Structural Equa+on Models: The General Case. STA431: Spring 2015

Size: px
Start display at page:

Download "Structural Equa+on Models: The General Case. STA431: Spring 2015"

Transcription

1 Structural Equa+on Models: The General Case STA431: Spring 2015

2 An Extension of Mul+ple Regression More than one regression- like equa+on Includes latent variables Variables can be explanatory in one equa+on and response in another Modest changes in nota+on Vocabulary Path diagrams No intercepts, all expected values zero Serious modeling (compared to ordinary sta+s+cal models) Parameter iden+fiability

3 Variables can be response in one equa+on and explanatory in another Variables (IQ = Intelligence Quo+ent): X 1 = Mother s adult IQ X 2 = Father s adult IQ Y 1 = Person s adult IQ Y 2 = Child s IQ in Grade 8 Y 1 = X X Y 2 = 2 + Y Of course all these variables are measured with error. We will lose the intercepts very soon.

4 Modest changes in nota+on Regression coefficients are now called gamma instead of beta Betas are used for links between Y variables Intercepts are alphas but they will soon disappear. We feel free to drop the subscript i; implicitly, everything is independent and iden+cally distributed for i = 1,, n. Y 1 = X X Y 2 = 2 + Y 1 + 2

5 Vocabulary Variables can be Latent or Manifest. Manifest means observable All error terms are latent Variables can be Exogenous or Endogenous Exogenous variables appear only on the right side of the = sign. Think X for explanatory variable. All error terms are exogenous Endogenous variables appear on the led of at least one = sign. Think end of an arrow poin+ng from exogenous to endogenous Betas link endogenous variables to other endogenous variables.

6 Path diagrams e 1 e 2 e 3 e 4 W 1 W 2 V 2 V 1 1 2

7 Path Diagram Rules Latent variables are enclosed by ovals. Observable (manifest) variables are enclosed by rectangles. Error terms are not enclosed Some+mes the arrows from the error terms seem to come from nowhere. The symbol for the error term does not appear in the path diagram. Some+mes there are no arrows for the error terms at all. It is just assumed that such an arrow points to each endogenous variable. Straight, single- headed arrows point from each variable on the right side of an equa+on to the endogenous variable on the led side. Some+mes the coefficient is wrigen on the arrow, but some+mes it is not. A curved, double- headed arrow between two variables (always exogenous variables) means they have a non- zero covariance. Some+mes the symbol for the covariance is wrigen on the curved arrow, but some+mes it is not.

8 Causal Modeling (cause and effect) The arrows deliberately imply that if A è B, we are saying A contributes to B, or partly causes it. There may be other contribu+ng variables. All the ones that are unknown are lumped together in the error term. Are these unknown variables are independent of the variables in the model? Probably not. Some+mes we can get around the problem with instrumental variables.

9 Serious Modeling Once you accept that model equa+ons are statements about what contributes to what, you realize that structural equa+on models represent a rough theory of the data, with some parts (the parameter values) unknown. They are somewhere between ordinary sta+s+cal models, which are like one- size- fits- all clothing, and true scien+fic models, which are like tailor made clothing. So they are very flexible and poten+ally valuable. It is good to combine what the data can tell you with what you already know. But structural equa+on models can require a lot of input and careful thought to construct. In this course, we will get by mostly on common sense. In general, the parameters of the most reasonable model need not be iden+fiable. It depends upon the form of the data as well as on the model. Iden+fiability needs to be checked. Frequently, this can be done by inspec+on.

10 Example: Halo Effects in Real Estate

11 Losing the intercepts and expected values Mostly, the intercepts and expected values are not iden+fiable anyway, as in mul+ple regression with measurement error. We have a chance to iden+fy a func6on of the parameter vector the parameters that appear in the covariance matrix Σ = V(D). Re- parameterize. The new parameter vector is the set of parameters in Σ, and also μ = E(D). Es+mate μ with x- bar, forget it, and concentrate on inference for the parameters in Σ. To make calcula+on of the covariance matrix easier, write the model equa+ons in centered form. The ligle legers c over the variables are invisible.

12 From this point on the models have no means and no intercepts. Now more examples

13 Mul+ple Regression X 1 Y X 2 Y = 1 X X 2 +

14 Regression with measurement error e 1 e 2 e 3 W 1 W 2 V Y = 1 X X 2 + W 1 = X 1 + e 1 W 2 = X 2 + e 2 V = Y + e 3

15 A Path Model with Measurement Error e 1 e 2 e 3 Y 1 = 1 X + 1 W V 1 V 2 Y 2 = Y X + 2 W = X + e 1 V 1 = Y 1 + e 2 1 V 2 = Y 2 + e 3 2

16 A Factor Analysis Model e 1 e 2 e 3 e 4 e 5 X 1 X 2 X 3 X 4 X 5 General Intelligence

17 A Longitudinal Model M 1 M 2 M 3 M 4 P 1 P 2 P 3 P 4

18 Es+ma+on and Tes+ng as Before X Y 1 Y All expected values equal zero. Y 1 = X + 1 Y 2 = Y V (X) =, V ( 1 ) = 1, V ( 2 ) = 2, X, 1, 2 are all independent. Everything is normal.

19 Distribu+on of the data X 1 Y 1,1 Y 1,2 1 A... X n Y n,1 Y n,2 1 A are independent normal with mean zero. = ( ) ( ) 2 ( )+ 2 1 A

20 A General Two- Stage Model Y i = Y i + X i + i F i = X i Y i D i = F i + e i D i (the data) are observable. All other variables are latent. Y i = Y i + X i + i is called the Latent Variable Model The latent vectors X i and Y i are collected into a factor F i. This is not a categorical independent variable, the usual meaning of factor in experimental design. D i = F i + e i is called the Measurement Model.

21 More Details Y i is a q 1 random vector. is a q q matrix of constants with zeros on the main diagonal. is a q p matrix of constants. X i is a p i is a q 1 random vector. 1 random vector. F i (F for Factor) is just X i stacked on top of Y i. It is a (p+q) vector. D i is a k 1 random vector. Sometimes, D i = W i V i 1 random is a k D i is a k e i is a k (p + q) matrix of constants. 1 random vector. 1 random vector. X i, i and e i are independent.

22 Y i = Y i + X i + i X F i = i Y i D i = F i + e i V (X i )= x V ( i )= V (F i )=V Xi Y i = V (Xi ) C(X i, Y i ) C(Y i, X i ) V (Y i ) = = V (e i )= V (D i )=

23 Recall the example e 1 e 2 e 3 Y 1 = 1 X + 1 W V 1 V 2 Y 2 = Y X + 2 W = X + e 1 V 1 = Y 1 + e 2 1 V 2 = Y 2 + e 3 2

24 Y = Y + X + D = F + e Y 1 Y 2 W V 1 V 2 = = Y1 Y X Y 1 Y X + 1 e 1 e 2 e 3 2 V (X) = x = V ( ) = = 0 V (e) = V (D) = ! ! ! 3 1 A

25 Observable variables in the latent variable model (fairly common) These present no problem Let P(e j =0) = 1, so Var(e j ) = 0 And Cov(e i,e j )=0 because if P(e j =0) = 1 Cov(e i, e j ) = E(e i e j ) E(e i )E(e j ) = E(e i 0) E(e i ) 0 = 0 0 = 0 So in the covariance matrix Ω=V(e), just set ω ij = ω ji = 0, i=1,,k

26 What should you be able to do? Given a path diagram, write the model equa+ons and say which exogenous variables are correlated with each other. Given the model equa+ons and informa+on about which exogenous variables are correlated with each other, draw the path diagram. Given either piece of informa+on, write the model in matrix form and say what all the matrices are. Calculate model covariance matrices Check iden+fiability

27 Recall the nota+on Y i = Y i + X i + i X F i = i Y i D i = F i + e i V (X i )= x V ( i )= V (F i )=V Xi Y i = V (Xi ) C(X i, Y i ) C(Y i, X i ) V (Y i ) = = V (e i )= V (D i )=

28 For the latent variable model, calculate Φ = V(F) So, Y = Y + X + Y Y = X + IY Y = X + (I )Y = X + (I ) 1 (I )Y = (I ) 1 ( X + ) Y = (I ) 1 X + (I ) 1 V (Y) = V (I ) 1 X +(I ) 1 = V (I ) 1 X + V (I ) 1 = (I ) 1 V (X) (I ) 1 > +(I ) 1 V ( )(I ) 1> = (I ) 1 11 > (I ) 1> +(I ) 1 (I ) 1>

29 For the measurement model, calculate Σ = V(D) D = F + e ) V (D) = V ( F + e) = V ( F)+V(e) = V (F) > + V (e) = > + =

30 Two- stage Proofs of Iden+fiability Show the parameters of the measurement model (Λ, Φ, Ω) can be recovered from Σ= V(D). Show the parameters of the latent variable model (β, Γ, Φ 11, Ψ) can be recovered from Φ = V(F). This means all the parameters can be recovered from Σ. Break a big problem into two smaller ones. Develop rules for checking iden+fiability at each stage.

31 Copyright Informa+on This slide show was prepared by Jerry Brunner, Department of Sta+s+cs, University of Toronto. It is licensed under a Crea+ve Commons Agribu+on - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides are available from the course website: hgp://

Structural Equa+on Models: The General Case. STA431: Spring 2013

Structural Equa+on Models: The General Case. STA431: Spring 2013 Structural Equa+on Models: The General Case STA431: Spring 2013 An Extension of Mul+ple Regression More than one regression- like equa+on Includes latent variables Variables can be explanatory in one equa+on

More information

Regression Part II. One- factor ANOVA Another dummy variable coding scheme Contrasts Mul?ple comparisons Interac?ons

Regression Part II. One- factor ANOVA Another dummy variable coding scheme Contrasts Mul?ple comparisons Interac?ons Regression Part II One- factor ANOVA Another dummy variable coding scheme Contrasts Mul?ple comparisons Interac?ons One- factor Analysis of variance Categorical Explanatory variable Quan?ta?ve Response

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

STA 431s17 Assignment Eight 1

STA 431s17 Assignment Eight 1 STA 43s7 Assignment Eight The first three questions of this assignment are about how instrumental variables can help with measurement error and omitted variables at the same time; see Lecture slide set

More information

STA441: Spring Multiple Regression. More than one explanatory variable at the same time

STA441: Spring Multiple Regression. More than one explanatory variable at the same time STA441: Spring 2016 Multiple Regression More than one explanatory variable at the same time This slide show is a free open source document. See the last slide for copyright information. One Explanatory

More information

Instrumental Variables Again 1

Instrumental Variables Again 1 Instrumental Variables Again 1 STA431 Winter/Spring 2017 1 See last slide for copyright information. 1 / 15 Overview 1 2 2 / 15 Remember the problem of omitted variables Example: is income, is credit card

More information

Interactions and Factorial ANOVA

Interactions and Factorial ANOVA Interactions and Factorial ANOVA STA442/2101 F 2017 See last slide for copyright information 1 Interactions Interaction between explanatory variables means It depends. Relationship between one explanatory

More information

Interactions and Factorial ANOVA

Interactions and Factorial ANOVA Interactions and Factorial ANOVA STA442/2101 F 2018 See last slide for copyright information 1 Interactions Interaction between explanatory variables means It depends. Relationship between one explanatory

More information

Factorial ANOVA. More than one categorical explanatory variable. See last slide for copyright information 1

Factorial ANOVA. More than one categorical explanatory variable. See last slide for copyright information 1 Factorial ANOVA More than one categorical explanatory variable See last slide for copyright information 1 Factorial ANOVA Categorical explanatory variables are called factors More than one at a time Primarily

More information

Factorial ANOVA. STA305 Spring More than one categorical explanatory variable

Factorial ANOVA. STA305 Spring More than one categorical explanatory variable Factorial ANOVA STA305 Spring 2014 More than one categorical explanatory variable Optional Background Reading Chapter 7 of Data analysis with SAS 2 Factorial ANOVA More than one categorical explanatory

More information

The Bootstrap 1. STA442/2101 Fall Sampling distributions Bootstrap Distribution-free regression example

The Bootstrap 1. STA442/2101 Fall Sampling distributions Bootstrap Distribution-free regression example The Bootstrap 1 STA442/2101 Fall 2013 1 See last slide for copyright information. 1 / 18 Background Reading Davison s Statistical models has almost nothing. The best we can do for now is the Wikipedia

More information

Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Path Diagrams. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Path Diagrams James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Path Diagrams 1 / 24 Path Diagrams 1 Introduction 2 Path Diagram

More information

STA 2101/442 Assignment Four 1

STA 2101/442 Assignment Four 1 STA 2101/442 Assignment Four 1 One version of the general linear model with fixed effects is y = Xβ + ɛ, where X is an n p matrix of known constants with n > p and the columns of X linearly independent.

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information

Continuous Random Variables 1

Continuous Random Variables 1 Continuous Random Variables 1 STA 256: Fall 2018 1 This slide show is an open-source document. See last slide for copyright information. 1 / 32 Continuous Random Variables: The idea Probability is area

More information

Categorical Data Analysis 1

Categorical Data Analysis 1 Categorical Data Analysis 1 STA 312: Fall 2012 1 See last slide for copyright information. 1 / 1 Variables and Cases There are n cases (people, rats, factories, wolf packs) in a data set. A variable is

More information

STA 302f16 Assignment Five 1

STA 302f16 Assignment Five 1 STA 30f16 Assignment Five 1 Except for Problem??, these problems are preparation for the quiz in tutorial on Thursday October 0th, and are not to be handed in As usual, at times you may be asked to prove

More information

Some Review and Hypothesis Tes4ng. Friday, March 15, 13

Some Review and Hypothesis Tes4ng. Friday, March 15, 13 Some Review and Hypothesis Tes4ng Outline Discussing the homework ques4ons from Joey and Phoebe Review of Sta4s4cal Inference Proper4es of OLS under the normality assump4on Confidence Intervals, T test,

More information

Introduction 1. STA442/2101 Fall See last slide for copyright information. 1 / 33

Introduction 1. STA442/2101 Fall See last slide for copyright information. 1 / 33 Introduction 1 STA442/2101 Fall 2016 1 See last slide for copyright information. 1 / 33 Background Reading Optional Chapter 1 of Linear models with R Chapter 1 of Davison s Statistical models: Data, and

More information

Power and Sample Size for Log-linear Models 1

Power and Sample Size for Log-linear Models 1 Power and Sample Size for Log-linear Models 1 STA 312: Fall 2012 1 See last slide for copyright information. 1 / 1 Overview 2 / 1 Power of a Statistical test The power of a test is the probability of rejecting

More information

Contingency Tables Part One 1

Contingency Tables Part One 1 Contingency Tables Part One 1 STA 312: Fall 2012 1 See last slide for copyright information. 1 / 32 Suggested Reading: Chapter 2 Read Sections 2.1-2.4 You are not responsible for Section 2.5 2 / 32 Overview

More information

Please note, you CANNOT petition to re-write an examination once the exam has begun. Qn. # Value Score

Please note, you CANNOT petition to re-write an examination once the exam has begun. Qn. # Value Score NAME (PRINT): STUDENT #: Last/Surname First /Given Name SIGNATURE: UNIVERSITY OF TORONTO MISSISSAUGA APRIL 2015 FINAL EXAMINATION STA431H5S Structural Equation Models Jerry Brunner Duration - 3 hours Aids:

More information

4. Path Analysis. In the diagram: The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920.

4. Path Analysis. In the diagram: The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920. 4. Path Analysis The technique of path analysis is originated by (American) geneticist Sewell Wright in early 1920. The relationships between variables are presented in a path diagram. The system of relationships

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Joint Distributions: Part Two 1

Joint Distributions: Part Two 1 Joint Distributions: Part Two 1 STA 256: Fall 2018 1 This slide show is an open-source document. See last slide for copyright information. 1 / 30 Overview 1 Independence 2 Conditional Distributions 3 Transformations

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Linear Regression and Correla/on. Correla/on and Regression Analysis. Three Ques/ons 9/14/14. Chapter 13. Dr. Richard Jerz

Linear Regression and Correla/on. Correla/on and Regression Analysis. Three Ques/ons 9/14/14. Chapter 13. Dr. Richard Jerz Linear Regression and Correla/on Chapter 13 Dr. Richard Jerz 1 Correla/on and Regression Analysis Correla/on Analysis is the study of the rela/onship between variables. It is also defined as group of techniques

More information

Linear Regression and Correla/on

Linear Regression and Correla/on Linear Regression and Correla/on Chapter 13 Dr. Richard Jerz 1 Correla/on and Regression Analysis Correla/on Analysis is the study of the rela/onship between variables. It is also defined as group of techniques

More information

Unit 3: Ra.onal and Radical Expressions. 3.1 Product Rule M1 5.8, M , M , 6.5,8. Objec.ve. Vocabulary o Base. o Scien.fic Nota.

Unit 3: Ra.onal and Radical Expressions. 3.1 Product Rule M1 5.8, M , M , 6.5,8. Objec.ve. Vocabulary o Base. o Scien.fic Nota. Unit 3: Ra.onal and Radical Expressions M1 5.8, M2 10.1-4, M3 5.4-5, 6.5,8 Objec.ve 3.1 Product Rule I will be able to mul.ply powers when they have the same base, including simplifying algebraic expressions

More information

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM)

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SEM is a family of statistical techniques which builds upon multiple regression,

More information

The Multinomial Model

The Multinomial Model The Multinomial Model STA 312: Fall 2012 Contents 1 Multinomial Coefficients 1 2 Multinomial Distribution 2 3 Estimation 4 4 Hypothesis tests 8 5 Power 17 1 Multinomial Coefficients Multinomial coefficient

More information

STA442/2101: Assignment 5

STA442/2101: Assignment 5 STA442/2101: Assignment 5 Craig Burkett Quiz on: Oct 23 rd, 2015 The questions are practice for the quiz next week, and are not to be handed in. I would like you to bring in all of the code you used to

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

Class Notes. Examining Repeated Measures Data on Individuals

Class Notes. Examining Repeated Measures Data on Individuals Ronald Heck Week 12: Class Notes 1 Class Notes Examining Repeated Measures Data on Individuals Generalized linear mixed models (GLMM) also provide a means of incorporang longitudinal designs with categorical

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Introduction To Confirmatory Factor Analysis and Item Response Theory

Introduction To Confirmatory Factor Analysis and Item Response Theory Introduction To Confirmatory Factor Analysis and Item Response Theory Lecture 23 May 3, 2005 Applied Regression Analysis Lecture #23-5/3/2005 Slide 1 of 21 Today s Lecture Confirmatory Factor Analysis.

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Data files for today. CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav

Data files for today. CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav Correlation Data files for today CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav Defining Correlation Co-variation or co-relation between two variables These variables change together

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

Building your toolbelt

Building your toolbelt Building your toolbelt Using math to make meaning in the physical world. Dimensional analysis Func;onal dependence / scaling Special cases / limi;ng cases Reading the physics in the representa;on (graphs)

More information

Specifying Latent Curve and Other Growth Models Using Mplus. (Revised )

Specifying Latent Curve and Other Growth Models Using Mplus. (Revised ) Ronald H. Heck 1 University of Hawai i at Mānoa Handout #20 Specifying Latent Curve and Other Growth Models Using Mplus (Revised 12-1-2014) The SEM approach offers a contrasting framework for use in analyzing

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis Developed by Sewall Wright, path analysis is a method employed to determine whether or not a multivariate set of nonexperimental data fits well with a particular (a priori)

More information

BIOSTATISTICS NURS 3324

BIOSTATISTICS NURS 3324 Simple Linear Regression and Correlation Introduction Previously, our attention has been focused on one variable which we designated by x. Frequently, it is desirable to learn something about the relationship

More information

Introduction to Bayesian Statistics 1

Introduction to Bayesian Statistics 1 Introduction to Bayesian Statistics 1 STA 442/2101 Fall 2018 1 This slide show is an open-source document. See last slide for copyright information. 1 / 42 Thomas Bayes (1701-1761) Image from the Wikipedia

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Experimental Designs for Planning Efficient Accelerated Life Tests

Experimental Designs for Planning Efficient Accelerated Life Tests Experimental Designs for Planning Efficient Accelerated Life Tests Kangwon Seo and Rong Pan School of Compu@ng, Informa@cs, and Decision Systems Engineering Arizona State University ASTR 2015, Sep 9-11,

More information

Short introduc,on to the

Short introduc,on to the OXFORD NEUROIMAGING PRIMERS Short introduc,on to the An General Introduction Linear Model to Neuroimaging for Neuroimaging Analysis Mark Jenkinson Mark Jenkinson Janine Michael Bijsterbosch Chappell Michael

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Example: Data from the Child Health and Development Study

Example: Data from the Child Health and Development Study Example: Data from the Child Health and Development Study Can we use linear regression to examine how well length of gesta:onal period predicts birth weight? First look at the sca@erplot: Does a linear

More information

ECO375 Tutorial 8 Instrumental Variables

ECO375 Tutorial 8 Instrumental Variables ECO375 Tutorial 8 Instrumental Variables Matt Tudball University of Toronto Mississauga November 16, 2017 Matt Tudball (University of Toronto) ECO375H5 November 16, 2017 1 / 22 Review: Endogeneity Instrumental

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Assignment 1. SEM 2: Structural Equation Modeling

Assignment 1. SEM 2: Structural Equation Modeling Assignment 1 SEM 2: Structural Equation Modeling 2 Please hand in a.pdf file containing your report and a.r containing your codes or screenshots of every Jasp analysis. The deadline of this assignment

More information

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y

Regression and correlation. Correlation & Regression, I. Regression & correlation. Regression vs. correlation. Involve bivariate, paired data, X & Y Regression and correlation Correlation & Regression, I 9.07 4/1/004 Involve bivariate, paired data, X & Y Height & weight measured for the same individual IQ & exam scores for each individual Height of

More information

Introduction to Structural Equations

Introduction to Structural Equations This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore

Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Ordinary Differential Equations Prof. A. K. Nandakumaran Department of Mathematics Indian Institute of Science Bangalore Module - 3 Lecture - 10 First Order Linear Equations (Refer Slide Time: 00:33) Welcome

More information

Variance Partitioning

Variance Partitioning Lecture 12 March 8, 2005 Applied Regression Analysis Lecture #12-3/8/2005 Slide 1 of 33 Today s Lecture Muddying the waters of regression. What not to do when considering the relative importance of variables

More information

Variance Partitioning

Variance Partitioning Chapter 9 October 22, 2008 ERSH 8320 Lecture #8-10/22/2008 Slide 1 of 33 Today s Lecture Test review and discussion. Today s Lecture Chapter 9: Muddying the waters of regression. What not to do when considering

More information

1 Correlation and Inference from Regression

1 Correlation and Inference from Regression 1 Correlation and Inference from Regression Reading: Kennedy (1998) A Guide to Econometrics, Chapters 4 and 6 Maddala, G.S. (1992) Introduction to Econometrics p. 170-177 Moore and McCabe, chapter 12 is

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 7 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Name (Print): Student Number: Signature: Last/Surname First /Given Name UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours Aids allowed: Calculator

More information

Parallelizing Gaussian Process Calcula1ons in R

Parallelizing Gaussian Process Calcula1ons in R Parallelizing Gaussian Process Calcula1ons in R Christopher Paciorek UC Berkeley Sta1s1cs Joint work with: Benjamin Lipshitz Wei Zhuo Prabhat Cari Kaufman Rollin Thomas UC Berkeley EECS (formerly) IBM

More information

Econometric Modelling Prof. Rudra P. Pradhan Department of Management Indian Institute of Technology, Kharagpur

Econometric Modelling Prof. Rudra P. Pradhan Department of Management Indian Institute of Technology, Kharagpur Econometric Modelling Prof. Rudra P. Pradhan Department of Management Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 28 LOGIT and PROBIT Model Good afternoon, this is doctor Pradhan

More information

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on prac0ce problems from the textbook

More information

Numerical Methods in Physics

Numerical Methods in Physics Numerical Methods in Physics Numerische Methoden in der Physik, 515.421. Instructor: Ass. Prof. Dr. Lilia Boeri Room: PH 03 090 Tel: +43-316- 873 8191 Email Address: l.boeri@tugraz.at Room: TDK Seminarraum

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

Advanced Structural Equations Models I

Advanced Structural Equations Models I This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

General linear model: basic

General linear model: basic General linear model: basic Introducing General Linear Model (GLM): Start with an example Proper>es of the BOLD signal Linear Time Invariant (LTI) system The hemodynamic response func>on (Briefly) Evalua>ng

More information

Introduction to Particle Filters for Data Assimilation

Introduction to Particle Filters for Data Assimilation Introduction to Particle Filters for Data Assimilation Mike Dowd Dept of Mathematics & Statistics (and Dept of Oceanography Dalhousie University, Halifax, Canada STATMOS Summer School in Data Assimila5on,

More information

STOCKHOLM UNIVERSITY Department of Economics Course name: Empirical Methods Course code: EC40 Examiner: Lena Nekby Number of credits: 7,5 credits Date of exam: Saturday, May 9, 008 Examination time: 3

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

1 Correlation between an independent variable and the error

1 Correlation between an independent variable and the error Chapter 7 outline, Econometrics Instrumental variables and model estimation 1 Correlation between an independent variable and the error Recall that one of the assumptions that we make when proving the

More information

7.7H The Arithmetic of Vectors A Solidify Understanding Task

7.7H The Arithmetic of Vectors A Solidify Understanding Task 7.7H The Arithmetic of Vectors A Solidify Understanding Task The following diagram shows a triangle that has been translated to a new location, and then translated again. Arrows have been used to indicate

More information

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for CHAPTER 4 VECTORS Before we go any further, we must talk about vectors. They are such a useful tool for the things to come. The concept of a vector is deeply rooted in the understanding of physical mechanics

More information

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 4.3 Lecture - 24 Matrix Analysis of Structures with Axial Elements (Refer

More information

The regression model with one stochastic regressor (part II)

The regression model with one stochastic regressor (part II) The regression model with one stochastic regressor (part II) 3150/4150 Lecture 7 Ragnar Nymoen 6 Feb 2012 We will finish Lecture topic 4: The regression model with stochastic regressor We will first look

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Lab 2: Static Response, Cantilevered Beam

Lab 2: Static Response, Cantilevered Beam Contents 1 Lab 2: Static Response, Cantilevered Beam 3 1.1 Objectives.......................................... 3 1.2 Scalars, Vectors and Matrices (Allen Downey)...................... 3 1.2.1 Attribution.....................................

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

Summary of Derivative Tests

Summary of Derivative Tests Summary of Derivative Tests Note that for all the tests given below it is assumed that the function f is continuous. Critical Numbers Definition. A critical number of a function f is a number c in the

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Causal Inference and Response Surface Modeling. Inference and Representa6on DS- GA Fall 2015 Guest lecturer: Uri Shalit

Causal Inference and Response Surface Modeling. Inference and Representa6on DS- GA Fall 2015 Guest lecturer: Uri Shalit Causal Inference and Response Surface Modeling Inference and Representa6on DS- GA- 1005 Fall 2015 Guest lecturer: Uri Shalit What is Causal Inference? source: xkcd.com/552/ 2/53 Causal ques6ons as counterfactual

More information

An Introduction to Parameter Estimation

An Introduction to Parameter Estimation Introduction Introduction to Econometrics An Introduction to Parameter Estimation This document combines several important econometric foundations and corresponds to other documents such as the Introduction

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is SEM? When should we use SEM? What can SEM tell us? SEM Terminology and Jargon Technical Issues Types of SEM Models Limitations

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = 0 + 1 x 1 + x +... k x k + u 6. Heteroskedasticity What is Heteroskedasticity?! Recall the assumption of homoskedasticity implied that conditional on the explanatory variables,

More information

STA 2101/442 Assignment 2 1

STA 2101/442 Assignment 2 1 STA 2101/442 Assignment 2 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. A polling firm plans to ask a random sample of registered voters in Quebec whether

More information

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients

Overview. 1. Terms and Definitions. 2. Model Identification. 3. Path Coefficients 2. The Basics Overview 1. Terms and Definitions 2. Model Identification 3. Path Coefficients 2.1 Terms and Definitions 2.1 Terms & Definitions. Structural equation model = observed, latent, composite Direct

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesian decision theory Nuno Vasconcelos ECE Department, UCSD Notation the notation in DHS is quite sloppy e.g. show that ( error = ( error z ( z dz really not clear what this means we will use the following

More information

CRP 272 Introduction To Regression Analysis

CRP 272 Introduction To Regression Analysis CRP 272 Introduction To Regression Analysis 30 Relationships Among Two Variables: Interpretations One variable is used to explain another variable X Variable Independent Variable Explaining Variable Exogenous

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

C if U can. Algebra. Name

C if U can. Algebra. Name C if U can Algebra Name.. How will this booklet help you to move from a D to a C grade? The topic of algebra is split into six units substitution, expressions, factorising, equations, trial and improvement

More information

Multiple Regression Theory 2006 Samuel L. Baker

Multiple Regression Theory 2006 Samuel L. Baker MULTIPLE REGRESSION THEORY 1 Multiple Regression Theory 2006 Samuel L. Baker Multiple regression is regression with two or more independent variables on the right-hand side of the equation. Use multiple

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information