A discussion about maximum power transfer

Size: px
Start display at page:

Download "A discussion about maximum power transfer"

Transcription

1 基本电路理论课程论文 第一学期 A discussion about maximum power transfer 夏海颖, 包雪娜, 李光北, 张引玉, 杨阳 Outline: In this record, we will discuss the problem of maximum power transfer in resistor circuit and sinusoidal steady-state circuit And for the cases of three-phase circuit, we will compare it with other circuits to show that it is the most efficient circuit for maximum power transfer Finally, we will give some applications in maximum power transformation to verify that this issue is quite useful in real life Key words: maximum power transfer, resistor circuit, sinusoidal steady-state circuit, three-phase circuit, Applications Chapter One: inear Circuit e evenin equivalent is useful to find the maximum power a linear circuit can deliver to a load As shown in the figure (1), the power delivered to the load is p i + 1 Figure (1) Figure () For a given circuit, and are fixed By varying the load resistance,the power delivered to the load varies as sketched in figure()we can see that when is equal to,the maximum power occurs We take differential about p in Eq 1 with respect to and set the result to zero en we can get, and the maximum power transferred is p max 4 But if the domain of is limited and can t reach (ie > or < ), the result will change 1

2 基本电路理论课程论文 第一学期 Case 1: [, ] 1 Where 1 > When, the power reaches to the maximum and p 1 max Case : [, ] 1 where 1 < max + When,the power reaches the maximum p e two cases above can also be solved from the figure ()In a word, the smaller the difference between &,the the power is larger ere is another situation when the circuit is Norton equivalent, then we can use the similar process to solve the problems As shown in figure () When G G,the power of reaches the maximum N G Figure () Example: Find the maximum power transferred to resistor in the circuit of figure (4) Figure (4) We need the evenin equivalent across the resistor o find, consider the circuit below kω v 1 10 kω + v o 40 kω 0 kω v o 1mA

3 基本电路理论课程论文 第一学期 Assume that all resistances are in k ohms and all currents are in ma , and v o (v 1 /0) + (v 1 /0) (v 1 /15) v o v 1 But v o (8/0)v 1, hence, x(8v 1 /0) v 1, which leads to v v 1 /1-166 k ohms o find, consider the circuit below 10 kω v o kω v v o 40 kω 0 kω v o + (100 v o )/10 (v o /40) + (v o v 1 )/ (1) [(v o v 1 )/] + v o (v 1 /0) () Solving (1) and (), v 1-46 volts p /(4 ) (46)/[4(-166)] watts Chapter wo: Sinusoidal steady state Draw the evenin equivalent circuit like Figure 1, then P 1 I t DC Figure 1 l So I + ( + ) + j( + ) P ( + ) + ( + ) 1 ( + ) + ( + ) 1 e common situation ( no restriction ) 1 et then P ( + ) From what has been discussed in chapter one,we can simply let sure that P reach its maximum So * o make

4 基本电路理论课程论文 第一学期 And the maximum average power is P MA where is the peak amplitude of the evenin 8 equivalent circuit voltage source When the load is a resistor At this situation, 0, then P P 1 ( + ) + ( ) ( ) ( + ) ( ) When and Adjust as near to and P dp d are restricted to a limited range of values 1 ( + ) + ( + ) ( + ) 0 ( ) ( ) ( ) ( ) ( ) + ( + ) So in order to have the max power,we should adjust as near to, and as near to + ( + ) 4 When φ can be changed but its phase angle cannot, which means 4

5 基本电路理论课程论文 第一学期 φ is a constant, then I ( + cosφ ) + j( + sinφ ) ( ) P I e So ( + cosφ) + ( + sinφ) dp S S cosφ 0 d + + at is Example 1: As in the figure below, rms 1 0,Under the following 4 conditions, ask what value of can make the maximum power of, and P max? a) no restriction; b) is a resistor; c) (1, ), (-15, -1); d) the phase angle of is fixed to 45 but the magnitude can be changed k Sol: 1<0 ma k J4k a) jkω P oc max Figure 1 0 j4 + + j ( + ) j4 + jk + + j4 45 oc W 4 4 5

6 基本电路理论课程论文 第一学期 b) 0, Ω c) d) + jω 15Ω + ( + ) Ω tanφ tan jω Chapter ree: ree-phase Circuits: en we discuss the power in the special balanced three-phase Circuits Since all the balanced circuits can be converted to wye-connections, here we only discuss the Y-connected load For a Y-connected load: e phase voltages are: AN p cos( wt) cos( π BN p wt ) cos( + π CN p wt ) ia cos( wt θ ) 6

7 基本电路理论课程论文 第一学期 π i cos( θ b Ip wt ) π i cos( θ + c Ip wt ) e instantaneous power: PPa+Pb+Pc ANia BNib CNic I p pcosθ en we can see that the instantaneous power remains constantby this, we can also get other powers(total): e total everage power: P p pcos e total reactive power: Q I θ I cosθ Q p pipsinθ I cosθ e total complex power: SP+jQ I θ After so much has been done, we can discuss the advantage of the three-phase system by comparing it with the single-phase system First, for the two-wire single-phase system, suppose the resister of each line is, then we have: I P/ I So the power loss: P I P loss / en for the three-wire three-phase system, we also suppose the resister of each line is : I Ia Ib Ic P/ So the power loss: loss ( ) / / P I P P For pl / π r,for the same material and length of line, we have: Ploss / Ploss / r / r, If the two types of system have the same power loss: Material for single-phase/material for three-phase r / r 1 From the above we can see that if the same power loss is tolerated in both system, then using three-phase system can reduce the material that we actually need And if we use the material with the same, the three-phase system can reduce half the power loss! All in all, the three-phase circuit can save not only the power but also the material, that s why three-phase circuit is so popular in many fields today Applications: 1 Microphone e impedance of each microphone will be listed as a specification According to the 7

8 基本电路理论课程论文 第一学期 Maximum Power ransfer eorem, when the load impedance matches the microphone impedance, the power transferred will reach the maximum However, in most cases, the two impedances don t match each other Despite of this, the microphone still can be used If the micro s impedance is lower than 600 Ω, it is considered as low impedance; when its value is in a range from 600 to 10,000 Ω, it is considered as middle impedance; if the value is greater than 10,000, it will be regarded as high impedance A model of pocket headphone e A ere are several situations, where the pocket amp could benefit from a higher voltage power supply - when driving high impedance headphones, when the amplifier is being fed from a high gain equalizer or when the listener just wants more volume With very high impedance headphones (600 ohms or more), the amp may not be able to develop sufficient voltage across the load for maximum power transfer If the amp is fed from an equalizer or tone control with a high boost, the output of the pocket amp could be driven into clipping (efer to the net Power consumed in Bluetooth e bluetooth has low power consumption longevity for battery-powered devices During data transfer the maximum current drain is 0mA However during pauses or at lower data rates will be lower eferences [1] Fundamentals of Electric Circuits, Charles K Alexander, Matthew N O Sadiku, sing Hua University Publishing [] [] 8

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Experiment #6. Thevenin Equivalent Circuits and Power Transfer

Experiment #6. Thevenin Equivalent Circuits and Power Transfer Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs BME/ISE 3511 Bioelectronics - Test Three Course Notes Fall 2016 Delta & Y Configurations, Principles of Superposition, esistor Voltage Divider Designs Use following techniques to solve for current through

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing MCE63: Interfacing and Control of Mechatronic Systems Chapter 1: Impedance Analysis for Electromechanical Interfacing Part B: Input and Output Impedance Cleveland State University Mechanical Engineering

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

Chapter 18. Direct Current Circuits

Chapter 18. Direct Current Circuits Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement ENE 240 Electrical and Electronic Measurement Class 11, February 4, 2009 werapon.chi@kmutt.ac.th 1 Work, Energy and Power Work is an activity of force and movement in the direction

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013 ECE 41/51 Electric Energy Systems Power Systems Analysis I Basic Principles Instructor: Kai Sun Fall 013 1 Outline Power in a 1-phase AC circuit Complex power Balanced 3-phase circuit Single Phase AC System

More information

Chapter 2-3 Transformers

Chapter 2-3 Transformers Principles of Electric Machines and Power Electronics Chapter 2-3 Transformers Third Edition P. C. Sen Auto transformer Per unit system S b = S rate V b1 = V rate1 V b2 = V rate2 S b I b1 = = S rate =

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit esson 8 evenin s and Norton s theorems in the context of dc voltage and current sources acting in a resistive network Objectives To understand the basic philosophy behind the evenin

More information

8 TH GRADE MATHEMATICS:

8 TH GRADE MATHEMATICS: 8 TH GRADE MATHEMATICS: AIM: USING OHM S LAW TO SOLVE MATH PROBLEMS HOME WORK: HANDOUT BY MR. AKOMAH ENCHANCING STUDENTS SKILLS IN INVERESE OPERATION USING OHMS LAW : Students will 1.Become aware of Ohm's

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

THREE-PHASE CIRCUITS

THREE-PHASE CIRCUITS THR-HAS CIRCUITS 4.1 Introduction Generation, Transmission and distribution of electricity via the National Grid system is accomplished by three-phase alternating currents. The voltage induced by a single

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

VTU E-LEARNING NOTES ON:

VTU E-LEARNING NOTES ON: VTU E-LEARNING NOTES ON: 10EE35 ELECTRICAL AND ELECTRONIC MEASUREMENTS AND INSTRUMENTATION BY DR. M.S. RAVIPRAKASHA PROFESSOR & HEAD DEPT. OF E&E ENGG. MALNAD COLLEGE OF ENGG. HASSAN 573 201. SUBJECT CODE

More information

Prof. Anyes Taffard. Physics 120/220. Foundations Circuit elements Resistors: series & parallel Ohm s law Kirchhoff s laws Complex numbers

Prof. Anyes Taffard. Physics 120/220. Foundations Circuit elements Resistors: series & parallel Ohm s law Kirchhoff s laws Complex numbers Prof. Anyes Taffard Physics 120/220 Foundations Circuit elements Resistors: series & parallel Ohm s law Kirchhoff s laws Complex numbers Foundations Units: ü Q: charge [Coulomb] ü V: voltage = potential

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

Three-phase AC Circuits. Measurement of Power in a Three-phase Circuit

Three-phase AC Circuits. Measurement of Power in a Three-phase Circuit Three-phase AC Circuits Lesson Measurement of Power in a Three-phase Circuit In the previous lesson, the phase and line currents for balanced delta-connected load fed from a three-phase supply, along with

More information

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E. Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

LO 1: Three Phase Circuits

LO 1: Three Phase Circuits Course: EEL 2043 Principles of Electric Machines Class Instructor: Dr. Haris M. Khalid Email: hkhalid@hct.ac.ae Webpage: www.harismkhalid.com LO 1: Three Phase Circuits Three Phase AC System Three phase

More information

Grade 6 Math Circles. Circuits

Grade 6 Math Circles. Circuits Faculty of Mathematics Waterloo, Ontario NL 3G Electricity Grade 6 Math Circles March 8/9, 04 Circuits Centre for Education in Mathematics and Computing Electricity is a type of energy that deals with

More information

What to Add Next time you update?

What to Add Next time you update? What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104A (1 PDH) Power Systems - Basic Concepts and Applications - Part I Instructor: Shih-Min Hsu, Ph.D., P.E. 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax, VA 030-6658 Phone

More information

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase) Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1 CHAPTER ONE 1.1 International System of Units and scientific notation : 1.1.1 Basic Units: Quantity Basic unit Symbol as shown in table 1 Table 1 1.1.2 Some scientific notations : as shown in table 2 Table

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FCLTY F ENGNEERNG LB SHEET EEL1196 nstrumentation & Measurement Techniques TRMESTER 2 2017-2018 M2: Power Measurement sing Two Wattmeter Method *Note: Students will have to tabulate the theoretical values

More information

Switch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy

Switch or amplifies f. Capacitor i. Capacitance is measured in micro/pico farads ii. Filters frequencies iii. Stores electrical energy Applied Science Study Guide By Patton and Zahen 1. Relationships between Science and Technology a. Circuits are a relationship between Science and technology because the power within a current comes from

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088

More information

Ohm's Law and Resistance

Ohm's Law and Resistance Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

AC Source and RLC Circuits

AC Source and RLC Circuits X X L C = 2π fl = 1/2π fc 2 AC Source and RLC Circuits ( ) 2 Inductive reactance Capacitive reactance Z = R + X X Total impedance L C εmax Imax = Z XL XC tanφ = R Maximum current Phase angle PHY2054: Chapter

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

BASIC NETWORK ANALYSIS

BASIC NETWORK ANALYSIS SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding Series-Parallel dc Network Analysis......................... 1.1 Branch-Current Analysis of a dc Network......................

More information

Greek Letter Omega Ω = Ohm (Volts per Ampere)

Greek Letter Omega Ω = Ohm (Volts per Ampere) ) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

OUTCOME 3 - TUTORIAL 2

OUTCOME 3 - TUTORIAL 2 Unit : Unit code: QCF evel: 4 Credit value: 15 SYABUS Engineering Science /601/1404 OUTCOME 3 - TUTORIA Be able to apply DC theory to solve electrical and electronic engineering problems DC electrical

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

EECE208 Intro to Electrical Engineering Lab. 5. Circuit Theorems - Thevenin Theorem, Maximum Power Transfer, and Superposition

EECE208 Intro to Electrical Engineering Lab. 5. Circuit Theorems - Thevenin Theorem, Maximum Power Transfer, and Superposition EECE208 Intro to Electrical Engineering Lab Dr. Charles Kim 5. Circuit Theorems - Thevenin Theorem, Maximum Power Transfer, and Superposition Objectives: This experiment emphasizes e following ree circuit

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. Elec 250: Linear Circuits I 5/4/08 ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly. S.W. Neville Elec 250: Linear Circuits

More information

meas (1) calc calc I meas 100% (2) Diff I meas

meas (1) calc calc I meas 100% (2) Diff I meas Lab Experiment No. Ohm s Law I. Introduction In this lab exercise, you will learn how to connect the to network elements, how to generate a VI plot, the verification of Ohm s law, and the calculation of

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Simple Resistive Circuits

Simple Resistive Circuits German Jordanian University (GJU) Electrical Circuits Laboratory Section 3 Experiment Simple Resistive Circuits Post lab Report Mahmood Hisham Shubbak 7 / / 8 Objectives: To learn how to use the Unitr@in

More information

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Three-phase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,

More information

AC Power Analysis. Chapter Objectives:

AC Power Analysis. Chapter Objectives: AC Power Analysis Chapter Objectives: Know the difference between instantaneous power and average power Learn the AC version of maximum power transfer theorem Learn about the concepts of effective or value

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

DC motor / generator. Jeffrey A. Meunier

DC motor / generator. Jeffrey A. Meunier DC motor / generator Jeffrey A. Meunier jeffm@engr.uconn.edu Electric motor An electric motor is used to convert electrical energy into mechanical energy. Electric motor An electric motor is used to convert

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Analysis of AC Power RMS and Phasors Power Factor. Power Factor. Eduardo Campero Littlewood

Analysis of AC Power RMS and Phasors Power Factor. Power Factor. Eduardo Campero Littlewood Power Factor Eduardo Campero Littlewood Universidad Autónoma Metropolitana Azcapotzalco Campus Energy Department Content 1 Analysis of AC Power 2 RMS and Phasors 3 Power Factor Recommended Bibliography

More information

PHYS 3900 Homework Set #02

PHYS 3900 Homework Set #02 PHYS 3900 Homework Set #02 Part = HWP 2.0, 2.02, 2.03. Due: Mon. Jan. 22, 208, 4:00pm Part 2 = HWP 2.04, 2.05, 2.06. Due: Fri. Jan. 26, 208, 4:00pm All textbook problems assigned, unless otherwise stated,

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Exercise1 1.10.015 Informatik 7 Rechnernetze und Kommunikationssysteme Review of Phasors Goal of phasor analysis is to simplify the analysis of constant frequency ac systems v(t) = max cos(wt + q v ) i(t)

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

15-884/484 Electric Power Systems 1: DC and AC Circuits

15-884/484 Electric Power Systems 1: DC and AC Circuits 15-884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016 BME/ISE 35 Bioelectronics - Test Six ourse Notes Fall 06 Alternating urrent apacitive & Inductive Reactance and omplex Impedance R & R ircuit Analyses (D Transients, Time onstants, Steady State) Electrical

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance 25-1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte.

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information