Utility of Correlation Functions

Size: px
Start display at page:

Download "Utility of Correlation Functions"

Transcription

1 Utility of Correlation Functions 1. As a means for estimating power spectra (e.g. a correlator + WK theorem). 2. For establishing characteristic time scales in time series (width of the ACF or ACV). 3. For testing whether two time series are related (CCF, CCV). 4. As a basis for calculating correlation matrices used in estimation, principal component analysis, etc. 5. As the measurement basis in interferometry (CCF of signals for different antennas, the visibility function). 6. etc. 1

2 Correlation Function Example Consider the autocorrelation function (ACF) of a zero-mean WSS process. We want to consider how the ACF converges as well as understand what the ACF actually quantifies. The figure shows a time series and its ACF along with an ACF averaged over 10 realizations of the time series. Figure 1: Top panel: Time series of Gaussian noise with unity variance and a correlation time of 21 steps. Bottom panel: ACF of the time series in the top panel along with the ACF averaged over 10 realizations of the time series. 2

3 The time series was created by taking a realization of white, Gaussian noise and smoothing it with a boxcar filter with width of 21 samples. Features of the ACF include: 1. The maximum at zero lag has a value equal to the variance in the time series (set to unity). 2. The feature that maximizes at zero lag is the same in both ACFs. 3. The decay from the maximum is on a time scale 20 steps, which is order of the smoothing time used to create the time series. 4. There are statistical variations centered on zero correlation. These variations are larger in the ACF calculated from single-realization and are estimation errors in the ACF. The width of the persistant feature in the ACF is the autocorrelation time of the process, which we define as W y. This quantifies the time interval over which the process decorrelates. 3

4 The estimation error in the ACF at larger lags is determined by the number of independent fluctuations N i in the time series used. In a single time series of length T, this number is N i T/W y. For the example, N i 1024/ The estimation error in the ACF for a single time series will be δc y C y (0)/ N i 0.14 so we expect variations about zero at approximately this level. For the 10-realization average, we expect the estimation errors to decrease by another factor of 1/ 10 to about

5 Calculating Correlation Functions Consider a discrete data set with N equally spaced samples, x i, i = 1, N. Two slightly different estimators can be used to calculate the ACF. The first normalizes by the number of terms (lagged products) in the sum for each lag, N τ : ˆR τ = 1 N τ x i x i+τ, (N τ) i=1 0 τ < N R τ τ < 0 This normalization yields an unbiased result because it can be shown that ˆR τ = R τ, i.e. the ensemble average of the estimator equals the ensemble-average ACF. However, for τ N, the estimation errors are large because there are few terms in the sum and their departure from the true ACF is amplified by the 1/(N τ ) factor.. An alternative normalization divides by N instead of N τ. This biases the estimator, but only at large lags owing to the presence of a triangle function, 1 = τ /N that multiples the true ACF. The advantage of this normalization is that it keeps the estimation errors at large lags small. 5

6 Unequal sampling: The ACF of a time series that isn t sampled uniformly can be calculated by binning in lag. For example, we can write (where now τ is in time units rather than being an index) ˆR τ = 1 N τ i j }{{} t i t j τ± τ/2 x i x j, N τ = i j }{{} t i t j τ± τ/2 Here N τ is the number of lagged products summed in a bin of size τ. Clearly the bin size τ needs to be chosen carefully so that structure in the ACF is not lost (bins too large) or that there are too few counts per bin (bins too small). Note also that (a) bins do not have to be equal and (b) in fact, they can be spaced logarithmicaly, e.g. τ/τ = constant. 1. 6

7 Errors in the ACF have several causes: Estimation Errors in Correlation Functions 1. Stochasticity of the signal part of the time series 2. Additive noise. Let the measurement model be the sum of a signal s and contaminating zero-mean, white noise n (both real): x(t) = s(t) + n(t) The ACF of x has an ensemble average R x (τ) = [s(t) + n(t)][s(t + τ) + n(t + τ)] = s(t)s(t + τ) + n(t)n(t + τ) + cross terms = R s (τ) + R n (τ) (variances add) What determines the errors in the estimated ACF? Both the signal (if stochastic) and the additive noise. Many results in the literature consider only the errors from additive noise. As we have seen in Figure 1, however, a signal with no additive noise produces an ACF estimate with errors. Considering again the unbiased estimate ˆR τ, as with any estimator we calculate the mean and variance of the estimated quantity. The mean is equal to the true ensemble average, as before. 7

8 The mean square is (for τ 0 and x still real) ˆR τ 2 = 1 (N τ) 2 i j x i x i+τ x j x j+τ. If x has Gaussian statistics, it is easy to work out the fourth moment in the summand. How many terms does the fourth moment expand into? In this case, the mean square ACF estimate and the estimation error can be worked out. 8

9 Structure Functions Recall (for the WSS case) R x (τ) = x(t)x(t + τ) autocorrelation C x (τ) = [x(t) x(t) ][x(t + τ) x(t + τ) ] autocovariance which we have said are useful in time series analysis in several ways. But there are processes for which R x (τ) is not a function only of lag (i.e. non-wss) and there are data sets for which the data interval [0, T ] does not satisfy W x T where W x = correlation time of the process (if it exists). E.g. 1. random walks 2. 1/f noise and other red-noise processes with power law spectra f α. In these cases the sample mean X(t) may not be estimatable (it will vary wildly over a realization and between realizations) and the nonstationarity needs to be contended with in other ways (whether the process is signal or noise ) 9

10 Sometimes the cure is the structure function. Define the first increment X(t, τ) = x(t) x(t + τ). Being a difference, this quantity acts in some ways as a derivative. The second moment of X(t, τ) is the first order structure function: Advantages: D x (τ) [x(t) x(t + τ)] 2 1) No estimate of the sample mean is needed 2) Sometimes the SF is a function of only τ when R x is not (stationary increments). A first-order random walk can be generated by a running integral of white noise. The random walk is nonstationary but the white noise is not (by assumption). Therefore the structure function will depend only on the lag τ and not on the absolute time. For a WSS process this becomes D x (τ) = x 2 (t) + x 2 (t + τ) }{{} 2σ 2 x 2R x (0) D x (τ) = 2[R x (0) R x (τ)] which clearly yields nothing more than the ACF does x(t)x(t + τ) }{{} R x (τ)

11 Structure Function for a Random Walk Consider a random walk [= shot noise with h(t) = U(t)]: S(t) = i a i h(t t i ) where h(t) = U(t) = unit step function and the t i are Poisson distributed. One can show that if a i = 0 and t 1 < t 2 then R s (t 1, t 2 ) = λ a 2 0 dα U(t 1 α)u(t 2 α) }{{} So generally = λ a 2 t 1 0 dα = λ a2 t 1 R s (t 1, t 2 ) = λ a 2 t <, t < = min (t 1, t 2 ) Now compute the structure function: D x (τ) = [x(t) x(t + τ)] 2 = x 2 (t) + x 2 (t + τ) 2 x(t)x(t + τ) = a 2 [λt + λ(t + τ) 2λt = λ a 2 t for τ > 0 D x (τ) = λ a 2 τ = Dependence only on τ; the RW has stationary increments. 11

12 Allan variance Structure functions are most useful in analyses of nonstationary random processes. Why? Because they can remove trends in the data before calculating a second moment. SFs provide standardized statistics for phase and frequency instabilities in precision frequency sources (flicker noise = 1/f noise). Let ν(t) be the time-dependent frequency of a clock or synthesizer and define the normalized frequency, y(t) = ν(t) ν Define a running average frequency as ȳ(t) = 1 τ t+τ t dt y(t) Then the Allan variance is σ 2 y(τ) = 1 2 [ȳ(t + τ) ȳ(t)]2 This proportional to the first order structure function of y: σ 2 y(τ) 1 2 D y(τ) 12

13 Figure 2: Plot of the square root of the Allan variance for a few frequency standards (left) and contributions to the Allan variance in a typical frequency standard (right). 13

14 Higher order structure functions : D x (τ) removes any mean component and thus acts like a 1st derivative or difference: The second order increment is (1) x (t, τ) = x(t + τ) x(t). (2) x (t, τ) = x(t + 2τ) 2x(t + τ) + x(t) whose second moment is the second order structure function, D (2) x (τ) [ (2) x (t, τ)] 2. It removes a ramp function in a time series just as the first order structure function removes the mean. 14

15 Continuing, the mth increment of the phase (following Rutman 1978) has variance that is the m th order structure function. (m) x (t, τ) m m ( 1) l( ) x [t + (m l)τ] l=0 l D x (m) (t, τ) [ (m) x (t, τ)] 2 The m th increment is useful for identifying a deterministic t m power-law term in a time series and for identifying step functions in the (m-1) th derivative: (m) x = 0 if x is a polynomial of order p < m and (m) x is independent of t for p = m. Step functions in the k th derivative of x have increments (k+1) x (t, τ) that are pulses in time t comprising piecewise polynomials (of order k) with an amplitude a k τ k 1 (where a k is the amplitude of the step function). For example, a step function in ẋ at t = τ yields a triangular pulse (2) x = ẋτ(1 t/τ ) for t τ. Correspondingly, the m th order structure function may be time invariant whereas x itself may be nonstationary. 15

16 Utility of Structure Functions in Wave Propagation Modeling and simulations of propagation through random phase screens are commonly done for studies of propagation through the atmosphere, the ionosphere, the interplanetary medium, and the interstellar medium. Though these media are quite differently physically, the underlying mathematics of wave propagation is the same. Consider the simple case of a plane wave propagating through a thin screen that changes the electromagnetic (EM) phase randomly: plane wave: e ikz phase screen altered phase fronts e i[kz ωt+φ(x)] observation plane 16

17 The screen phase can be written as φ(x) = k z dz δn r(x), k 2π/λ where δn r (x) describes the variable part of the index of refraction. The (scalar) electric field emerging from the screen is E(x, z) = e i[kz ωt+φ(x)] The autocorrelation function of the field is (letting x 1 = x and x 2 = x + b) R E (x 1, x 2 ) = E(x, z)e (x + b, z) = e i[φ(x) φ(x+b)] = e i[ φ(x,b)] The phase difference, φ(x, b) is a random process. By inspection, you might describe R E (x 1, x 2 ) as the characteristic function of the phase difference φ evaluated at ω = 1. Now assume that φ(x) is a Gaussian process with stationary statistics. Since it is a spatially varying quantity, it is said to have homogeneous statistics. This means that φ is also a Gaussian process. Why? 17

18 For a general Gaussian random variable Y the characteristic function for zero mean is Φ Y (ω) = e iωy = e 1 2 ω2 σ 2. We can apply this result to the correlation function defined above to get R E (x 1, x 2 ) R E (b) = e 1 2 [ φ(b)] 2. We can rewrite this in terms of the phase structure function defined as so that D φ (b) [ φ(b)] 2 R E (b) = e 1 2 D φ(b). 18

19 Propagation to the observation plane: Usually one wants to know what the wave field is in a plane downstream of the screen. A fundamental result is that the field correlation function R E (b) propagates unaltered from the screen to the observer. This can be shown using the wave equation (see literature). Secondly, a fundamental theorem relates R E (b) to the apparent image of the source of plane waves I(θ) by the van Cittert-Zernike theorem: R E (b) I(θ) Example: Suppose the phase structure function has a square-law form D φ (b) = 2σ 2 φ b 2. b 1 When σ φ 1, the field correlation function is Gaussian in form and then so too is the image. The wave propagation describes scattering and this result tells us that the scattered image has a Gaussian shape. For the atmospheric case, the scattered image I(θ) is called the seeing disk. Note that all of the above involves ensemble averages. Individual realizations of scattered sources show speckles that average into the Gaussian shape. All of the above is also one dimensional. It is straight forward to extend the results to two dimensional screens. 19

Stochastic Processes. A stochastic process is a function of two variables:

Stochastic Processes. A stochastic process is a function of two variables: Stochastic Processes Stochastic: from Greek stochastikos, proceeding by guesswork, literally, skillful in aiming. A stochastic process is simply a collection of random variables labelled by some parameter:

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

IV. Covariance Analysis

IV. Covariance Analysis IV. Covariance Analysis Autocovariance Remember that when a stochastic process has time values that are interdependent, then we can characterize that interdependency by computing the autocovariance function.

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

2. (a) What is gaussian random variable? Develop an equation for guassian distribution

2. (a) What is gaussian random variable? Develop an equation for guassian distribution Code No: R059210401 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 PROBABILITY THEORY AND STOCHASTIC PROCESS ( Common to Electronics & Communication Engineering, Electronics &

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Lecture No. # 33 Probabilistic methods in earthquake engineering-2 So, we have

More information

Deterministic. Deterministic data are those can be described by an explicit mathematical relationship

Deterministic. Deterministic data are those can be described by an explicit mathematical relationship Random data Deterministic Deterministic data are those can be described by an explicit mathematical relationship Deterministic x(t) =X cos r! k m t Non deterministic There is no way to predict an exact

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. False Positives in Fourier Spectra. For N = DFT length: Lecture 5 Reading

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. False Positives in Fourier Spectra. For N = DFT length: Lecture 5 Reading A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 5 Reading Notes on web page Stochas

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2011 Reading: Chapter 10 = linear LSQ with Gaussian errors Chapter 11 = Nonlinear fitting Chapter 12 = Markov Chain Monte

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 19: Random Processes. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 19: Random Processes Jie Liang School of Engineering Science Simon Fraser University 1 Outline Random processes Stationary random processes Autocorrelation of random processes

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Random Processes Why we Care

Random Processes Why we Care Random Processes Why we Care I Random processes describe signals that change randomly over time. I Compare: deterministic signals can be described by a mathematical expression that describes the signal

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 8: Stochastic Processes Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 5 th, 2015 1 o Stochastic processes What is a stochastic process? Types:

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Fig 1: Stationary and Non Stationary Time Series

Fig 1: Stationary and Non Stationary Time Series Module 23 Independence and Stationarity Objective: To introduce the concepts of Statistical Independence, Stationarity and its types w.r.to random processes. This module also presents the concept of Ergodicity.

More information

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process Lecture Notes 7 Stationary Random Processes Strict-Sense and Wide-Sense Stationarity Autocorrelation Function of a Stationary Process Power Spectral Density Continuity and Integration of Random Processes

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

3F1 Random Processes Examples Paper (for all 6 lectures)

3F1 Random Processes Examples Paper (for all 6 lectures) 3F Random Processes Examples Paper (for all 6 lectures). Three factories make the same electrical component. Factory A supplies half of the total number of components to the central depot, while factories

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Minitab Project Report Assignment 3

Minitab Project Report Assignment 3 3.1.1 Simulation of Gaussian White Noise Minitab Project Report Assignment 3 Time Series Plot of zt Function zt 1 0. 0. zt 0-1 0. 0. -0. -0. - -3 1 0 30 0 50 Index 0 70 0 90 0 1 1 1 1 0 marks The series

More information

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series

Wavelet Methods for Time Series Analysis. Part IV: Wavelet-Based Decorrelation of Time Series Wavelet Methods for Time Series Analysis Part IV: Wavelet-Based Decorrelation of Time Series DWT well-suited for decorrelating certain time series, including ones generated from a fractionally differenced

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Contents Preface iii 1 Origins and Manifestations of Speckle 2 Random Phasor Sums 3 First-Order Statistical Properties

Contents Preface iii 1 Origins and Manifestations of Speckle 2 Random Phasor Sums 3 First-Order Statistical Properties Contents Preface iii 1 Origins and Manifestations of Speckle 1 1.1 General Background............................. 1 1.2 Intuitive Explanation of the Cause of Speckle................ 2 1.3 Some Mathematical

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS 1. Define random process? The sample space composed of functions of time is called a random process. 2. Define Stationary process? If a random process is divided

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

Time Series Solutions HT 2009

Time Series Solutions HT 2009 Time Series Solutions HT 2009 1. Let {X t } be the ARMA(1, 1) process, X t φx t 1 = ɛ t + θɛ t 1, {ɛ t } WN(0, σ 2 ), where φ < 1 and θ < 1. Show that the autocorrelation function of {X t } is given by

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES

SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES SF2943: TIME SERIES ANALYSIS COMMENTS ON SPECTRAL DENSITIES This document is meant as a complement to Chapter 4 in the textbook, the aim being to get a basic understanding of spectral densities through

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes

EAS 305 Random Processes Viewgraph 1 of 10. Random Processes EAS 305 Random Processes Viewgraph 1 of 10 Definitions: Random Processes A random process is a family of random variables indexed by a parameter t T, where T is called the index set λ i Experiment outcome

More information

STAT 248: EDA & Stationarity Handout 3

STAT 248: EDA & Stationarity Handout 3 STAT 248: EDA & Stationarity Handout 3 GSI: Gido van de Ven September 17th, 2010 1 Introduction Today s section we will deal with the following topics: the mean function, the auto- and crosscovariance

More information

The distribution inherited by Y is called the Cauchy distribution. Using that. d dy ln(1 + y2 ) = 1 arctan(y)

The distribution inherited by Y is called the Cauchy distribution. Using that. d dy ln(1 + y2 ) = 1 arctan(y) Stochastic Processes - MM3 - Solutions MM3 - Review Exercise Let X N (0, ), i.e. X is a standard Gaussian/normal random variable, and denote by f X the pdf of X. Consider also a continuous random variable

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

STOCHASTIC PROCESSES, DETECTION AND ESTIMATION Course Notes

STOCHASTIC PROCESSES, DETECTION AND ESTIMATION Course Notes STOCHASTIC PROCESSES, DETECTION AND ESTIMATION 6.432 Course Notes Alan S. Willsky, Gregory W. Wornell, and Jeffrey H. Shapiro Department of Electrical Engineering and Computer Science Massachusetts Institute

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Stochastic Process II Dr.-Ing. Sudchai Boonto

Stochastic Process II Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Random process Consider a random experiment specified by the

More information

1 Class Organization. 2 Introduction

1 Class Organization. 2 Introduction Time Series Analysis, Lecture 1, 2018 1 1 Class Organization Course Description Prerequisite Homework and Grading Readings and Lecture Notes Course Website: http://www.nanlifinance.org/teaching.html wechat

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Question Paper Code : AEC11T03

Question Paper Code : AEC11T03 Hall Ticket No Question Paper Code : AEC11T03 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

white noise Time moving average

white noise Time moving average 1.3 Time Series Statistical Models 13 white noise w 3 1 0 1 0 100 00 300 400 500 Time moving average v 1.5 0.5 0.5 1.5 0 100 00 300 400 500 Fig. 1.8. Gaussian white noise series (top) and three-point moving

More information

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA AKIRA ISHIMARU UNIVERSITY of WASHINGTON IEEE Antennas & Propagation Society, Sponsor IEEE PRESS The Institute of Electrical and Electronics Engineers, Inc.

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2013 Lecture 26 Localization/Matched Filtering (continued) Prewhitening Lectures next week: Reading Bases, principal

More information

Random Processes Handout IV

Random Processes Handout IV RP-IV.1 Random Processes Handout IV CALCULATION OF MEAN AND AUTOCORRELATION FUNCTIONS FOR WSS RPS IN LTI SYSTEMS In the last classes, we calculated R Y (τ) using an intermediate function f(τ) (h h)(τ)

More information

Characteristics of Time Series

Characteristics of Time Series Characteristics of Time Series Al Nosedal University of Toronto January 12, 2016 Al Nosedal University of Toronto Characteristics of Time Series January 12, 2016 1 / 37 Signal and Noise In general, most

More information

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes

Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Parametric Signal Modeling and Linear Prediction Theory 1. Discrete-time Stochastic Processes Electrical & Computer Engineering North Carolina State University Acknowledgment: ECE792-41 slides were adapted

More information

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100

ECE302 Spring 2006 Practice Final Exam Solution May 4, Name: Score: /100 ECE302 Spring 2006 Practice Final Exam Solution May 4, 2006 1 Name: Score: /100 You must show ALL of your work for full credit. This exam is open-book. Calculators may NOT be used. 1. As a function of

More information

Lecture - 30 Stationary Processes

Lecture - 30 Stationary Processes Probability and Random Variables Prof. M. Chakraborty Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 30 Stationary Processes So,

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

STAT STOCHASTIC PROCESSES. Contents

STAT STOCHASTIC PROCESSES. Contents STAT 3911 - STOCHASTIC PROCESSES ANDREW TULLOCH Contents 1. Stochastic Processes 2 2. Classification of states 2 3. Limit theorems for Markov chains 4 4. First step analysis 5 5. Branching processes 5

More information

Modeling with Itô Stochastic Differential Equations

Modeling with Itô Stochastic Differential Equations Modeling with Itô Stochastic Differential Equations 2.4-2.6 E. Allen presentation by T. Perälä 27.0.2009 Postgraduate seminar on applied mathematics 2009 Outline Hilbert Space of Stochastic Processes (

More information

Stochastic Processes. Chapter Definitions

Stochastic Processes. Chapter Definitions Chapter 4 Stochastic Processes Clearly data assimilation schemes such as Optimal Interpolation are crucially dependent on the estimates of background and observation error statistics. Yet, we don t know

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation Convolution In this section we consider the problem of determining the response of a linear, time-invariant circuit to an arbitrary input, x(t). This situation is illustrated in Figure 1 where x(t) is

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Chapter 2 Random Processes

Chapter 2 Random Processes Chapter 2 Random Processes 21 Introduction We saw in Section 111 on page 10 that many systems are best studied using the concept of random variables where the outcome of a random experiment was associated

More information

Random Process. Random Process. Random Process. Introduction to Random Processes

Random Process. Random Process. Random Process. Introduction to Random Processes Random Process A random variable is a function X(e) that maps the set of experiment outcomes to the set of numbers. A random process is a rule that maps every outcome e of an experiment to a function X(t,

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

Stochastic Volatility and Correction to the Heat Equation

Stochastic Volatility and Correction to the Heat Equation Stochastic Volatility and Correction to the Heat Equation Jean-Pierre Fouque, George Papanicolaou and Ronnie Sircar Abstract. From a probabilist s point of view the Twentieth Century has been a century

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

Spectral Analysis of Random Processes

Spectral Analysis of Random Processes Spectral Analysis of Random Processes Spectral Analysis of Random Processes Generally, all properties of a random process should be defined by averaging over the ensemble of realizations. Generally, all

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.11: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 21 QUESTION BOOKLET

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

5 Analog carrier modulation with noise

5 Analog carrier modulation with noise 5 Analog carrier modulation with noise 5. Noisy receiver model Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel. A noisy receiver model is illustrated in

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Autoregressive Models Fourier Analysis Wavelets

Autoregressive Models Fourier Analysis Wavelets Autoregressive Models Fourier Analysis Wavelets BFR Flood w/10yr smooth Spectrum Annual Max: Day of Water year Flood magnitude vs. timing Jain & Lall, 2000 Blacksmith Fork, Hyrum, UT Analyses of Flood

More information