Autoregressive Models Fourier Analysis Wavelets

Size: px
Start display at page:

Download "Autoregressive Models Fourier Analysis Wavelets"

Transcription

1 Autoregressive Models Fourier Analysis Wavelets

2 BFR Flood w/10yr smooth Spectrum Annual Max: Day of Water year Flood magnitude vs. timing Jain & Lall, 2000

3 Blacksmith Fork, Hyrum, UT Analyses of Flood Statistics using a 30 year Moving Window 100 yr flood (cfs) From Jain and Lall (2000) Mean(log(Q)) Var(log(Q))

4 Flood Variance given DJF NINO3 and PDO NINO3 PDO NINO3 PDO Correlations: Derived using weighted local regression with 30 neighbors Log(Q) vs. DJF NINO vs. DJF PDO 0.32 Jain and Lall, 2000

5 El Nino and its variations over time Changing periodicity

6 Wavelet Analysis of 1000 year sample of annual maximum NINO3 from a 110,000 year integration of the Cane-Zebiak Model with stationary forcing ( Clement and Cane, 1999)

7 y t = 0.9y t 1 +sqrt(0.19)*n(0,1) One could actually think of this as a model for daily streamflow. During periods of no rainfall, we could consider that groundwater releases water to the stream (base flow), and during periods of rainfall, the groundwater is recharged, and the streamflow is enhanced. If the groundwater storage (volume or water level) is denoted by S, then the model for base flow in the stream can be determined during non rainy periods from ds/dt = rate of change of groundwater storage = Q g, where Q g is the rate of streamflow contributed by groundwater storage. Now for a homogeneous aquifer with relatively constant water level over space, we can relate Q g and S linearly, i.e., Q g =bs. This leads to the usual recession curve solution Q g =Q 0 e rt, where r is the recession rate. The behavior of y t = c*y t 1 is similar to that of the base flow recession curve. The noise term modifies this behavior, and if we get a random sequence o positive noise terms, the time series rises at around index 20 (or 50, or 90) in the example.

8

9 ACF Partial ACF ACF shown with bars, and ACF based on AR1 model shown with circles AR(k) model fit using AIC: y t = 0.71y t y t y t 3

10 The Data: y t t =1 n Can be a raw time series or a derived function of a time series; e.g., Or The Basic Questions: Is the probability distribution of y t invariant with time? Is µ(y t ) independent of t? If not, what is the nature and rate of change of µ(y t ) with t. Some Underlying Models: a. y t ~ f(θ); N(µ,σ 2 ) or Exp (λ) b. y t ~ ARMA(p,q), e.g., y t = ay t 1 +e t c. y t =g(t) +e t ; e.g., (3) (1) y t = a 0 +a 1 t +e t (2) y t = a 0 +a 1 t +a 2 sin(wt) +e t d. y t =g(t) +h(z) + e t ;e.g., (1) y t = a 0 +a 1 t +a 2 z t 0.5 +e t (2) y t = a 0 +a 1 t+e t e t = b 1 e t 1 +v t (3) y t = m t +e t m t = a 1 m t 1 + a 3 m t 2 +v t

11 Some Underlying Models: No trend a. y t ~ f(θ); N(µ,σ 2 ) or Exp (λ) Trend Monotonic Periodic Shift b. y t ~ ARMA(p,q), e.g., y t = ay t 1 +e t c. y t =g(t) +e t ; e.g., (3) (1) y t = a 0 +a 1 t +e t (2) y t = a 0 +a 1 t +a 2 sin(wt) +e t Trend +Exogenous Factor Ex. Deterministic Ex. Random (AR) State Space Model (Obs.=Process+Noise) d. y t =g(t) +h(z) + e t ;e.g., (1) y t = a 0 +a 1 t +a 2 z t 0.5 +e t (2) y t = a 0 +a 1 t+e t e t = b 1 e t 1 +v t (3) y t = m t +e t m t = a 1 m t 1 + a 3 m t 2 +v t

12 y= t P value for slope=0.3

13 y= t P values: (0.0000,0.0257)

14 y= t P values: (0.000,0.0000)

15

16 y t = t y t 1 P values: (0.78,0.96,0.0000) r t =y t 0.91y t 1 r t =0+0t P values: (1,1)

17 y= t P value for slope=0.007

18

19 AR(1) y t = 0.9y t 1 +e t y t 1 =0.9y t 2 +e t 1 Or y t =0.9(0.9y t 2 +e t 1 )+e t = 0.92 y t 1 + noise Or y t =0.9 k y t 1 + noise If y t has mean 0, variance 1, then cor(y t, y t k )=r k Linear Trend y t =0.9t+e t y t 1 = 0.9(t 1)+ e t 1 Or y t =y t 1 +(1 0.9)+noise Or y t =y t k +(k 0.9)+noise i.e., y t and y t k have a mean value that differs by a constant proportional to k Here the ACF decreases linearly with lag k

20 y= t P value for slope=0.13 y= t+1.28sin(13.5π/180t) P values=(0.004,0.0001)

21 y= t P value=(0.000,0.000) y= t+0.88δ s (t=50) P values=(0,0.49, 0.04) from y = 1 + δs(t=50) + Normal (0,1). The step of size 1 is placed at t=50.

22 y= t P value: (0.0003,0.0000) y t = t y t 1 p=values : (0.47,0.10,0.0000)

23 y t =r*y t 1 y t 2 r=1 r=1.2 r=1.5 r=1.8 r=1.9 r=1.95 r=1.99 r=2.0

24 The general problem of interest is illustrated by the chart on the left We suspect that there are periodic trends (e.g., annual cycle), and wish to identify them from a time series. If we know the 4 frequencies ω i, that went into building this model, then this is a linear regression problem with 8 predictors (4 ω i ) plus: A 1 =1.85, A 2 =0.8, A 3 =0.56, A 4 =0.81 from least squares fit assuming all phases are 0

25 How well can the Fourier basis approximate arbitrary functions (periodic)? What are good ways to identify the periodic trends? 1. The frequencies of interest are known 2. The frequencies of interest are not known What is identifiable, and what are the limitations of selected methods.

26 Since there is one periodic mode in the data (y t ), we seek to approximate it with 1 periodic function as shown above. We need to estimate four coefficients: A, ω, φ, and B This is a nonlinear regression problem, and we used the Solver in Excel to get the solution

27 We take the residuals from the previous model and repeat the process of approximating them with a sine function Note that the frequency is almost exactly double that of the previous case.

28 We take the residuals from the previous model and repeat the process of approximating them with a sin function Note that the frequency is now 3 times that of the original case.

29 We take the residuals from the previous model and repeat the process of approximating them with a sin function Note that the frequency is now 5 times that of the original case.

30 We take the residuals from the previous model and repeat the process of approximating them with a sin function Note that the frequency is now 6 times that of the original case.

31 A ω/2π φ B / / / / /

32 At this point, you ve seen two examples. 1. We knew the frequencies of interest, and solved for their amplitude using linear regression. 2. We did not know the frequency of interest, and tried to identify the appropriate frequency one at a time. We often know that there is an annual cycle in the data, but we may not be able to assume that it is sinusoidal. This was the point of the second example frequencies of interest need to be solved for. Thus, except in rather trivial cases, we are faced with the identification of the frequencies, their phase and amplitude. Ideally, we would like to postulate a model once, and solve for its parameters.

33 Consider the model above. For each frequency, ω i, that we consider, we need to identify 2 coefficients, A i, and B i. In addition, we need to estimate the mean. Since, we have n data points, we can estimate no more than n coefficients total, i.e., the max number of frequencies, I, we can consider is (n/2 1). The lowest frequency we can resolve with n years of data is 1/n cycles per year If the data is uniformly sampled with a sampling interval of dt units (e.g., 1), the highest frequency we can resolve is 1/(2dt). So, if we consider uniform sampling, the Fourier frequencies are of interest: ω i = {1/n, 3/n, 5/n, 1/2}/dt Note that if we use all the terms available to us, we cannot estimate e t, i.e., we have chosen to solve for coefficients for all possible harmonics, even if only 1 was important, and hence the rest of the terms will add up to the noise!!

34

35 The time series: Definitions: The Periodogram: P(ω i ) = (A i2 +B i2 )

36 Time series of yt

37 Time series of yt

38 Since the 1 st two are noise free, we expect a single peak and a flat spectrum. We see broad peaks and multiple small peaks. The first is because Splus smooths the periodogram. This leads to leakage of power. The second is because of edge effects and discretization (the frequency of the 1. The 1/12 frequency spectrum and time series signal is not a Fourier 2. The 1/24 frequency spectrum and time series frequency) 3. The sum of the two spectrum and time series 4. The residual from the triangular wave spectrum and time series

39 Since we fit so many coefficients to the data, and ended up with negligible degrees of freedom, the resulting amplitudes are random coefficients, and the periodogram is not a consistent estimator of the spectrum as n infinity, the estimates do not converge to the right estimate we simply estimate more coefficients and end up with the same degrees of freedom. Consequently, it is useful to think of these estimates as data rather than statistics on which hypotheses can be tested. It is common to smooth the resulting estimates this entails an assumption that the spectrum is a smooth function of frequency. However, this is at odds with the notion that we get sharp peaks corresponding to periodic trends. Thus, most such estimates are not terribly satisfactory. Smoothing Methods include: Maximum Entropy Spectral Estimation (MESA) Logspline Spectral estimation (Kooperberg et al.) Multi Taper Method (MTM)

40 The spectrum and the series autocovariance function are related as: where c k is the lag k autocovariance This suggests that if we have an estimate of the autocovariance function, then we can readily obtain the spectrum. The problem is that sample estimates of the ACF degrade as k increases, since the number of pairs that are available to compute the sample statistic decreases. This situation is often addressed by fitting the best AR model to the data, and then using the filtered autocovariance function to estimate the spectrum.

41

42

43 Autocorrelation Function:Example 2 Fitted AR model:example 2 Note the periodic structure in the ACF, and also the periodic sequence of positive and negative coefficients for the AR model. These clearly suggest that we have underlying periodic trends. The AR model explains 99.8% of the variance of the original series.

44 Now that we know the frequencies of interest, we can also directly find the amplitudes by fitting a linear regression (they are also available from the Fourier transform of the filtered autocorrelation function keeping the AR model terms). f i A i B i / / / / / Compare A ω/2π φ B / / / / /

45 1. The 1/12 frequency and its spectrum. 2. The 1/24 frequency and its spectrum. 3. The sum of the two and its spectrum. 4. The residual from the triangular wave and its spectrum. The results are much cleaner than those for the periodogram. However, there is still a fair amount of smearing of spectral power in the neighborhood of the peak. There was no noise in this data set, other than the approximation error because of the nonsinusoidal signal.

46

47

48 Data from October 1974 September 2002 Show: Raw periodogram Smoothed periodogram periodogram from AR model best fit by AIC

49 Some peaks are shown by the blue dotted lines at a number of frequencies. The period. The annual cycle is the most prominent peak. The 6 year and ~2 year ones may be climatically related. The 0.5 and 0.2 values are harmonics of the annual cycle.

50 AR fit by AIC: AR(1) ρ = 0.62 Smoothed to a fault no indication of any annual periodicity. AR(1) model is not able to reproduce the annual cycle.

51

52

Lecture 4 - Spectral Estimation

Lecture 4 - Spectral Estimation Lecture 4 - Spectral Estimation The Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Biomedical Signal Processing and Signal Modeling

Biomedical Signal Processing and Signal Modeling Biomedical Signal Processing and Signal Modeling Eugene N. Bruce University of Kentucky A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

X random; interested in impact of X on Y. Time series analogue of regression.

X random; interested in impact of X on Y. Time series analogue of regression. Multiple time series Given: two series Y and X. Relationship between series? Possible approaches: X deterministic: regress Y on X via generalized least squares: arima.mle in SPlus or arima in R. We have

More information

Fourier Analysis of Stationary and Non-Stationary Time Series

Fourier Analysis of Stationary and Non-Stationary Time Series Fourier Analysis of Stationary and Non-Stationary Time Series September 6, 2012 A time series is a stochastic process indexed at discrete points in time i.e X t for t = 0, 1, 2, 3,... The mean is defined

More information

Time Series: Theory and Methods

Time Series: Theory and Methods Peter J. Brockwell Richard A. Davis Time Series: Theory and Methods Second Edition With 124 Illustrations Springer Contents Preface to the Second Edition Preface to the First Edition vn ix CHAPTER 1 Stationary

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

8.2 Harmonic Regression and the Periodogram

8.2 Harmonic Regression and the Periodogram Chapter 8 Spectral Methods 8.1 Introduction Spectral methods are based on thining of a time series as a superposition of sinusoidal fluctuations of various frequencies the analogue for a random process

More information

Lecture 11: Spectral Analysis

Lecture 11: Spectral Analysis Lecture 11: Spectral Analysis Methods For Estimating The Spectrum Walid Sharabati Purdue University Latest Update October 27, 2016 Professor Sharabati (Purdue University) Time Series Analysis October 27,

More information

Computational Data Analysis!

Computational Data Analysis! 12.714 Computational Data Analysis! Alan Chave (alan@whoi.edu)! Thomas Herring (tah@mit.edu),! http://geoweb.mit.edu/~tah/12.714! Introduction to Spectral Analysis! Topics Today! Aspects of Time series

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle AUTOREGRESSIVE LINEAR MODELS AR(1) MODELS The zero-mean AR(1) model x t = x t,1 + t is a linear regression of the current value of the time series on the previous value. For > 0 it generates positively

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

The Identification of ARIMA Models

The Identification of ARIMA Models APPENDIX 4 The Identification of ARIMA Models As we have established in a previous lecture, there is a one-to-one correspondence between the parameters of an ARMA(p, q) model, including the variance of

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, 2007 Cover Sheet Test Duration: 120 minutes. Open Book but Closed Notes. Calculators allowed!! This test contains five problems. Each of

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Introduction to Signal Processing

Introduction to Signal Processing to Signal Processing Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Intelligent Systems for Pattern Recognition Signals = Time series Definitions Motivations A sequence

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

NOTES AND CORRESPONDENCE. A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series

NOTES AND CORRESPONDENCE. A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series 3987 NOTES AND CORRESPONDENCE A Quantitative Estimate of the Effect of Aliasing in Climatological Time Series ROLAND A. MADDEN National Center for Atmospheric Research,* Boulder, Colorado RICHARD H. JONES

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Statistics of Stochastic Processes

Statistics of Stochastic Processes Prof. Dr. J. Franke All of Statistics 4.1 Statistics of Stochastic Processes discrete time: sequence of r.v...., X 1, X 0, X 1, X 2,... X t R d in general. Here: d = 1. continuous time: random function

More information

Second Order Linear Equations

Second Order Linear Equations Second Order Linear Equations Linear Equations The most general linear ordinary differential equation of order two has the form, a t y t b t y t c t y t f t. 1 We call this a linear equation because the

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series

Econometrics I. Professor William Greene Stern School of Business Department of Economics 25-1/25. Part 25: Time Series Econometrics I Professor William Greene Stern School of Business Department of Economics 25-1/25 Econometrics I Part 25 Time Series 25-2/25 Modeling an Economic Time Series Observed y 0, y 1,, y t, What

More information

Figure 18: Top row: example of a purely continuous spectrum (left) and one realization

Figure 18: Top row: example of a purely continuous spectrum (left) and one realization 1..5 S(). -.2 -.5 -.25..25.5 64 128 64 128 16 32 requency time time Lag 1..5 S(). -.5-1. -.5 -.1.1.5 64 128 64 128 16 32 requency time time Lag Figure 18: Top row: example o a purely continuous spectrum

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Time Series Analysis. Nonstationary Data Analysis by Time Deformation

Time Series Analysis. Nonstationary Data Analysis by Time Deformation Communications in Statistics Theory and Methods, 34: 163 192, 2005 Copyright Taylor & Francis, Inc. ISSN: 0361-0926 print/1532-415x online DOI: 10.1081/STA-200045869 Time Series Analysis Nonstationary

More information

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

Applied Time Series Topics

Applied Time Series Topics Applied Time Series Topics Ivan Medovikov Brock University April 16, 2013 Ivan Medovikov, Brock University Applied Time Series Topics 1/34 Overview 1. Non-stationary data and consequences 2. Trends and

More information

Part III Spectrum Estimation

Part III Spectrum Estimation ECE79-4 Part III Part III Spectrum Estimation 3. Parametric Methods for Spectral Estimation Electrical & Computer Engineering North Carolina State University Acnowledgment: ECE79-4 slides were adapted

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

STAD57 Time Series Analysis. Lecture 23

STAD57 Time Series Analysis. Lecture 23 STAD57 Time Series Analysis Lecture 23 1 Spectral Representation Spectral representation of stationary {X t } is: 12 i2t Xt e du 12 1/2 1/2 for U( ) a stochastic process with independent increments du(ω)=

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

Time and Spatial Series and Transforms

Time and Spatial Series and Transforms Time and Spatial Series and Transforms Z- and Fourier transforms Gibbs' phenomenon Transforms and linear algebra Wavelet transforms Reading: Sheriff and Geldart, Chapter 15 Z-Transform Consider a digitized

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

Generalised AR and MA Models and Applications

Generalised AR and MA Models and Applications Chapter 3 Generalised AR and MA Models and Applications 3.1 Generalised Autoregressive Processes Consider an AR1) process given by 1 αb)x t = Z t ; α < 1. In this case, the acf is, ρ k = α k for k 0 and

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES

13.42 READING 6: SPECTRUM OF A RANDOM PROCESS 1. STATIONARY AND ERGODIC RANDOM PROCESSES 13.42 READING 6: SPECTRUM OF A RANDOM PROCESS SPRING 24 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. STATIONARY AND ERGODIC RANDOM PROCESSES Given the random process y(ζ, t) we assume that the expected value

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet.

The Discrete Fourier Transform (DFT) Properties of the DFT DFT-Specic Properties Power spectrum estimate. Alex Sheremet. 4. April 2, 27 -order sequences Measurements produce sequences of numbers Measurement purpose: characterize a stochastic process. Example: Process: water surface elevation as a function of time Parameters:

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

Linear Stochastic Models. Special Types of Random Processes: AR, MA, and ARMA. Digital Signal Processing

Linear Stochastic Models. Special Types of Random Processes: AR, MA, and ARMA. Digital Signal Processing Linear Stochastic Models Special Types of Random Processes: AR, MA, and ARMA Digital Signal Processing Department of Electrical and Electronic Engineering, Imperial College d.mandic@imperial.ac.uk c Danilo

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Nonlinear time series analysis Gerald P. Dwyer Trinity College, Dublin January 2016 Outline 1 Nonlinearity Does nonlinearity matter? Nonlinear models Tests for nonlinearity Forecasting

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

552 Final Exam Preparation: 3/12/14 9:39 AM Page 1 of 7

552 Final Exam Preparation: 3/12/14 9:39 AM Page 1 of 7 55 Final Exam Preparation: 3/1/1 9:39 AM Page 1 of 7 ATMS 55: Objective Analysis Final Preparation 1. A variable y that you wish to predict is correlated with x at.7, and with z at.. The two predictors

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Analysis of Violent Crime in Los Angeles County

Analysis of Violent Crime in Los Angeles County Analysis of Violent Crime in Los Angeles County Xiaohong Huang UID: 004693375 March 20, 2017 Abstract Violent crime can have a negative impact to the victims and the neighborhoods. It can affect people

More information

Box-Jenkins ARIMA Advanced Time Series

Box-Jenkins ARIMA Advanced Time Series Box-Jenkins ARIMA Advanced Time Series www.realoptionsvaluation.com ROV Technical Papers Series: Volume 25 Theory In This Issue 1. Learn about Risk Simulator s ARIMA and Auto ARIMA modules. 2. Find out

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

Gaussian processes. Basic Properties VAG002-

Gaussian processes. Basic Properties VAG002- Gaussian processes The class of Gaussian processes is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space, or time and space. The popularity

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 6B. Notes on the Fourier Transform Magnitude By Tom Irvine Introduction Fourier transforms, which were introduced in Unit 6A, have a number of potential

More information

Utility of Correlation Functions

Utility of Correlation Functions Utility of Correlation Functions 1. As a means for estimating power spectra (e.g. a correlator + WK theorem). 2. For establishing characteristic time scales in time series (width of the ACF or ACV). 3.

More information

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA

Applied Time. Series Analysis. Wayne A. Woodward. Henry L. Gray. Alan C. Elliott. Dallas, Texas, USA Applied Time Series Analysis Wayne A. Woodward Southern Methodist University Dallas, Texas, USA Henry L. Gray Southern Methodist University Dallas, Texas, USA Alan C. Elliott University of Texas Southwestern

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME Signal Processing for Power System Applications Frequency Domain Analysis Techniques Parametric Methods for Line Spectra (Week-5-6) Gazi Üniversitesi, Elektrik ve

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -18 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Model selection Mean square error

More information

Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I. El Niño/La Niña Phenomenon

Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I. El Niño/La Niña Phenomenon International Journal of Geosciences, 2011, 2, **-** Published Online November 2011 (http://www.scirp.org/journal/ijg) Separation of a Signal of Interest from a Seasonal Effect in Geophysical Data: I.

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES

SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES SF2943: A FEW COMMENTS ON SPECTRAL DENSITIES FILIP LINDSKOG The aim of this brief note is to get some basic understanding of spectral densities by computing, plotting and interpreting the spectral densities

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES

ECO 513 Fall 2009 C. Sims CONDITIONAL EXPECTATION; STOCHASTIC PROCESSES ECO 513 Fall 2009 C. Sims CONDIIONAL EXPECAION; SOCHASIC PROCESSES 1. HREE EXAMPLES OF SOCHASIC PROCESSES (I) X t has three possible time paths. With probability.5 X t t, with probability.25 X t t, and

More information

On Moving Average Parameter Estimation

On Moving Average Parameter Estimation On Moving Average Parameter Estimation Niclas Sandgren and Petre Stoica Contact information: niclas.sandgren@it.uu.se, tel: +46 8 473392 Abstract Estimation of the autoregressive moving average (ARMA)

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information