Outline. Vehicle Propulsion Systems Vehicles as a hot topic is everlasting A diversity of powertrain configurations is appearing

Size: px
Start display at page:

Download "Outline. Vehicle Propulsion Systems Vehicles as a hot topic is everlasting A diversity of powertrain configurations is appearing"

Transcription

1 Lecture 1 Course ntrouction & Energy System Overview Lars Eriksson Professor Analyzing Energy Deman for a Vehicle Energy Deman of Driving Missions Vehicular Systems Linko ping University April 6, / 35 2 / 35 Vehicles as a hot topic is everlasting A iversity of powertrain configurations is appearing Brings freeom to the user Have a irect influence on the environment Consume resources that are limite Have ifferent appeal to ifferent persons Conventional nternal Combustion Engine (CE) powertrain. Diesel, Gasoline, New concepts Hybri powertrains Parallel/Series/Complex configurations Fuel cell electric vehicles Electric vehicles Course goal: ntrouction to powertrain configuration an optimization problems Mathematical moels an methos for Analyzing powertrain performance Optimizing the powertrain energy consumption 5 / 35 4 / 35 Top Priorities in Vehicle Development The vehicle in focus is passenger cars. (n the book.) What characterizes passenger cars? mprove the fuel economy of vehicles (Better cars are our best oil-wells) Reuce costs Drivability Safety Emissions Vehicle properties Exhaust emissions Roa ust Noise Legislations Autonomous an o not epen on fixe power gri. Have refueling time negligible compare to the riving time between two refuelings. Transport two to six persons an some payloa. Accelerate from 0 to 100 km/h in secons, or rive uphill a 5% ramp at legal top spee. Methos an tools are also applicable to trucks an other transportation systems. All issues are important but the first item is the main topic here. Numerical values iffer Demans are ifferent Principles are the same but solutions iffer 6 / 35 Life Cycle of a Vehicle Primary Energy Sources 7 / 35 nfrastructure Fuel Manufacturers Sources of Raw Material Car Manufacturers Governments at all Levels Fuel Distribution En Customer Analyzing Energy Deman for a Vehicle Distribution Repair an Maintenance Energy Deman of Driving Missions Scrapping an Recycling Many things are important! Focus is on energy path an in-vehicle energy conversion 8 / 35 9 / 35

2 Examination 5 (3) Han-n Assignments Han-n assignments one iniviually. Compenium for Han-n assignments. 1. Fuel consumption requirement of a riving mission. Methos an tools for estimating the fuel consumption. Manatory an optional tasks. 2. Optimal control of series an hybri concepts. Tools for investigating the best possible riving scheule. Manatory an optional tasks. 3. ECMS base on-line control of a parallel hybri. Stanar optimal control base controller. Manatory an optional tasks. 4. Three concepts for short term energy storage. Very open ene problems. Optional tasks. 5. Fuel cell vehicle. Optional tasks. 10 / 35 Examination Graing system 1. Pass Grae 3. All manatory tasks must be complete. Hane in, examine, returne (correcte, hane in again, until pass). 2. Higher graes. Hane in, grae by us (like an exam), returne. Point system connecte to extra tasks. Grae p Grae 4 14-? p Grae 5 24-? p 3. More etails are foun in the compenium. Dealines given on the home page. 11 / 35 Resources Course Computer tools are necessary, to be able to solve interesting problems. Matlab an Simulink with extra packages. f you have your own computer, we encourage you to use it. 2 computer room booke on 2 occasions per week We (17-21), an Friay See it as support opportunity. Lab room assistant, answers questions. Collect your questions an come to us. Preparations for han-in Refresh your knowlege Matlab an Simulink programming experience. Let s have a look on the course home page! 12 / / 35 Energy System Overview Primary sources Analyzing Energy Deman for a Vehicle Energy Deman of Driving Missions Different options for onboar energy storage Powertrain energy conversion uring riving Cut at the wheel! Driving mission has a minimum energy requirement. 14 / / 35 Example of Some Energy Paths W2M Analyzing Energy Deman for a Vehicle Energy Deman of Driving Missions 16 / / 35

3 Repetition Work, power an Newton s law Remember the partitioning Cut at the wheels. How large force is require at the wheels for riving the vehicle on a mission? Translational system Force, work an power: W = F x, P = t W = F v Rotating system Torque (T = F r), work an power: W = T θ, P = T ω Newton s secon law: Translational t = F riv F loa Rotational J ω t = T riv T loa 18 / / 35 Newton s secon law for a vehicle t v(t) = F t(t) (F a (t) + F r (t) + F g (t) + F (t)) Fr F t tractive force F a aeroynamic rag force F r rolling resistance force F g gravitational force F isturbance force Fg mv g Fa F Aeroynamic Drag Force Loss Aeroynamic rag force epens on: Frontal area A f, rag coefficient c, air ensity ρ a an vehicle velocity v(t) Approximate contributions to F a 65% car boy. 20% wheel housings. F a (t) = 1 2 ρ a A f c v(t) 2 10% exterior mirrors, eave gutters, winow housings, antennas, etc. 5% engine ventilation. 20 / / 35 Rolling Resistance Losses Rolling resistance epens on: loa an tire/roa conitions F r (v, p t, surface,...) = c r (v, p t,...) g cos(), v > 0 Gravitational Force Gravitational loa force Not a loss, storage of potential energy Fa F Fg Fr mv g Up- an own-hill riving prouces forces. The velocity has small influence at low spees. ncreases for high spees where resonance phenomena start. Assumption in book: c r constant F r = c r g 22 / 35 F g = g sin() Flat roa assume = 0 if nothing else is state (n the book). 23 / 35 nertial forces Reucing the Tractive Force Vehicle Operating Moes Te ωe Engine Gearbox Wheel Jw ωw : t v(t) = F t(t) (F a (t) + F r (t) + F g (t) + F (t)) Je T e J e t ω e = T gb γ Tt T gb γ J w t ω w = T t F t > 0 traction F t < 0 braking F t = 0 coasting Variable substitution: T w = γ T e, ω w γ = ω e, v = ω w r w Tractive force: [ ] ( ) F t = 1 v(t) (T e J e t γ) γ Jw v(t) t = γ Te γ 2 J 2 e + 1 J 2 w t v(t) The Vehicle [ Motion Equation: ] + γ2 J 2 e + 1 J 2 w t v(t) = γ Te (Fa(t) + Fr (t) + Fg (t) + F(t)) t v(t) = 1 ρ a A f c v 2 (t) g c r = 2 v 2 (t) β 2 2 Coasting solution for v > 0 v(t) = β tan (arctan ( ) ) β v(0) β t 24 / / 35

4 How to check a profile for traction? : t v(t) = F t(t) (F a (t) + F r (t) + F g (t) + F (t)) (1) Traction conitions: F t > 0 traction, F t < 0 braking, F t = 0 coasting Metho 1: Compare the profile with the coasting solution over a time step v coast (t i+1 ) = β ( ) ) (arctan tan β v(t i) β (t i+1 t i ) Metho 2: Solve (1) for F t F t (t) = t v(t) + (F a(t) + F r (t) + F g (t) + F (t)) Numerically ifferentiate the profile v(t) to get t v(t). Compare with Traction conition. 26 / 35 Driving profiles Velocity profile, American FTP-75 (1.5*FUDS). Driving profiles in general First use for pollutant control now also for fuel consumption. mportant that all use the same cycle when comparing. Different cycles have ifferent energy emans. 27 / 35 Driving profiles Another example Mechanical Energy Deman of a Cycle Velocity profile, European MVEG-95 (ECE*4, EUDC) No coasting in this riving profile. Only the eman from the cycle The mean tractive force uring a cycle F trac = 1 xtot where = t max 0 v(t)t. Note t trac in efinition. Only traction. 0 ling not a eman from the cycle. max(f (x), 0) x = 1 F (t)v(t)t t trac 28 / / 35 Evaluating the integral Discretize velocity profile use to evaluate F trac = 1 F (t)v(t)t t trac here v i = v(t i ), t i = i h, i = 1,..., n. Approximating the quantites v i (t) v i + v i 1, t [t i 1, t i ) 2 ā i (t) v i v i 1, t [t i 1, t i ) h Traction approximation F trac 1 F trac,i v i h Evaluating the integral Tractive force from F trac = 1 2 ρ a A f c v 2 (t) + g c r + a(t) Resulting in these sums F trac = F trac,a + F trac,r + F trac,m F trac,a = ρ a A f c v 3 i h F trac,r = 1 g c r v i h F trac,m = 1 ā i v i h 30 / / 35 Values for cycles Approximate car ata Numerical values for the cycles: X trac,a = 1 X trac,r = 1 X trac,m = 1 {MVEG-95, ECE, EUDC} v 3 i h = {319, 82.9, 455} v i h = {0.856, 0.81, 0.88} ā i v i h = {0.101, 0.126, 0.086} Ē MVEG-95 A f c c r SUV full-size compact light-weight PAC-Car A f c 1.2 m m m m m 2 c r kg 1500 kg 1000 kg 750 kg 39 kg P MVEG kw 7.1 kw 5.0 kw 3.2 kw P max 155 kw 115 kw 77 kw 57 kw Average an maximum power requirement for the cycle. kj/100km Ē MVEG-95 A f c c r Tasks in Han-in assignment kj/100km 32 / / 35

5 Energy System Overview Primary sources Different options for onboar energy storage Powertrain energy conversion uring riving Cut at the wheel! Driving mission has a minimum energy requirement. 34 / 35

About the hand-in tasks. Vehicle Propulsion Systems Lecture 3. Outline. Energy System Overview. W2M Energy Paths. The Vehicle Motion Equation

About the hand-in tasks. Vehicle Propulsion Systems Lecture 3. Outline. Energy System Overview. W2M Energy Paths. The Vehicle Motion Equation About the han-in tasks Vehicle Propulsion Systems Lecture 3 Conventional Powertrains with Transmission Performance, Tools an Optimization Lars Eriksson Professor Vehicular Systems Linköping University

More information

Outline. Vehicle Propulsion Systems Lecture 6. Hybrid Electrical Vehicles Serial. Hybrid Electrical Vehicles Parallel

Outline. Vehicle Propulsion Systems Lecture 6. Hybrid Electrical Vehicles Serial. Hybrid Electrical Vehicles Parallel Vehicle Propulsion Systems Lecture 6 Non Electric Hybri Propulsion Systems Lars Eriksson Associate Professor (Docent) Vehicular Systems Linköping University November 8, Pneumatic Hybri Engine Systems Case

More information

Methods and Tools. Average Operating Point Approach. To lump all engine operating points into one single average operating point.

Methods and Tools. Average Operating Point Approach. To lump all engine operating points into one single average operating point. Methods and Tools Average Operating Point Approach To lump all engine operating points into one single average operating point. Used to estimate the fuel consumption Test cycle needs to be specified when

More information

Driving Cycle Adaption and Design Based on Mean Tractive Force

Driving Cycle Adaption and Design Based on Mean Tractive Force Driving Cycle Adaption and Design Based on Mean Tractive Force Peter Nyberg Erik Frisk Lars Nielsen Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden (e-mail: {petny,

More information

Vehicle Propulsion Systems. Tutorial Lecture on 22 nd of Dec.

Vehicle Propulsion Systems. Tutorial Lecture on 22 nd of Dec. Vehicle Propulsion Systems Tutorial Lecture on 22 nd of Dec. Planning of Lectures and Exercises: Week Lecture, Friday, 8:15-10:00, ML F34 Book chp. 38, 22.9.2017 Introduction, goals, overview propulsion

More information

Experiment 2, Physics 2BL

Experiment 2, Physics 2BL Experiment 2, Physics 2BL Deuction of Mass Distributions. Last Upate: 2009-05-03 Preparation Before this experiment, we recommen you review or familiarize yourself with the following: Chapters 4-6 in Taylor

More information

New Zealand Institute of Physics

New Zealand Institute of Physics New Zealan Institute of Physics ASSESSMENT SCHEDULE Physics Level 2 90258 v2 Demonstrate unerstaning of physics in an integrate context Note: Minor computational errors will not be penalise. A wrong answer

More information

Problem Solutions. Vehicle Energy and Fuel Consumption. Vehicle Energy Losses and Performance Analysis. Problem 2.1

Problem Solutions. Vehicle Energy and Fuel Consumption. Vehicle Energy Losses and Performance Analysis. Problem 2.1 Problem Solutions Vehicle Energy and Fuel Consumption Vehicle Energy Losses and Performance Analysis Problem 2.1 For a vehicle with m v = 1500 kg, A f c d = 0.7m 2, c r = 0.012, a vehicle speed v = 120km/h

More information

MATH , 06 Differential Equations Section 03: MWF 1:00pm-1:50pm McLaury 306 Section 06: MWF 3:00pm-3:50pm EEP 208

MATH , 06 Differential Equations Section 03: MWF 1:00pm-1:50pm McLaury 306 Section 06: MWF 3:00pm-3:50pm EEP 208 MATH 321-03, 06 Differential Equations Section 03: MWF 1:00pm-1:50pm McLaury 306 Section 06: MWF 3:00pm-3:50pm EEP 208 Instructor: Brent Deschamp Email: brent.eschamp@ssmt.eu Office: McLaury 316B Phone:

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

Physics Fall 2011 Exam 2

Physics Fall 2011 Exam 2 Physics 102.001 Fall 2011 Exam 2 1) Two He(lium) nuclei are a certain distance apart. One He nucleus is replaced by a C(arbon) nucleus, keeping the distance unchanged. What happens to the strength of the

More information

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control

Vehicle Stability Improvement Based on Electronic Differential Using Sliding Mode Control 7th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines, Venice, Italy, November 1-3, 007 331 Vehicle Stability Improvement Base on Electronic Differential Using

More information

Physics 121 for Majors

Physics 121 for Majors Physics 121 for Majors Scheule Do Post-Class Quiz #3 Do Pre-Class Quiz #4 HW #2 is ue Wenesay Quiz #1 is ue Saturay, Sept. 16 Lab #1 is set up now, ue Monay Some Department Resources Computers N-212 ESC

More information

Quiz Number 3 PHYSICS March 11, 2009

Quiz Number 3 PHYSICS March 11, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon

Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon ME 2016 A Spring Semester 2010 Computing Techniques 3-0-3 Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon Description and Outcomes In

More information

Team-Exercises for DGC 100 Modelica Course

Team-Exercises for DGC 100 Modelica Course Team-Exercises for DGC 100 Modelica Course Hubertus Tummescheit United Technologies Research Center, East Hartford, CT 06108. November 4, 2003 Abstract This document is a preliminary version and is going

More information

This section outlines the methodology used to calculate the wave load and wave wind load values.

This section outlines the methodology used to calculate the wave load and wave wind load values. COMPUTERS AND STRUCTURES, INC., JUNE 2014 AUTOMATIC WAVE LOADS TECHNICAL NOTE CALCULATION O WAVE LOAD VALUES This section outlines the methoology use to calculate the wave loa an wave win loa values. Overview

More information

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions Problem Set #2 with solutions When doing unit conversions, for full credit, you must explicitly show how units cancel. Also, you may need to look up certain equivalence relations on the internet. Show

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Design a SSV. Small solar vehicle. Case SSV part 1

Design a SSV. Small solar vehicle. Case SSV part 1 1 Design a SSV Small solar vehicle Case SSV part 1 2 Contents 1. The characteristics of the solar panel... 4 2. Optimal gear ratio... 10 3. Bisection method... 14 4. Sankey diagrams... 18 A) Sankey diagram

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivatives 40. Introuction So far much of the term has been spent fining erivatives or rates of change. But in some circumstances we alreay know the rate of change an we wish to etermine the original

More information

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

Physics 218 Lecture 23

Physics 218 Lecture 23 Physics 218 Lecture 23 Dr. David Toback Physics 218, Lecture XXIII 1 Checklist for Today Things due Monday Chapter 14 in WebCT Things that were due yesterday Chapter 15 problems as Recitation Prep Things

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Numerical Integrator. Graphics

Numerical Integrator. Graphics 1 Introuction CS229 Dynamics Hanout The question of the week is how owe write a ynamic simulator for particles, rigi boies, or an articulate character such as a human figure?" In their SIGGRPH course notes,

More information

Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005

Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005 ME 2016 Sections A-B-C-D Fall Semester 2005 Computing Techniques 3-0-3 Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005 Description and Outcomes In this assignment,

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Sph4c Chapter 2 Simple Machines LoRusso

Sph4c Chapter 2 Simple Machines LoRusso Sph4c Chapter Simple Machines orusso Machine: A machine is any evice that helps us perform a task. hey are esigne to achieve at least one of five main functions Change energy from one form to another.

More information

Impact of Optimally Controlled Continuously Variable Transmission on Fuel Economy of a Series Hybrid Electric Vehicle

Impact of Optimally Controlled Continuously Variable Transmission on Fuel Economy of a Series Hybrid Electric Vehicle Impact of Optimally Controlle Continuously Variable Transmission on Fuel Economy of a Series Hybri Electric Vehicle Boli Chen, Simos A. Evangelou an Roberto Lot Abstract This paper investigates energy

More information

State-Space Model for a Multi-Machine System

State-Space Model for a Multi-Machine System State-Space Moel for a Multi-Machine System These notes parallel section.4 in the text. We are ealing with classically moele machines (IEEE Type.), constant impeance loas, an a network reuce to its internal

More information

Reglerteknik, TNG028. Lecture 1. Anna Lombardi

Reglerteknik, TNG028. Lecture 1. Anna Lombardi Reglerteknik, TNG028 Lecture 1 Anna Lombardi Today lecture We will try to answer the following questions: What is automatic control? Where can we nd automatic control? Why do we need automatic control?

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

Lecture 2 - First order linear PDEs and PDEs from physics

Lecture 2 - First order linear PDEs and PDEs from physics 18.15 - Introuction to PEs, Fall 004 Prof. Gigliola Staffilani Lecture - First orer linear PEs an PEs from physics I mentione in the first class some basic PEs of first an secon orer. Toay we illustrate

More information

Statics. There are four fundamental quantities which occur in mechanics:

Statics. There are four fundamental quantities which occur in mechanics: Statics Mechanics isabranchofphysicsinwhichwestuythestate of rest or motion of boies subject to the action of forces. It can be ivie into two logical parts: statics, where we investigate the equilibrium

More information

Chapter 6. Electromagnetic Oscillations and Alternating Current

Chapter 6. Electromagnetic Oscillations and Alternating Current hapter 6 Electromagnetic Oscillations an Alternating urrent hapter 6: Electromagnetic Oscillations an Alternating urrent (hapter 31, 3 in textbook) 6.1. Oscillations 6.. The Electrical Mechanical Analogy

More information

MEEN 363. EXAMPLE of ANALYSIS (1 DOF) Luis San Andrés

MEEN 363. EXAMPLE of ANALYSIS (1 DOF) Luis San Andrés MEEN 363. EAMPLE of ANALYSIS (1 DOF) Luis San Anrés Objectives: a) To erive EOM for a 1-DOF (one egree of freeom) system b) To unerstan concept of static equilibrium c) To learn the correct usage of physical

More information

EE1320: Measurement Science Lecture 2: Sensors

EE1320: Measurement Science Lecture 2: Sensors EE1320: Measurement Science Lecture 2: Sensors Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory April 26, 2013 Delft University of Technology Challenge the future Course program 2013 week

More information

106 PHYS - CH6 - Part2

106 PHYS - CH6 - Part2 106 PHYS - CH6 - Part Conservative Forces (a) A force is conservative if work one by tat force acting on a particle moving between points is inepenent of te pat te particle takes between te two points

More information

Analysis and Design of an Electric Vehicle using Matlab and Simulink

Analysis and Design of an Electric Vehicle using Matlab and Simulink Analysis and Design of an Electric Vehicle using Matlab and Simulink Advanced Support Group January 22, 29 23-27: University of Michigan Research: Optimal System Partitioning and Coordination Original

More information

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ Department of Physics University of arylan College Park, arylan PHYSICS 4 Prof. S. J. Gates Fall 5 Final Exam Dec. 6, 5 This is a OPEN book examination. Rea the entire examination before you begin to work.

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Chapter 6: Force & Motion II. Lecture 13 9/23/09

Chapter 6: Force & Motion II. Lecture 13 9/23/09 Chapter 6: Force & Motion II Lecture 13 9/23/09 The Drag Force & The Centripetal Force Goals for this Lecture: Describe the drag force between two objects. Relate the rag force to the terminal speed of

More information

6. Friction and viscosity in gasses

6. Friction and viscosity in gasses IR2 6. Friction an viscosity in gasses 6.1 Introuction Similar to fluis, also for laminar flowing gases Newtons s friction law hols true (see experiment IR1). Using Newton s law the viscosity of air uner

More information

Energy methods problem solving

Energy methods problem solving Energy methods problem solving Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman March 28, 2017 W. Freeman Work and potential energy problem solving March 28, 2017 1 / 13 Announcements

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions

Outline. Calculus for the Life Sciences II. Introduction. Tides Introduction. Lecture Notes Differentiation of Trigonometric Functions Calculus for the Life Sciences II c Functions Joseph M. Mahaffy, mahaffy@math.ssu.eu Department of Mathematics an Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

12.11 Laplace s Equation in Cylindrical and

12.11 Laplace s Equation in Cylindrical and SEC. 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential 593 2. Laplace s Equation in Cylinrical an Spherical Coorinates. Potential One of the most important PDEs in physics an engineering

More information

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

More information

Vehicle Propulsion Systems Lecture 2. Energy System Overview. W2M Energy Paths. Evaluating the integral. Mechanical Energy Demand of a Cycle

Vehicle Propulsion Systems Lecture 2. Energy System Overview. W2M Energy Paths. Evaluating the integral. Mechanical Energy Demand of a Cycle Vehcle Propulson Systems Lecture 2 Fuel Consumpton Estmaton & ICE Powertrans Lars Erksson Professor Vehcular Systems Lnköpng Unversty March 21, 2017 2 / 51 3 / 51 W2M Energy Paths Energy System Overvew

More information

ENGINE TORQUE FOR ACCELERATION OF ROTATIONAL MASS IN VEHICLES

ENGINE TORQUE FOR ACCELERATION OF ROTATIONAL MASS IN VEHICLES Journal of KONES Powertrain and Transport, Vol. 17, No. 4 010 ENGINE TORQUE FOR ACCELERATION OF ROTATIONAL MASS IN VEHICLES Aleksander Ubysz Silesian Technical University, Faculty of Transport, Department

More information

GAYAZA HIGH SCHOOL MATHS SEMINAR 2016 APPLIED MATHS

GAYAZA HIGH SCHOOL MATHS SEMINAR 2016 APPLIED MATHS GAYAZA HIGH SCHOOL MATHS SEMINAR 06 APPLIED MATHS STATISTICS AND PROBABILITY. (a) The probability that Moses wins a game is /. If he plays 6 games, what is (i) the epecte number of games won? (ii) the

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Take g = 9.81 m s -2, P atm = 1.0 x 10 5 Pa unless otherwise stated Learning Outcomes (a) Sub-Topic recall and apply Hooke

More information

Estimation amount of snow deposits on the road

Estimation amount of snow deposits on the road Estimation amount of snow eposits on the roa Olga. Glaysheva oronezh State University of Architecture an Civil Engineering, Russia Email: glaov@ox.vsi.ru ABSTRACT The article uner consieration gives the

More information

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A

AN INTRODUCTION TO AIRCRAFT WING FLUTTER Revision A AN INTRODUCTION TO AIRCRAFT WIN FLUTTER Revision A By Tom Irvine Email: tomirvine@aol.com January 8, 000 Introuction Certain aircraft wings have experience violent oscillations uring high spee flight.

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

First Name: Last Name: Section: 1. March 26, 2008 Physics 207 EXAM 2

First Name: Last Name: Section: 1. March 26, 2008 Physics 207 EXAM 2 First Name: Last Name: Section: 1 March 26, 2008 Physics 207 EXAM 2 Please print your name and section number (or TA s name) clearly on all pages. Show all your work in the space immediately below each

More information

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader Modeling a powertrain in Simscape in a modular vehicle component model library Stuttgart, 24.09.2015, MBtech, Jörn Bader Contents { Introduction initial situation { Driving performance and consumption

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Wind turbine operating principle and aerodynamics (Part 3/4)

Wind turbine operating principle and aerodynamics (Part 3/4) Win turbine operating principle an aeroynamics (Part /4) Ene-47.5140 Win Energy Ville Lehtomäki, VTT Win Power 1.9.015 Content Power of the win Betz law 1-D Momentum principle Angular momentum principle

More information

Real-time energy management of the Volvo V60 PHEV based on a closed-form minimization of the Hamiltonian

Real-time energy management of the Volvo V60 PHEV based on a closed-form minimization of the Hamiltonian Real-time energy management of the Volvo V6 PHEV based on a closed-form minimization of the Hamiltonian Viktor Larsson 1, Lars Johannesson 1, Bo Egardt 1 Andreas Karlsson 2, Anders Lasson 2 1 Department

More information

Antiderivatives and Indefinite Integration

Antiderivatives and Indefinite Integration 60_00.q //0 : PM Page 8 8 CHAPTER Integration Section. EXPLORATION Fining Antierivatives For each erivative, escribe the original function F. a. F b. F c. F. F e. F f. F cos What strateg i ou use to fin

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXIII No

International Conference KNOWLEDGE-BASED ORGANIZATION Vol. XXIII No International Conference KNOWLEDGE-BAED ORGANIZATION Vol. XXIII No 3 2017 METHOD FOR DETERMINATION OF THE PARAMETER OF A MACHINE GUN UPENION MOUNTED ON AN ARMOURED VEHICLE vilen PIRDONOV, vilen TEFANOV

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive

Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlled Induction Motor Drive Experimental Determination of Mechanical Parameters in Sensorless Vector-Controlle Inuction Motor Drive V. S. S. Pavan Kumar Hari, Avanish Tripathi 2 an G.Narayanan 3 Department of Electrical Engineering,

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Newton s 3 rd Law. Book page 48-49

Newton s 3 rd Law. Book page 48-49 Newton s 3 rd Law Book page 48-49 14/9/2016 cgrahamphysics.com 2016 Newton s 2 nd Law problem Newton s second law does not always work: - does not work when applied to atoms and molecules - does not work

More information

Final Exam: Sat 12 Dec 2009, 09:00-12:00

Final Exam: Sat 12 Dec 2009, 09:00-12:00 MATH 1013 SECTIONS A: Professor Szeptycki APPLIED CALCULUS I, FALL 009 B: Professor Toms C: Professor Szeto NAME: STUDENT #: SECTION: No ai (e.g. calculator, written notes) is allowe. Final Exam: Sat 1

More information

MECH 3140 Final Project

MECH 3140 Final Project MECH 3140 Final Project Final presentation will be held December 7-8. The presentation will be the only deliverable for the final project and should be approximately 20-25 minutes with an additional 10

More information

ECE 422 Power System Operations & Planning 7 Transient Stability

ECE 422 Power System Operations & Planning 7 Transient Stability ECE 4 Power System Operations & Planning 7 Transient Stability Spring 5 Instructor: Kai Sun References Saaat s Chapter.5 ~. EPRI Tutorial s Chapter 7 Kunur s Chapter 3 Transient Stability The ability of

More information

EF 151 Final Exam, Fall, 2015 Page 3 of 10

EF 151 Final Exam, Fall, 2015 Page 3 of 10 EF 151 Final Exam, Fall, 2015 Page 3 of 10 Name: Multiple choice questions: 1 point each 1. The acceleration of gravity in mile/min 2 is: a. 1.69x10-6 mile/min 2 b. 21.9 mile/min 2 c. 47.2 mile/min 2 d.

More information

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains

Hyperbolic Systems of Equations Posed on Erroneous Curved Domains Hyperbolic Systems of Equations Pose on Erroneous Curve Domains Jan Norström a, Samira Nikkar b a Department of Mathematics, Computational Mathematics, Linköping University, SE-58 83 Linköping, Sween (

More information

Ch.7 #4 7,11,12,18 21,24 27

Ch.7 #4 7,11,12,18 21,24 27 Ch.7 #4 7,,,8,4 7 4. Picture the Problem: The farmhan pushes the hay horizontally. 88 N Strategy: Multiply the force by the istance because in this case the two point along the same irection. 3.9 m Solution:

More information

Physics 170 Week 7, Lecture 2

Physics 170 Week 7, Lecture 2 Physics 170 Week 7, Lecture 2 http://www.phas.ubc.ca/ goronws/170 Physics 170 203 Week 7, Lecture 2 1 Textbook Chapter 12:Section 12.2-3 Physics 170 203 Week 7, Lecture 2 2 Learning Goals: Learn about

More information

To understand how scrubbers work, we must first define some terms.

To understand how scrubbers work, we must first define some terms. SRUBBERS FOR PARTIE OETION Backgroun To unerstan how scrubbers work, we must first efine some terms. Single roplet efficiency, η, is similar to single fiber efficiency. It is the fraction of particles

More information

AMME3500: System Dynamics & Control

AMME3500: System Dynamics & Control Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

PD Controller for Car-Following Models Based on Real Data

PD Controller for Car-Following Models Based on Real Data PD Controller for Car-Following Moels Base on Real Data Xiaopeng Fang, Hung A. Pham an Minoru Kobayashi Department of Mechanical Engineering Iowa State University, Ames, IA 5 Hona R&D The car following

More information

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec The exam is closed book and closed notes. Part I: There are 1 multiple choice questions, 1 point each. The answers for the multiple choice questions are to be placed on the SCANTRON form provided. Make

More information

Physics 141. Lecture 8.

Physics 141. Lecture 8. Physics 141. Lecture 8. Conservation of energy! Changing kinetic energy into thermal energy. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 08, Page 1 Outline.

More information

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS UNIVERSITY OF SASKATCHEWAN GE 226.3 MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT NUMBER: EXAMINATION

More information

Gravity. Announcement. Topics in Chapter 5. Topics for Today. PHYS 1403 Introduction to Astronomy. Motion. Chapter 5. Exam 1

Gravity. Announcement. Topics in Chapter 5. Topics for Today. PHYS 1403 Introduction to Astronomy. Motion. Chapter 5. Exam 1 PHYS 1403 Introduction to Astronomy Gravity Chapter 5 Announcement Exam 1 February 21 st 2018 2:25pm 3:40 pm during class time Chapter 1,2,3,4 and 5 40 Multiple Questions. One short answer essay type question.

More information

Optimization of a point-mass walking model using direct collocation and sequential quadratic programming

Optimization of a point-mass walking model using direct collocation and sequential quadratic programming Optimization of a point-mass walking moel using irect collocation an sequential quaratic programming Chris Dembia June 5, 5 Telescoping actuator y Stance leg Point-mass boy m (x,y) Swing leg x Leg uring

More information

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Loop-the-loop Drag force Terminal velocity Direction

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error

More information

Torque OBJECTIVE INTRODUCTION APPARATUS THEORY

Torque OBJECTIVE INTRODUCTION APPARATUS THEORY Torque OBJECTIVE To verify the rotational an translational conitions for equilibrium. To etermine the center of ravity of a rii boy (meter stick). To apply the torque concept to the etermination of an

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information