An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions

Size: px
Start display at page:

Download "An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions"

Transcription

1 An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions H. V. Poor Princeton University March 17, 5 Exercise 1: Let {h k,l } denote the impulse response of a general discrete-time linear filter. The output at time n due to the input signal is n l=1 h n,l s l, and that due to noise is n l=1 h n,l N l.thus the output SNR at time n is SNR = n l=1 h n,l s l E{( n l=1 h n,l N l ) = ht ns h T nσ N h n where h n =(h n,1,h n,,...,h n,n ) T. Since Σ N >, we can write Σ N = Σ 1/ N Σ 1/ N when Σ 1/ N is invertible and symmetric. Thus, SNR = (Σ1/ N h n ) T Σ 1/ N s Σ 1/ N h n By the Schwarz Inequality ( x T y x y, we have SNR Σ 1/ N s with equality if and only if Σ 1/ N h n = λσ 1/ N s for a constant λ. Thus, max SNR occurs when h n = λσ 1 N s. The constant λ is arbitrary (it does not affect SNR), so we can take λ = 1, which gives the desired result. Exercise 3: a. From Exercise 15 of Chapter II, the optimum test here has critical regions: Γ k = {y R n p k (y) = 1 max p l(y)}. l M 1

2 Since p l is the N(s l,σ I) density, this reduces to Γ k = {y R n y s k = min y s l } l M 1 = {y R n s T k y = max l M 1 st l y}. b. We have P e = 1 M P k (Γ c M k), k= and P k (Γ c k)=1 P k (Γ k )=1 P k ( max l k M 1 st l Y <s T k Y ) Due to the assumed orthogonality of s 1,,s n, it is straighforward to show that, under H k, s T 1 Y,s T Y,,s T ny, are independent Gaussian random variable with variances σ s 1, and with means zero for l k and mean s 1 for l = k. Thus Now = P k ( max l k M 1 st l Y <s T k Y ) 1 P k ( max πσ s1 l k M 1 st LY <z) e (z s 1 )/σ s 1 P k ( max l k M 1 st LY <z)=p k ( {s T l Y <z}) l k M 1 = P k (s T l Y <z) l k M 1 [ ] M 1 z = Φ( σ s 1 ). Combining the above and setting x = z/σ s 1 yields dz 1 P k (Γ k )= 1 [Φ(x)] M 1 e (x d) dx, k =,,M 1, π and the desired expression for P e follows. Exercise 6: Since Y N(µ, Σ), it follows that Ŷk is linear in Y 1,,Y k 1, and that ˆσ Y k does not depend on Y 1,,Y k 1. Thus, I is a linear transformation of Y and is Gaussian. We need only show that E{I} and cov(i) =I. = We have E{I k } = E{Y k} E{Ŷk}. ˆσ k

3 Since Ŷk = E{Y k Y 1,,Y k 1 }, E{Ŷk} is an iterated expectation of Y k ; hence E{Y k } = E{Ŷk} and E{I k } =,k =1,,n. To see that cov(i) =I, note first that Var (I k )=E{I k} = E{(Y k Ŷk) } ˆσ Y k = ˆσ Y k ˆσ Y k =1. Now, for l<k, we have cov (I k,i l ) = E{I k I l } = E{(Y k Ŷk)(Y l Ŷl)} ˆσ Yk ˆσ Yl. Noting that E{(Y k Ŷk)(Y l Ŷl)} = E{E{(Y k Ŷk)(Y l Ŷl) Y 1,,Y k 1 }} = E{(E{Y k Y 1,,Y k 1 } Ŷk)(Y l Ŷl)} = E{(Ŷk Ŷk)(Y l Ŷl)} =, we have cov(i k,i l ) = for l<k. By symmetry we also have cov(i k,i l ) = for l>k, and the desired result follows. Exercise 7: a. The likelihood ratio is L(y) = 1 est Σ 1 y d / + 1 e st Σ 1 y d / = e d / cosh s T Σ 1 y, which is monotone increasing in the statistic T (y) s T Σ 1 y. (Here, as usual, d = s T Σ 1 s.) Thus, the Neyman-Pearson test is of the form To set the threshold η, we consider 1 if T (y) >η δ NP (y) = γ, if T (y) =η if T (y) <η. P (T (Y ) >η)=1 P ( η s T Σ 1 N η ) =1 Φ(η/d)+Φ( η/d) = [1 Φ(η/d)], 3

4 where we have used the fact that s T Σ 1 N is Gaussian with zero mean and variance d. Thus, the threshold for size α is The randomization is unnecessary. The detection probability is = 1 η = dφ 1 (1 α/). P D ( δ NP )= 1 P 1(T (Y ) >η Θ = +1) + 1 P 1(T (Y ) >η Θ = 1) [ 1 P ( η d + s T Σ 1 N η )] + 1 [ 1 P ( η +d + s T Σ 1 N η )] = Φ ( Φ 1 (1 α/) + d ) Φ ( Φ 1 (1 α/) d ). b. Since the likelihood ratio is the average over the distribution of Θ of the likelihood ratio conditioned on Θ, we have L(y) = 1 πσθ e (θst y nθ s /)/σ e θ /σ θ dθ where and = k 1 e k s T y 1 πv e (θ µ) /v dθ = k 1 e k s T y, v = σ θn s σ θ σ + n s, µ = v s T y, k 1 = v, σ θ k = v 4. Exercise 13: a. In this situation, the problem is that of detecting a Gaussian signal with zero mean and covariance matrix Σ S = diag{as 1,As,...,As n}, in independent i.i.d. Gaussian noise with unit variance; and thus the Neyman-Pearson test is based on the quadratic statistic n As k T (y) = As k. k +1y 4

5 b. Assuming s k, for all k, a sufficient condition for a UMP test is that s k is constant. In this case, an equivalent test statistic is the radiometer n y k, which can be given size α without knowledge of A. c. From Eq. (III.B.11), we see that an LMP test can be based on the statistic Exercise 15: n T lo (y) = s kyk. Let L a denote the likelihood ratio conditioned on A = a. Then the undonditioned likelihood ratio is L(y) = L a (y)p A (a)da = e na /4σ I (a ˆr/σ )p A (a)da, with ˆr r/a, where r = y c + y s as in Example III.B.5. Note that ( n ˆr = ) ( n ) b k cos((k 1)ω c T s )y k + b k sin((k 1)ω c T s )y k, which can be computed without knowledge of A. Note further that L(y) = 1 e na /4σ a I ˆr σ (a ˆr/σ )p A (a)da >, where we have used the fact that I is monotone increasing in its argument. Thus, L(y) is monotone increasing in ˆr, and the Neyman-Pearson test is of the form 1 if ˆr>τ δ NP (y) = γ, if ˆr = τ. if ˆr<τ To get size α we choose τ so that P ( ˆR >τ )=α. From (III.B.7), we have that P ( ˆR >τ )=e (τ ) /nσ, from which the size-α desired threshold is τ = nσ log α. The detection probability can be found by first conditioning on A and then averaging the result over the distribution of A. (Note that we have not used the explicit form of the distribution of A to derive any of the above results.) It follows from (III.B.74) that P 1 ( ˆR >τ A = a) =Q(b, τ ) with b = na /σ and τ = /nτ /σ = log α. Thus, P D = Q( a σ n/,τ )p A (a)da = τ xe (x +na /σ )/ I (x a σ 5 n/) a A e a /A dxda

6 where a = = xe x / a e a /a τ A I (x a n/)dadx, σ A σ na +σ. On making the substitution y = a/a, this integral becomes P D = a xe x (1 b )/ ye (y +b A x )/ I (b xy)dydx = a xe x (1 b)/ Q(b τ A x, )dx, τ where b = na /σ. Since Q(b, ) = 1 for any value of b, and since 1 b = a /A, the detection probability becomes where x = 1 P D = a A τ. 1+ na σ Exercise 16: xe x (1 b )/ dx = e τ (1 b )/ = exp( τ ( 1+ na σ ))=α x, The right-hand side of the given equation is simply the likelihood ratio for detecting a N (, Σ S ) signal in independent N (,σ I) noise. From Eq. (III.B.84), this is given by exp( 1 σ yt Σ S (σ I + Σ S ) 1 y + 1 log( σ I / σ I + Σ S )). We thus are looking for a solution Ŝ to the equation ŜT y Ŝ = y T Σ S (σ I + Σ S ) 1 y + σ n σ log( ), σ + λ k where λ 1,λ,...,λ n are the eigenvalues of Σ S. On completing the square on the left-hand side of this equation, it can be rewritten as n Ŝ y = y y T Σ S (σ I + Σ S ) 1 y σ σ log( ) σ + λ k n σ [y T (σ I + Σ S ) 1 σ ] y log( ), σ + λ k which is solved by Ŝ = y ± for any nonzero vector v. σ [ y T (σ I + Σ S ) 1 y v 6 n σ ] 1/ log( ) v, σ + λ k

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters

ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters ECE531 Lecture 6: Detection of Discrete-Time Signals with Random Parameters D. Richard Brown III Worcester Polytechnic Institute 26-February-2009 Worcester Polytechnic Institute D. Richard Brown III 26-February-2009

More information

ECE531 Lecture 8: Non-Random Parameter Estimation

ECE531 Lecture 8: Non-Random Parameter Estimation ECE531 Lecture 8: Non-Random Parameter Estimation D. Richard Brown III Worcester Polytechnic Institute 19-March-2009 Worcester Polytechnic Institute D. Richard Brown III 19-March-2009 1 / 25 Introduction

More information

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III 1 / 7 Neyman

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses.

Homework 7: Solutions. P3.1 from Lehmann, Romano, Testing Statistical Hypotheses. Stat 300A Theory of Statistics Homework 7: Solutions Nikos Ignatiadis Due on November 28, 208 Solutions should be complete and concisely written. Please, use a separate sheet or set of sheets for each

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 830 Fall 0 Statistical Signal Processing instructor: R. Nowak Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(0, σ I n n and S = [s, s,..., s n ] T

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Gaussian Processes 1. Schedule

Gaussian Processes 1. Schedule 1 Schedule 17 Jan: Gaussian processes (Jo Eidsvik) 24 Jan: Hands-on project on Gaussian processes (Team effort, work in groups) 31 Jan: Latent Gaussian models and INLA (Jo Eidsvik) 7 Feb: Hands-on project

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

ECE531 Lecture 4b: Composite Hypothesis Testing

ECE531 Lecture 4b: Composite Hypothesis Testing ECE531 Lecture 4b: Composite Hypothesis Testing D. Richard Brown III Worcester Polytechnic Institute 16-February-2011 Worcester Polytechnic Institute D. Richard Brown III 16-February-2011 1 / 44 Introduction

More information

The problem is to infer on the underlying probability distribution that gives rise to the data S.

The problem is to infer on the underlying probability distribution that gives rise to the data S. Basic Problem of Statistical Inference Assume that we have a set of observations S = { x 1, x 2,..., x N }, xj R n. The problem is to infer on the underlying probability distribution that gives rise to

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

Multi User Detection I

Multi User Detection I January 12, 2005 Outline Overview Multiple Access Communication Motivation: What is MU Detection? Overview of DS/CDMA systems Concept and Codes used in CDMA CDMA Channels Models Synchronous and Asynchronous

More information

10. Composite Hypothesis Testing. ECE 830, Spring 2014

10. Composite Hypothesis Testing. ECE 830, Spring 2014 10. Composite Hypothesis Testing ECE 830, Spring 2014 1 / 25 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve unknown parameters

More information

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell,

If there exists a threshold k 0 such that. then we can take k = k 0 γ =0 and achieve a test of size α. c 2004 by Mark R. Bell, Recall The Neyman-Pearson Lemma Neyman-Pearson Lemma: Let Θ = {θ 0, θ }, and let F θ0 (x) be the cdf of the random vector X under hypothesis and F θ (x) be its cdf under hypothesis. Assume that the cdfs

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit

Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Convergence of Square Root Ensemble Kalman Filters in the Large Ensemble Limit Evan Kwiatkowski, Jan Mandel University of Colorado Denver December 11, 2014 OUTLINE 2 Data Assimilation Bayesian Estimation

More information

Chapter 4: Asymptotic Properties of the MLE (Part 2)

Chapter 4: Asymptotic Properties of the MLE (Part 2) Chapter 4: Asymptotic Properties of the MLE (Part 2) Daniel O. Scharfstein 09/24/13 1 / 1 Example Let {(R i, X i ) : i = 1,..., n} be an i.i.d. sample of n random vectors (R, X ). Here R is a response

More information

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1

F2E5216/TS1002 Adaptive Filtering and Change Detection. Course Organization. Lecture plan. The Books. Lecture 1 Adaptive Filtering and Change Detection Bo Wahlberg (KTH and Fredrik Gustafsson (LiTH Course Organization Lectures and compendium: Theory, Algorithms, Applications, Evaluation Toolbox and manual: Algorithms,

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis. Vector spaces DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Vector space Consists of: A set V A scalar

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Convexity Properties of Detection Probability for Noncoherent Detection of a Modulated Sinusoidal Carrier

Convexity Properties of Detection Probability for Noncoherent Detection of a Modulated Sinusoidal Carrier Convexity Properties of Detection Probability for Noncoherent Detection of a Modulated Sinusoidal Carrier Cuneyd Ozturk, Berkan Dulek, Member, IEEE, and Sinan Gezici, Senior Member, IEEE Abstract In this

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Lecture Note 12: Kalman Filter

Lecture Note 12: Kalman Filter ECE 645: Estimation Theory Spring 2015 Instructor: Prof. Stanley H. Chan Lecture Note 12: Kalman Filter LaTeX prepared by Stylianos Chatzidakis) May 4, 2015 This lecture note is based on ECE 645Spring

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

y = 1 N y i = 1 N y. E(W )=a 1 µ 1 + a 2 µ a n µ n (1.2) and its variance is var(w )=a 2 1σ a 2 2σ a 2 nσ 2 n. (1.

y = 1 N y i = 1 N y. E(W )=a 1 µ 1 + a 2 µ a n µ n (1.2) and its variance is var(w )=a 2 1σ a 2 2σ a 2 nσ 2 n. (1. The probability density function of a continuous random variable Y (or the probability mass function if Y is discrete) is referred to simply as a probability distribution and denoted by f(y; θ) where θ

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

{η : η=linear combination of 1, Z 1,, Z n

{η : η=linear combination of 1, Z 1,, Z n If 3. Orthogonal projection. Conditional expectation in the wide sense Let (X n n be a sequence of random variables with EX n = σ n and EX n 0. EX k X j = { σk, k = j 0, otherwise, (X n n is the sequence

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

arxiv: v1 [stat.ml] 5 Jan 2015

arxiv: v1 [stat.ml] 5 Jan 2015 To appear on the Annals of Statistics SUPPLEMENTARY MATERIALS FOR INNOVATED INTERACTION SCREENING FOR HIGH-DIMENSIONAL NONLINEAR CLASSIFICATION arxiv:1501.0109v1 [stat.ml] 5 Jan 015 By Yingying Fan, Yinfei

More information

Lectures 6 7 : Marchenko-Pastur Law

Lectures 6 7 : Marchenko-Pastur Law Fall 2009 MATH 833 Random Matrices B. Valkó Lectures 6 7 : Marchenko-Pastur Law Notes prepared by: A. Ganguly We will now turn our attention to rectangular matrices. Let X = (X 1, X 2,..., X n ) R p n

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

GEOMETRY HW (t, 0, e 1/t2 ), t > 0 1/t2, 0), t < 0. (0, 0, 0), t = 0

GEOMETRY HW (t, 0, e 1/t2 ), t > 0 1/t2, 0), t < 0. (0, 0, 0), t = 0 GEOMETRY HW CLAY SHONKWILER Consider the map.5.0 t, 0, e /t ), t > 0 αt) = t, e /t, 0), t < 0 0, 0, 0), t = 0 a) Prove that α is a differentiable curve. Proof. If we denote αt) = xt), yt), zt0), then it

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26. Estimation: Regression and Least Squares

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26. Estimation: Regression and Least Squares CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26 Estimation: Regression and Least Squares This note explains how to use observations to estimate unobserved random variables.

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Chapter 2 Signal Processing at Receivers: Detection Theory

Chapter 2 Signal Processing at Receivers: Detection Theory Chapter Signal Processing at Receivers: Detection Theory As an application of the statistical hypothesis testing, signal detection plays a key role in signal processing at receivers of wireless communication

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Detection Theory. Composite tests

Detection Theory. Composite tests Composite tests Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu Chapter 5: Correction Thu I claimed that the above, which is the most general

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Parameter estimation: ACVF of AR processes

Parameter estimation: ACVF of AR processes Parameter estimation: ACVF of AR processes Yule-Walker s for AR processes: a method of moments, i.e. µ = x and choose parameters so that γ(h) = ˆγ(h) (for h small ). 12 novembre 2013 1 / 8 Parameter estimation:

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015 EECS564 Estimation, Filtering, and Detection Exam Week of April 0, 015 This is an open book takehome exam. You have 48 hours to complete the exam. All work on the exam should be your own. problems have

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 56 Table of Contents Multiple linear regression Linear model setup Estimation of β Geometric interpretation Estimation of σ 2 Hat matrix Gram matrix

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

DIFFERENTIAL GEOMETRY HW 12

DIFFERENTIAL GEOMETRY HW 12 DIFFERENTIAL GEOMETRY HW 1 CLAY SHONKWILER 3 Find the Lie algebra so(n) of the special orthogonal group SO(n), and the explicit formula for the Lie bracket there. Proof. Since SO(n) is a subgroup of GL(n),

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

III.B Linear Transformations: Matched filter

III.B Linear Transformations: Matched filter III.B Linear Transformations: Matched filter [p. ] Definition [p. 3] Deterministic signal case [p. 5] White noise [p. 19] Colored noise [p. 4] Random signal case [p. 4] White noise [p. 4] Colored noise

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 6: Probability and Random Processes Problem Set 3 Spring 9 Self-Graded Scores Due: February 8, 9 Submit your self-graded scores

More information

MAS3301 Bayesian Statistics

MAS3301 Bayesian Statistics MAS3301 Bayesian Statistics M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2008-9 1 11 Conjugate Priors IV: The Dirichlet distribution and multinomial observations 11.1

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Log Covariance Matrix Estimation

Log Covariance Matrix Estimation Log Covariance Matrix Estimation Xinwei Deng Department of Statistics University of Wisconsin-Madison Joint work with Kam-Wah Tsui (Univ. of Wisconsin-Madsion) 1 Outline Background and Motivation The Proposed

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information