Lecture #12 November 16, 2011 ERSH 8350: Lecture 12 Today s Class An Introduction to: Confirmatory Factor Analysis

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

4. Introduction to Local Estimation

4. Introduction to Local Estimation 4. Introduction to Local Estimation Overview 1. Traditional vs. piecewise SEM 2. Tests of directed separation 3. Introduction to piecewisesem 4.1 Traditional vs. Piecewise SEM 4.1 Comparison. Traditional

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Multivariate Time Series Analysis: VAR Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) VAR 01/13 1 / 25 Structural equations Suppose have simultaneous system for supply

More information

Equivalence in Non-Recursive Structural Equation Models

Equivalence in Non-Recursive Structural Equation Models Equivalence in Non-Recursive Structural Equation Models Thomas Richardson 1 Philosophy Department, Carnegie-Mellon University Pittsburgh, P 15213, US thomas.richardson@andrew.cmu.edu Introduction In the

More information

The returns to schooling, ability bias, and regression

The returns to schooling, ability bias, and regression The returns to schooling, ability bias, and regression Jörn-Steffen Pischke LSE October 4, 2016 Pischke (LSE) Griliches 1977 October 4, 2016 1 / 44 Counterfactual outcomes Scholing for individual i is

More information

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is SEM? When should we use SEM? What can SEM tell us? SEM Terminology and Jargon Technical Issues Types of SEM Models Limitations

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Gov 2000: 9. Regression with Two Independent Variables

Gov 2000: 9. Regression with Two Independent Variables Gov 2000: 9. Regression with Two Independent Variables Matthew Blackwell Fall 2016 1 / 62 1. Why Add Variables to a Regression? 2. Adding a Binary Covariate 3. Adding a Continuous Covariate 4. OLS Mechanics

More information

Factor Analysis. Qian-Li Xue

Factor Analysis. Qian-Li Xue Factor Analysis Qian-Li Xue Biostatistics Program Harvard Catalyst The Harvard Clinical & Translational Science Center Short course, October 7, 06 Well-used latent variable models Latent variable scale

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Path Diagrams James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Path Diagrams 1 / 24 Path Diagrams 1 Introduction 2 Path Diagram

More information

SEM with observed variables: parameterization and identification. Psychology 588: Covariance structure and factor models

SEM with observed variables: parameterization and identification. Psychology 588: Covariance structure and factor models SEM with observed variables: parameterization and identification Psychology 588: Covariance structure and factor models Limitations of SEM as a causal modeling 2 If an SEM model reflects the reality, the

More information

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1 Bayesian Graphical Models for Structural Vector Autoregressive Processes Daniel Ahelegbey, Monica Billio, and Roberto Cassin (2014) March 21, 2015 Bayesian Graphical Models for Structural Vector AutoregressiveMarch

More information

Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab

Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab Applied Statistics Lab Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab SEM Model 3.64 7.32 Education 2.6 Income 2.1.6.83 Charac. of Individuals 1 5.2e-06 -.62 2.62

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables /4/04 Structural Equation Modeling and Confirmatory Factor Analysis Advanced Statistics for Researchers Session 3 Dr. Chris Rakes Website: http://csrakes.yolasite.com Email: Rakes@umbc.edu Twitter: @RakesChris

More information

Introduction to Factor Analysis

Introduction to Factor Analysis to Factor Analysis Lecture 10 August 2, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #10-8/3/2011 Slide 1 of 55 Today s Lecture Factor Analysis Today s Lecture Exploratory

More information

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM)

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SEM is a family of statistical techniques which builds upon multiple regression,

More information

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16)

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) 1 2 Model Consider a system of two regressions y 1 = β 1 y 2 + u 1 (1) y 2 = β 2 y 1 + u 2 (2) This is a simultaneous equation model

More information

A Parameter Expansion Approach to Bayesian SEM Estimation

A Parameter Expansion Approach to Bayesian SEM Estimation A Parameter Expansion Approach to Bayesian SEM Estimation Ed Merkle and Yves Rosseel Utrecht University 24 June 2016 Yves Rosseel A Parameter Expansion Approach to Bayesian SEM Estimation 1 / 51 overview

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Sacha Epskamp, Mijke Rhemtulla and Denny Borsboom

Sacha Epskamp, Mijke Rhemtulla and Denny Borsboom psychometrika doi: 10.1007/s11336-017-9557-x GENERALIZED NETWORK PSYCHOMETRICS: COMBINING NETWORK AND LATENT VARIABLE MODELS Sacha Epskamp, Mijke Rhemtulla and Denny Borsboom UNIVERSITY OF AMSTERDAM We

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE Dr. James (Jim) D. Doyle March 19, 2014 Structural equation modeling or SEM 1971-1980: 27 1981-1990: 118 1991-2000:

More information

Introduction to Structural Equation Modeling

Introduction to Structural Equation Modeling Introduction to Structural Equation Modeling Notes Prepared by: Lisa Lix, PhD Manitoba Centre for Health Policy Topics Section I: Introduction Section II: Review of Statistical Concepts and Regression

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

Tutorial: Causal Model Search

Tutorial: Causal Model Search Tutorial: Causal Model Search Richard Scheines Carnegie Mellon University Peter Spirtes, Clark Glymour, Joe Ramsey, others 1 Goals 1) Convey rudiments of graphical causal models 2) Basic working knowledge

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

9 Graphical modelling of dynamic relationships in multivariate time series

9 Graphical modelling of dynamic relationships in multivariate time series 9 Graphical modelling of dynamic relationships in multivariate time series Michael Eichler Institut für Angewandte Mathematik Universität Heidelberg Germany SUMMARY The identification and analysis of interactions

More information

Exploratory Graph Analysis: A New Approach for Estimating the Number of Dimensions in Psychological Research. Hudson F. Golino 1*, Sacha Epskamp 2

Exploratory Graph Analysis: A New Approach for Estimating the Number of Dimensions in Psychological Research. Hudson F. Golino 1*, Sacha Epskamp 2 arxiv:1605.02231 [stat.ap] 1 Exploratory Graph Analysis: A New Approach for Estimating the Number of Dimensions in Psychological Research. Hudson F. Golino 1*, Sacha Epskamp 2 1 Graduate School of Psychology,

More information

1 Correlation and Inference from Regression

1 Correlation and Inference from Regression 1 Correlation and Inference from Regression Reading: Kennedy (1998) A Guide to Econometrics, Chapters 4 and 6 Maddala, G.S. (1992) Introduction to Econometrics p. 170-177 Moore and McCabe, chapter 12 is

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

STA 431s17 Assignment Eight 1

STA 431s17 Assignment Eight 1 STA 43s7 Assignment Eight The first three questions of this assignment are about how instrumental variables can help with measurement error and omitted variables at the same time; see Lecture slide set

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

Introduction to Matrix Algebra and the Multivariate Normal Distribution

Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Matrix Algebra and the Multivariate Normal Distribution Introduction to Structural Equation Modeling Lecture #2 January 18, 2012 ERSH 8750: Lecture 2 Motivation for Learning the Multivariate

More information

11. Regression and Least Squares

11. Regression and Least Squares 11. Regression and Least Squares Prof. Tesler Math 186 Winter 2016 Prof. Tesler Ch. 11: Linear Regression Math 186 / Winter 2016 1 / 23 Regression Given n points ( 1, 1 ), ( 2, 2 ),..., we want to determine

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS ANALYTIC COMPARISON of Pearl and Rubin CAUSAL FRAMEWORKS Content Page Part I. General Considerations Chapter 1. What is the question? 16 Introduction 16 1. Randomization 17 1.1 An Example of Randomization

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora

SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora 1 Today we will see how to estimate CFA models and interpret output using both SAS and LISREL. In SAS, commands for specifying SEMs are given using linear

More information

CS 559: Machine Learning Fundamentals and Applications 2 nd Set of Notes

CS 559: Machine Learning Fundamentals and Applications 2 nd Set of Notes 1 CS 559: Machine Learning Fundamentals and Applications 2 nd Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview

More information

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms

L03. PROBABILITY REVIEW II COVARIANCE PROJECTION. NA568 Mobile Robotics: Methods & Algorithms L03. PROBABILITY REVIEW II COVARIANCE PROJECTION NA568 Mobile Robotics: Methods & Algorithms Today s Agenda State Representation and Uncertainty Multivariate Gaussian Covariance Projection Probabilistic

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Principles of Statistical Inference Recap of statistical models Statistical inference (frequentist) Parametric vs. semiparametric

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation

1 Outline. 1. Motivation. 2. SUR model. 3. Simultaneous equations. 4. Estimation 1 Outline. 1. Motivation 2. SUR model 3. Simultaneous equations 4. Estimation 2 Motivation. In this chapter, we will study simultaneous systems of econometric equations. Systems of simultaneous equations

More information

Correlation analysis. Contents

Correlation analysis. Contents Correlation analysis Contents 1 Correlation analysis 2 1.1 Distribution function and independence of random variables.......... 2 1.2 Measures of statistical links between two random variables...........

More information

What is Structural Equation Modelling?

What is Structural Equation Modelling? methods@manchester What is Structural Equation Modelling? Nick Shryane Institute for Social Change University of Manchester 1 Topics Where SEM fits in the families of statistical models Causality SEM is

More information

Multivariate Linear Models

Multivariate Linear Models Multivariate Linear Models Stanley Sawyer Washington University November 7, 2001 1. Introduction. Suppose that we have n observations, each of which has d components. For example, we may have d measurements

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Sargur Srihari srihari@cedar.buffalo.edu 1 Topics 1. What are probabilistic graphical models (PGMs) 2. Use of PGMs Engineering and AI 3. Directionality in

More information

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013

Applied Regression. Applied Regression. Chapter 2 Simple Linear Regression. Hongcheng Li. April, 6, 2013 Applied Regression Chapter 2 Simple Linear Regression Hongcheng Li April, 6, 2013 Outline 1 Introduction of simple linear regression 2 Scatter plot 3 Simple linear regression model 4 Test of Hypothesis

More information

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS 1 W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS An Liu University of Groningen Henk Folmer University of Groningen Wageningen University Han Oud Radboud

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

More information

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 STRUCTURAL EQUATION MODELING Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 Introduction: Path analysis Path Analysis is used to estimate a system of equations in which all of the

More information

Estimation with Incomplete Data: The Linear Case

Estimation with Incomplete Data: The Linear Case Forthcoming, International Joint Conference on Artificial Intelligence (IJCAI), 2018 TECHNICAL REPORT R-480 May 2018 Estimation with Incomplete Data: The Linear Case Karthika Mohan 1, Felix Thoemmes 2,

More information

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February

RESMA course Introduction to LISREL. Harry Ganzeboom RESMA Data Analysis & Report #4 February RESMA course Introduction to LISREL Harry Ganzeboom RESMA Data Analysis & Report #4 February 17 2009 LISREL SEM: Simultaneous [Structural] Equations Model: A system of linear equations ( causal model )

More information

Directed acyclic graphs and the use of linear mixed models

Directed acyclic graphs and the use of linear mixed models Directed acyclic graphs and the use of linear mixed models Siem H. Heisterkamp 1,2 1 Groningen Bioinformatics Centre, University of Groningen 2 Biostatistics and Research Decision Sciences (BARDS), MSD,

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Module 3. Latent Variable Statistical Models. y 1 y2

Module 3. Latent Variable Statistical Models. y 1 y2 Module 3 Latent Variable Statistical Models As explained in Module 2, measurement error in a predictor variable will result in misleading slope coefficients, and measurement error in the response variable

More information

Introduction to Factor Analysis

Introduction to Factor Analysis to Factor Analysis Lecture 11 November 2, 2005 Multivariate Analysis Lecture #11-11/2/2005 Slide 1 of 58 Today s Lecture Factor Analysis. Today s Lecture Exploratory factor analysis (EFA). Confirmatory

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept

Interactions. Interactions. Lectures 1 & 2. Linear Relationships. y = a + bx. Slope. Intercept Interactions Lectures 1 & Regression Sometimes two variables appear related: > smoking and lung cancers > height and weight > years of education and income > engine size and gas mileage > GMAT scores and

More information

Chapter 5. Introduction to Path Analysis. Overview. Correlation and causation. Specification of path models. Types of path models

Chapter 5. Introduction to Path Analysis. Overview. Correlation and causation. Specification of path models. Types of path models Chapter 5 Introduction to Path Analysis Put simply, the basic dilemma in all sciences is that of how much to oversimplify reality. Overview H. M. Blalock Correlation and causation Specification of path

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example

Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example Type-II Errors of Independence Tests Can Lead to Arbitrarily Large Errors in Estimated Causal Effects: An Illustrative Example Nicholas Cornia & Joris M. Mooij Informatics Institute University of Amsterdam,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Tutorial: Gaussian conditional independence and graphical models. Thomas Kahle Otto-von-Guericke Universität Magdeburg

Tutorial: Gaussian conditional independence and graphical models. Thomas Kahle Otto-von-Guericke Universität Magdeburg Tutorial: Gaussian conditional independence and graphical models Thomas Kahle Otto-von-Guericke Universität Magdeburg The central dogma of algebraic statistics Statistical models are varieties The central

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

sempower Manual Morten Moshagen

sempower Manual Morten Moshagen sempower Manual Morten Moshagen 2018-03-22 Power Analysis for Structural Equation Models Contact: morten.moshagen@uni-ulm.de Introduction sempower provides a collection of functions to perform power analyses

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 11/25/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

Simultaneous Equation Models Learning Objectives Introduction Introduction (2) Introduction (3) Solving the Model structural equations

Simultaneous Equation Models Learning Objectives Introduction Introduction (2) Introduction (3) Solving the Model structural equations Simultaneous Equation Models. Introduction: basic definitions 2. Consequences of ignoring simultaneity 3. The identification problem 4. Estimation of simultaneous equation models 5. Example: IS LM model

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models I

MATH 829: Introduction to Data Mining and Analysis Graphical Models I MATH 829: Introduction to Data Mining and Analysis Graphical Models I Dominique Guillot Departments of Mathematical Sciences University of Delaware May 2, 2016 1/12 Independence and conditional independence:

More information

Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics

Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics Francis X. Diebold University of Pennsylvania March 7, 2015 1 / 32 DGP: N-Variable VAR(p), t = 1,..., T Φ(L)x

More information