Aerostatic Lift of Helium and K Hydrogen in the Atmosphere

Size: px
Start display at page:

Download "Aerostatic Lift of Helium and K Hydrogen in the Atmosphere"

Transcription

1 NCAR-TN/IA-69 Vt 5> Aerostatic Lift of Helium and K Hydrogen in the Atmosphere J. C. WARREN / A': J. H. SMALLEY A. L. MORRIS December 1971./ ft.' 'v NATIONAL CENTER FOR ATMOSPHERIC RESEARCH /Y?o / Boulder, Colorado,/ )

2

3 iii PREFACE An understanding of the buoyancy of light gases in the atmosphere is often essential to individuals involved in the use of balloons for scientific experiments. The purpose of this report is to provide a simple and accurate method of making buoyancy calculations of lift gases. A table is included which gives pertinent model atmospheric data when the use of real atmospheric data is unnecessary.

4

5 v CONTENTS Preface iii I. INTRODUCTION II. BUOYANCY OF LIFT GASES... 2 III. PRESSURE, TEMPERATURE, DENSITY, AND HEIGHT IN THE ATMOSPHERE... 5 IV. PROPERTIES OF THE U.S. Standard Atmosphere, V. DEVIATIONS FROM THE U.S. Standard Atmosphere, VI. SAMPLE PROBLEMS TABLE References... * 79

6

7 1 I. INTRODUCTION A TabZe of Atmospheric Properties for Lifts of HeZium and Hydrogen was prepared in to provide a ready source of information about the lift of helium and hydrogen gases in air. Since then the TabZe has been used by balloon designers, by those who plan and fly scientific balloon flights, and by scientists whose experiments are flown on balloons. The TabZe of Aerostatic Lift of HeZium and Hydrogen in the Atmosphere, presented in this report, was subsequently developed: the original report was expanded to include lower pressures than were previously available and data were added to give mass of air above specified pressure levels. A discussion of the buoyancy of lift gases is presented in Sect. II; the relationships among pressure, temperature, density, and height are discussed in Sect. III. In Sect. IV the properties of the U.S. Standard Atmosphere, 1962, are discussed and equations are given for generating the values of Cols. 1-4 of the Table. Section V touches on deviations from the standard model atmosphere and Sect. VI presents examples of the use of the Table. The variables presented in Cols are more general than those in Cols. 1-5 and are valid in any atmosphere in which the mixture of atmospheric gases has the same molecular weight as air, and in which the pressure-to-temperature ratio in the lift gas and in the atmosphere are the same. That ratio must also be equal to the ratio of pressureto-temperature given in the Table. Although these restrictions are not particularly limiting to either the balloon designer or the scientist, the balloon flight crew must keep them in mind. Prepared and reproduced by the Scientific Balloon Facility, NCAR, December 1967.

8 2 II. BUOYANCY OF LIFT GASES Archimedes' principle states that if a body is submerged in a fluid, a force equal to the weight of the displaced fluid will act in an upward direction, tending to support the body. (buoyancy) is expressed as In ballooning, this force B= W - (1) a g where B = the buoyant force or lift W = the weight of air displaced by gas a W = weight of displacing gas g W gp V and W = gp V, where g is the acceleration due to a ag g gg gravity, pa and p are the densities of the air and gas, respectively, and V is the volume of the gas. The volume of the gas is very nearly equal to the volume of the displaced air and is used in its place in the equation for W. a Equation (1) may be written B = gvg(p a - pg) (2) Rearranging Eq. (2) B = gvgpa - (3) Then, from the equation of state, PM P RT (4) pt

9 3 we have / P T M \ B= g B = a 1 PvgaT M g (5) a g a where P = pressure M = molecular weight T = absolute temperature R is the universal gas constant and the subscripts a and g refer to air and gas, respectively. Equation (5) becomes B = gv p (6) -Ma if P T /P T - 1. g a a g Although this condition is rarely fulfilled exactly and the assumption that V = V is not always justified, Eq. (6) is nevertheless a good a g enough approximation to be very useful in ballooning, and it involves variables which can be determined in either real or model atmospheres. To determine the buoyancy of a unit volume of gas in air, both sides of Eq. (6) may be divided by V, giving / M \ b = gpa - (7) a in which b is specific buoyancy. Finally, the mass that can be lifted by a unit volume of gas in air is obtained by dividing both sides of Eq. (7) by g. Thus m -Pa b - Ma g (8)

10 4 The values in Col. 8 of the Table were computed for pure hydrogen having a molecular weight of in an air environment with a molecular weight of This was done by substituting the air density values given in Col. 6 in Eq. (8). The values in Col. 9 were similarly computed from Eq. (8) using a molecular weight of for helium. The values in Col. 10 were computed by multiplying corresponding values in Col. 9 by the constant x 10-2 to convert kilograms per cubic meter to pounds (mass) per cubic foot. Column 7, "gas expansion," consists of values of the ratio PSTP/P in which p is the density on the corresponding line of the Table and PSTp is the density of the air at standard temperature and pressure (15 C and mb, respectively). Gas expansion may be viewed as the volume that a mass of gas occupying a unit volume at standard temperature and pressure would occupy if its density were changed from PSTp to p. The values in Cols are generally applicable in an atmosphere in which the molecular weight of the air is The molecular weight of the air in the earth's atmosphere varies only slightly below 90 km; this variation is due chiefly to the variation in the proportion of water vapor in the air and is not important to scientific ballooning.

11 5 III. PRESSURE, TEMPERATURE, DENSITY, AND HEIGHT IN THE ATMOSPHERE Atmospheric pressure is a measure of the weight of the atmosphere above the level of observation in a column of air having a unit crosssectional area. At higher levels, the pressure is less than at lower levels since there is less mass above. Atmospheric pressure is a function of height, and the two are related through the hydrostatic equation dp = -g adz (9) a a where Z is geometric height. Sect. II.) (The other symbols are as defined in Since g is a function of Z, it is common practice to simplify Eq. (9) to dp = -g padh (10) a oa in which go is a defined constant and H is the geopotential height. the sea level value of g is used as g, H differs from Z by less than 1% at all atmospheric levels that are of interest in scientific ballooning. The two heights are related as follows: If dh = (11) dz go If pa is a known function of H, Eq. (10) may be integrated to yield P as a function of H. Normally, however, in making atmospheric sounda ings, T and P are measured at all levels and H must be calculated. a a Combining Eqs. (4) and (10) gives R T dh dp (12) gma P a o a a If T is known as a function of P (as it normally is from sounding a a data), Eq. (12) can be integrated to yield H as a function of P. The

12 6 density, p, may also be calculated from these data and substituted into Eq. (8) to yield the mass that a unit volume of gas will support as a function of height and pressure. A scientist who plans to fly an experiment on a balloon usually specifies the height or pressure at which the experiment is to be flown and provides information on the mass of the experimental equipment. The balloon designer then determines what the volume of the balloon must be. Since he cannot know precisely what the distribution of pressure and temperature will be in the real atmosphere in which the balloon will fly, he uses an assumed distribution such as that of the U.S. Standard Atmosphere, 1962 (which is almost exclusively used in the United States for scientific balloon design and planning purposes). The values in Cols. 1-5 in the Table were derived from the U.S. Standard Atmosphere, 1962 (as explained more fully in Sect. IV). Because that model atmosphere is a fair approximation of the real, mean atmosphere in middle latitudes, the Table provides good working values for most scientific ballooning needs. The density values (Col. 6) are consistent with the pressure values (Col. 1) and the temperature values (Col. 5), but any combination of pressure and temperature having the same ratio of P /T as those on a given line in the Table will yield a a the density value found on that line. Thus, although the values in Cols are arranged so they can be readily used with the U.S. Standard Atmosphere, 1962 (described by the data in the first five columns), they are not uniquely determined by pressure or temperature in the real atmosphere.

13 7 IV. PROPERTIES OF THE U.S. STANDARD ATMOSPHERE, 1962 The U.S. Standard Atmosphere, 1962, can be described as a model atmosphere in which temperature, acceleration due to gravity, and molecular weight are defined as functions of height, and in which sea level pressure and the essential physical constants are specified. It is specifically defined up to 61,000 geopotential meters (gpm) as follows: (a) The air is a dry gas devoid of moisture, water vapor, and dust, and it obeys the perfect gas law. (b) The air conforms to the following definitions of physical constants: Sea level air density p = kg/m 3 = lb/ft 3 Sea level temperature T = 15 C = 59 F = K = R o Sea level pressure, P = mb = x 105 newtons/m 2 0 = lbf/ft 2 Sea level acceleration due to gravity g = m/sec 2 = ft/sec 2 Sea level molecular weight M = kg/kg-mol Universal gas constant R = x 103 J/ K(kg-mol) (c) Temperature varies with geopotential height up to 61 gpm as shown in the following table.

14 8 Base to Top Temperature at Base Temperature Pressure Density of Layer Gradient at Base at Base (gpm) (K) ( C) dt (mb) (kg/m 3 ) 0-11, ,000-20, ,000-32, ,000-47, ,000-52, ,000-61, Equation (12) can be solved for the U.S. Standard Atmosphere, 1962, to yield a one-to-one correspondence between P and H. Let P be the ~a a pressure and T the temperature at a given level within a layer, PB and TB the pressure and temperature at the base of the layer, H the geopotential at the base of the layer, and L the temperature gradient in relation to the geopotential (i.e., L'= dt/dh). Since L' is constant within each of the layers of the U.S. Standard Atmosphere, 1962, the temperature within each layer may be written Ta = T + L ' H-H) (13) which, when substituted into Eq. (12), gives dp dh R a TB + L' (H-H) gom P (14) *DB B -oa a This may be integrated to yield TPB BL R/goMa H = HB (15) H~~~ =a,/, ;

15 9 for layers in which L' 0 and RT P H=H B B B + Zn (16) 0o a a for layers in which L = 0. Equations (4), (13), (15), and (16) and the data which define the standard atmosphere were used to calculate the values for pressure, temperature, density, and gas expansion in the Table. These values were used in turn to calculate the helium and hydrogen specific lifts. The data in Col. 2, "integrated air mass," is the mass of air in kilograms in a column of air having a cross-sectional area of 1 m 2 and extending from the pressure surface shown in the first column upward to space; it is valid only in the U.S. Standard Atmosphere, A general method for calculating integrated air mass for any atmosphere in which pressure is known as a function of height is given by Morris (1970), who also derived the following empirical relationships: m = 10 P a x 10-3 log Pa (17) P = 0.10 m /( x 10-3 log 0 Ma) (18) Equation (17) was used to calculate the data in Col. 2.

16 10 V. DEVIATIONS FROM THE U.S. STANDARD ATMOSPHERE, 1962 The U.S. Standard Atmosphere, 1962, is a defined, constant atmosphere and since the real atmosphere is highly variable, the two may be expected to differ markedly at times. Numerous supplementary atmospheres have also been defined, each providing a guide to.the state of the real atmosphere at some particular latitude and season. For the purpose of this report, density is the variable of primary interest. Figure 1, from U.S. Standard Atmosphere Supplements, 1966, provides a means of obtaining a factor which may be applied to the density value as given in the Table to determine a value more appropriate to the season and location in the real atmosphere. The factor is given as a function of height in Fig. 1 and can therefore be used with the Table to obtain a density-height relationship corresponding to that of a supplementary atmosphere. However, the corresponding pressure and temperature values from the Table will not be in consonance with those of the supplementary atmosphere.

17 N N. \ 45 N. I - Io II I I I Ia Cold I Annual January July J July 'January 50 t - I t \ 1 r t \ I Q \ wa \ m / 40 I < /o_ 'S i \--} DEPARTURE (percentage) N. January July 30 - / Mean t Co ol\ / IWarm o / DEPARTURE (percentage) Fig. 1 Percentage departure from standard of densities of certain nonstandard atmospheres given in U.S. Standard Atmosphere Supplement, 1966.

18 12 VI. SAMPLE PROBLEMS 1. Determine the altitude in the U.S. Standard Atmosphere, 1962, at which a balloon system having a gross mass (GM) of 2,721 kg and a volume (V) of 1 x 106 m 3 helium. Now will float when the balloon is inflated with GM V m where m is the mass that a unit volume of helium must lift. Note that GM is the gross mass of the balloon system excluding the mass of the lift gas but including that of the balloon; m is then x 10-3 kg/m 3. Column 9 of the Table lists m values of E-03 and E-03, corresponding to geopotential height values of 41,231 and 41,391 m. The solution of the problem is provided by linear interpolation of these values, which yields 41,366 m. 2. Determine the volume of a helium-filled balloon required to support a gross mass of 6,000 lb at a height of 135,600 ft in the U.S. Standard Atmosphere, From the relationship used in Example 1 GM m Substitution of the value given for the gross mass and the value of m found in Col. 10 of the Table corresponding to a height of 135,600 ft, gives V = 6000/ x 10-4, or approximately 35.2 x 106 ft Another method for determining volume is to multiply the gas expansion factor for the desired height by the product of the gross mass and the volume of gas required to support a unit mass at sea level (i.e., ft 3 /lb) x x = 35.2 x 106 ft 3

19 13 4. The terminal velocity of a parachute at any level, v, may be compared to the terminal velocity at any other level, v, by means of 2 the following equation: v =v /p in which p /p is the ratio of the air densities at the two levels. 2 1 Usually the parachute selected will give an acceptable terminal velocity at sea level. The gas expansion factor is then the density ratio needed for computing terminal velocity at any other density level. For example, compute the terminal velocity at 2.5 mb in the U.S. Standard Atmosphere, 1962, of a parachute system which has a terminal velocity of 22 ft/sec at sea level in that atmosphere. It is v = = 415 ft/sec 5. A balloon system that would float at 40,067 m in the U.S. Standard Atmosphere, 1962, will float at what altitude during July at Oslo, Norway? Oslo is located at 60 N. From the Table, the density at 40,067 m is found to be x 10-3 kg/m 3, which is also then the density of the balloon system. We must determine the altitude at which such a density occurs at Oslo in July. The actual altitude at which such a balloon system will float at Oslo cannot be determined unless the air density there is known as a function of height at the time of the balloon flight, but it can be estimated as follows. From Fig. 1, using the graph for July at 60 N, the percentage departure at 40 km is about +13%. Since the density is greater than standard, the balloon system can be expected to float at a higher level. Density at this higher level in the U.S. Standard Atmosphere, 1962, is given approximately by x 10-3/1.13 = x 10-3 where 1.13 is one plus the decimal departure from standard.

20 14 Using the Table, the density at 40,903 m is found by interpolation to be x 10-3 kg/m 3. Now the percentage departure at 40,903 m should be determined and if it is very different from the departure at 40,067 m, the procedure just followed should be repeated using the new departure. In this case the iteration is not warranted, and 40,903 m is accepted as the most suitable estimate of the float altitude that can be obtained using the aids given in this document. Statistical data based on observations made over a period of years at Oslo would provide a better estimate, but it would be fortuitous if the actual float altitude on any particular day should agree precisely with any a priori estimate we might make.

21 TABLE OF ATMOSPHERIC PROPERTIES AND LIFTS OF HELIUM AND HYDROGEN BASED ON GEOPOTENTIAL ALTITUDE SI (SYSTEME INTERNATIONALE) UNITS BASED ON U.S. STANDARD ATMOSPHERE, 1962 (LIFTS ARE BASED ON GRADE A HELIUM AND PURE HYDROGEN) H,n US STD ATM LAYERS ARE AS FOLLOWS, BASE TO TOP OF LAYER DEG K BASE DEG C TEMP GRADIENT P (AT BASE) DENSITY (BASE) 0.0 TO H METERS DEG C/H M MBS KG/M TO H METERS DEG C/H M MBS KG/M TO H METERS DEG C/H M MBS KG/M TO H METERS DEG C/H M MBS KG/M TO H METERS DEG C/H M MBS KG/M TO H METERS DEG C/H M..590 MBS KG/M TO H METERS ,0040 DEG C/H M..182 MBS KG/M TO H METERS *0000 DEG C/H H..010 MBS KG/M3

22 (1)....._._..(2) (3) (4) ( _.5_...)... (6).(.6..(_7) _ -- _ 8) -- ( 9.._J_--( P I.NTEGRATED H T RHO 0 GAS LIFT H2 H- LIEL JiE -- u.lift_e_ (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E _6 9E+ _..._9.._,.1 t I D F _072E _ -9_6_ E+.00.i.97?2_ 1,, E E E E E _..070E _ 16.8 _ E E E E P-69E E E E E E i E E E E E+04 _-2_53-83_0 _ 6_._. 2550E _i.1677e E E E _ E+00._ E 00.0_807E E tE+.0._978_ E E E-02 l_04_1 O_.063E E _ E_O_... _ 9E QO _ _ 1._062E E E+_ E+0_ E _ 1.061E E i631Et00O E E _8. _.060E+O4 _-204 _ E _. i622e _E E-02 _ 1037 _..05_9E E E00 1._0_757E0_0. 6_.7_151_ E E E E E i.5 7E_...057E E E E E * 0 56E E E E E-02 10_3_ E E E+00 i.0723e E E E E E E E E E E E E+04^ E E E E TO 1030

23 (1) (2) (3) (4) (5)(6) (7) (8)(9)(10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E, E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E, E E E E E E E E E E E E E E E E E E E E E E _90E-02_ E E i E E E E E, E, E E E ,2218E E+00 i.0529e+00.6._5732e TO 1010

24 (1)... (2)_... (3) (4) _ (5.). (6).._ (7) (8) (9) P - INTEGRATED._ T... RHO.. GAS LIFT H2 LIFT KE... LIFTHE (MB) (KG/M2)_.. (.) (FT) _(DEG C) (KG3 ) (KG/M3).G/M3) (LF l0._32et_ _ _ E E+00 i.0529e+o.6.._t32e- _ _._031E+0_4. _ , E+_ E E+00 _567_9E-_ E _ _ E , E+00_.0512E '626E _ 1._029E E E E F-_O E E E E E-02 10_ E ? E E+00 1,0487E E E E E+00 i.0479e E g025E E E QE+0Q 6,53._3E-& Et q E E Q462E f-02 _ E ,2130E E E E-02 0o E E E E E _ 1. 1,02_1E E E E E E E E E E E E E E+00 6,5Q6_ E T E+00 1, E E+00 6,4993E E E E E E E* E E E E o E E E E E E E E E E E E E E E E E E E E TO 990

25 (1) (2) (3) (4) (5) (6) (7) (8) (9) (0O) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E E E E E E E E Et E E* E E E E E E E E E Et E E , E E E E E E Et E E E E E E E E E E E E E E E E E E E E E E E , E E E E E E E E E E E E E+00 6,3987E-OZ E E EI E E E E E E E E E E E E E E E E E E Et E E E E E E E E E E EI00 i. 0190E E-02_ 990 TO 970

26 ( 1 ) (2) (3) ( 4 ) 5) (6) (7) (.. _ ll P INTEGRATED H..T RHQ. GAS LIFT_2 LIFT E. LIFT.. (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3).. (KG/M3). _/3) _(LB/FT E E+O t2E+OQ D. _19QEt*Q 6..61S6E-Q E E+00 1._ E E+00.6,3_53E-Q E E E Et0O E E E E E E E E E E E E E E E E E E E E E E E E E E E E E EO00 6.3l91E E , E E E+00 6,337E E E E Eo E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E* E TO 950

27 (1) (2) (3) (4) (5) (6) (7) (8) (9) (101 P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3 _, E E E+00 1,00O0E E-Q E E E lIE E-OZ E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E z E E E E-02 H E E E E E E q E E+00 9*9257E E E E E E-01 6,1911E E E E E 'E E E E E E E E E E E E E E E E E E E+0QO E-01 6*1644E E E E E E E ,1438E E E E E E E E E TO 930

28 ( _.)... ) 1(2) (3) ( 4.) (5)_..... (6) (7_).. (... 8) (9) P INTE GRATED H _. T RHO GAS -- _ H EL H -L-f.E - IE.. (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) _(KG/M3) (KG/M3) (LB/FT3) E _ 1 28E E E+00 10,28 _ _, E E E E E E _1399E+00 10,1_ i.0605e E-0_ E E E E E E ,05 1,1379E E E E _._44_2E_ E+00 i078._0_5_77.e+..7_9_ze_.._ E i...3_5_9_e+0_ _.. 058E_+ 0. _,.7_886E-L_.._6118 Z E , E+00 _ 1, E _00QE E /412E _ _3_9E _ E E E+03 _ 8_07 264_ 9i_376.. _ 132.._. E0 1._O, _540E_ E _,. Q9L E _319E E E-01 6, 0893E _8 9_..381E _ ,1309E i.. 522E E01 917_ 9.37-_-1E_+0 3_ E _.0512E_+00 9_,.7370E-0_ _Q _2_ E E E E E-02 9_15 _ E E E E-01 6_0679E ,340E+03 9_... _ E E E E E E E E E E , E+00 1, E E E _E E E E E i 9 299E , E+00 1, E E-01 6 O4 OE TO 910

29 (1) (2) (3) (4) (5)(6) (7) (8) (9).(10 P INTEGRATED H T RHO GAS LIFT H? LIFT. HE...LIFT..E (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) _LB/FT3) Et E E E D E E E E-01 6, E E E E E E ,1199E E E E E E E E E E E E E E E E E E E E E E E E E E E E Q E E E E E E E E+00 9,5906E E E E E E r8 -_. _ E E E E-Oi 5_9764E._OZ E E E E OE-JL E E E E E E E E E-01 _5_9603T E E E E-01 5._9549-Q _ E E E E E E E E+00_ E-01_ 5,944_E_ E E+00 i E+00 9_ _5 Z-_ E E E E-01 5,9333E TO 890

30 ._... (1... (2) _ (31.) _ (4.-_ (5)..-,, 6) _ P-_ -- INTEGRATED H. 0 T ---- GAS _- -_LIEI1FH2-_-----A - LIFTJ-HE_ LL E. (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) Et _ E E _+_0_0_-_ --- 5,2-_ E , E E E E E E E E QL E E E E E E E E E-01 5,9063E _ 9.034Et _ E+ O_ E _!4523F_ E _ 7_.55.., _8E+0O._1l _..._19-6E±+Q-. 4._9_-4_li _.-_ E' E E E E-O. 881 _ 9.004E _ E E E _8a4_-Q 880 _ Et E+00, 1._1_2 _ E E-01 _,_8792.g _ E E E E E E E E E-01i E E E+00 _ l _40E E QE-0_ E* E E E E E E E E E E E E E-01 5o8468E E E E E E E E E E E E E E+00 9*3396E E E E E E E TO 870

31 (1) (2) (3) (4) (5) (6) (7) (8) (9) _(10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIfT. H (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3),,(KG/M3).(L/FT E* E E E-01 5, E E E E E-0_ E Et E E E E E E E E E E E E E E E E E E-O2_ E* E E E E E E E E E Et Et E E E-02 _ E E E E E Et Et E E E E E E E-01 _5.765E-gZ_ E* E* E E E E E E E-01 5.,5-45E-D E E E E E E E E E-01 5._7436E-_ E E E i7E _2E-02_ E E E E E E E E E-01 57?23E E E E _E _ -Z_ E E E E E _.... _. _ 870 TO 850

32 (1) -(6) -(4)... (2) (3). / (5) ( ).. ( C P INTEGRATED - H T HO GALIFI_ LI H LIET_ H EL-. I_ T. (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E O626E00..._ 1.A_ E , E E E E E E E _ E E /84E E E E E E E E E E , E-O1 _ E i.50555e E L E Et E E E i- 8_596E _ E E E E E+. 0_ E E-O1 6_6_ E E+00 _ E E E E E+00 _ i.166_ 9._7729E E E E ,0494E+00 _ _9.7635E E E E00 _ E E E E _ _ f_._ l.0474e E E E _E+03 16_ E E E E E E E E E E+0._ * E *.7162E E E E_ _ E E E E E _ E* _ E E E TO 830

33 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3). (L/F.T E E E E-01 5,6073E E , E E E E E E E E E E E E E E E E+00 1, E E E E E E E E E E E E E E E E E-01 5,5689E E E E E E-O2_ E E E E E0-Z E E E E-01 5,5525E E E E E--01, 5.54,7E-Z 818 8,361E E E E _15E E E E E _3DQ -D E E E E E E E E-01 _8.850_3E-01 _5.5251E-0Z_ E E E E-01 5._.5196E-02_ E _ E E-01 _8.8327E E E E E-0qi 8._8239E E E E E-01 8_.8151iE- 1_55_50Q31t E I9E+00 _ E E E O 81.

34 (2) (3) (4) (5) (6) (7) (8) (-I) -- _-J_ <^>-_--- _-<^L L- - _. il -, _J L GAS. -<7-^----,-- A)-LI T -' L-F-T-JIF JLF -' _I_.NTEGRATED... H T RHO GAS LIFT H2 -LF E- LIFI.. (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT31 81_-0 8._280E E E [--_ _5_.A9. 80P9 _ 8.269E E _9_5E-J01...5_,-9- -P_ E E E E E ,249E _2.79 _.0188E E E-0.. 4I E E E E E E E E E E E E E E E _._208E _5 _ E + 00 _.1207_,.._ALE_--O. -.._._-_ t-2_ E E E E-01 5,4536E E E E E-_01 5._4481E-8?f _ o E E E-0P E E E E E E _ 8.157E _ E E E E _ E E E E _5_,426_O E E E E-01 5,4205E E+03 _ E E E E E E E E E E E E-01 8o6563E E E E *3362E E E E E E E E E E E-01 _ E E TO 790

35 (1) (2) (3) (4) (5) (6) (7) (8) (9) (0) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE. LIT. HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3)._ (F... _B/F _ E E E E E-f E E E E E-D E E E E E E E E E E E E E E E E E E E-01 5,3598E-0? E E E E E E E E E-01 5,3487E E E E E-01 5,3432E E E E E E E E E E-01 5,3321E-2O E E E-01 8,5324E-01 5,3266E E E E E E-P E E E-01 8,5146E _55E E E E E-01,_ 5_3100E E E E E-01 5._344-_,l_ E E E E-01 5._2989E-_ E E E E E E E-01i.4702E-_01, E-_ E E E E-O 5,~Z3E-z E _.34_ E-01 _ _ E E-01 5,2767E TO 770

36 .(21 ) (( 3) () (7) (5 ) ( )..._ (8 8). U.. P P. I N_ TG RA TELfPI H _A G A L.. L H_ IIQW - 2 E L I (HB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) _ 7.872E E-01.49_ 9. 25_E- 8L5S-D 5 f- 0_ E E Z._ E- l 8EO 4 - [ E " E E E E E E-.13.1,_1253 9_Q 9 9_1 9 Dq_._8_ Q E E E E E E E E- 0i g _0E +t03 _ 2319_ 7607 _ E-O_ E-2_ 1.257_ 9 E-_ OE _ _ l.9l 238E-_2_ E E-01 _ E E E E E ,_90392E-0 8,3724E-0L _ 7 770E E- 1 1, 262 _._ E-0_1 8,335.-j. 5 Z1.E-.2._ E _ E-01, 264_ E E E E E _ E E Zl QE-4Z_ E E _0007E-01 3_36 EE-O1 8_ Z2Q04E E E E E E E , E-01 * ?9814E E E-2 754_ 7.708E+03 2_424.._ E E E E E E E E E E ? E E-01. _8.2921E_-01 _5.1766E E+03._ E E E E E E E E E ~~~~~~. TO 750. _

37 (1) (2) (3) (4) (5) (6) (7) (8) (9) (i0) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E-01 5,0165E E E E E E E E E E E E E E E E E E E E E E E E E-01 5,1375E-_ E E E E E-g E E E E E E E E E ?8E E E E E E E E E E E E E E E-01 5,1.Q.4QE E E-01 t E E E E E E E Z8E-DZ E E E E E E E E E _16i-,_ E E E E-01 5.Q760E_-02, E E E E E E E E _E-01 _5.0648E E E E-01 8_.1041E Z-_ E E E E E TO 730

38 ... _ (1) (2) (3) - (4+) (5) (6) (7) (8) ( Li...PR.... INTEGRATED H T RHO GAS _.. _ t[ L..-LM....LIJE._.- IFTE... (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/NM3) (LB/FT3) 73_u_ EE E E ,50 9,3832E-Oi _Q...E E E-O_I E ,57 9,3728E-01 1,307 8,7205E-01 8,0772E E E ,.64 9._3_624E-01 1._3_ E E E E E-01 8*0592E E E E E E E _- ^7.402E ,...O_...o3_13 1_-._9.33.O1..._ E _2E E E q46-2, E-1 _,_8.6719E _1 0_ E , E E E E E E E E _ ,2893E _8.6_428E E E E E E E-01 4o9919E E * 3 - E L E-01 _ _6233E E-01 4o 9863E _-_ E+_03 _3, E-01 * E E ,321E q2475E E-01 7,9692E E E E E E E E E E E E ,290E E E E-01 4,9581E _ 7.280E_+0_ E E E E L.270E E E E E-0_2_ E E E E E TO 710

39 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10. P INTEGRATED H T RHO GAS LIFT H2 LIFTHE.. IFT.... E. PRESSURE 'AIR M-HAS-S -.GEOPOT6ENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M 2) (M) (FT) (DEG C) (KG/M3). (KG/M3) (KG/tM3) (LB/FT1._ E E E-01 7,9151E E Ei' E E E E E E E E E-0,2_ E E E E E E E E E E E E E E E E E E E E E E E E-01 4,9017E-fl E E E E-0! E E E E E _[E--0_ G E E E E-01 4, 84 8E-ZL 699 7,147E E E-0 7._856E EQ E E E E _ E E E E E E E E E E E E E E l_ E E E E E E E-01-i o3794E E E E E E-1? E-01 4*.8395E E E E E E E E E E TO 690

40 _ (2) (3) (4 ) (_5).[.._. 6_1... _..._ P... _ N_rR._P. H H _...Lf TJF T... (GAS L.T_IT LJFIJE. PRESSURE AIR MASS GEOPOTENTIAL ALT TEHPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/H3) (KG/M3) (LB/FT3) E E-9 _1 _5.._D -.&, -_,_ EP E. -_-_ j-_.-E-- O..1- _._ E E E E E _025E E-01 t1.370., -2_ E , E E-01 7,6977E-01 4.,8055E-O E E E-01 7,6886E E E E A-_2_---1_ Z^^E.2 -- _7_9_F _T94_E-_ _6.8- ^ 3 6_._ E+03,------,-, E_±OJ 3_2_0_5_-_--_ _0_ 8_8 E--Q1 1.17_. 6 8 ~E... -~I II]E-_i E E E E E0 4828E E E _ _I3 0E-, -I' J--_ ,9_54E±.0. 3_ E E _ -_ l L E ,8586E-01 1* E-01 7,6341E-01 4,7658E E E E E E E E-01 1,._ E-01 _ E * E E E E E _ E-01 1, E E E ,892E E E E-01 4,7373E-02_ 673 6,882E E E E E ,872E _846E-01._ E E E-02 67^1-6, 8 _ 6 2 E , 3 0_^969-6_ E-01 1,_ E iE E E E E E E TO 670

41 (11) (2) (3) (4) (5) (6) (7) (8) (9) (10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG_/M3)_. LBLFL3L E E E E, Ea E E E E E E E E E E E E E-01 7,5246E-01 4.,6975E E i E E E E E E E E-01 4,6861E E E E E E E E ,0844E E E E E E E _-E E E E E-0O 4,6632E E E E E E-, E E ,0449E E E E E E E E E E E E-A E E E-oi E E E E E E-, J E E E E E E *l_ E E E E E E E E-0t 4.611E E E E lE M E E E E-Oi 46003E TO 650-

42 t 1) -. (2) (3) ) (5) _(6) (7) _ -Lf18- _9)_0._ P !Ii-T G P ---- Iff IE_ -T_T_-- H H T HO T -L2 E-T_--- 1L--..- L_ HE LTHE EI_ _ (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) _64_7EP a _.6L-.02 -_-4337t55 --OJ 7 Ia69.-i _ E*t _ E_-I _J E E E E E-OZ 647 6*.617 E E E f-1 4,583._-_!_ E E E E E E E E-01 7,3230E E E E E E E-O E E-01 _1.l E-01 7 E Q-A E E E E E E E-0..._1_ E E E _ E E E Q_ E E E E E-OZ E E E E-01 _4.5314E-02_ 637.5E +03 _ _ E E-01_._7.2494E-0_1 4,55.E-2_ E E E E E E E E-01_ E-01 4*5141E E E E E-01 4._5084E E E E E E _ 6464E E E E E E+03' E E E E E E E E E TO 630

43 (1) (2) (3) (4) (5) (6) (7)(8)(9) (10 - P INTEGRATED H T RHO GAS LIFT H2 LIFT...HE LIFT..E.. PRESSURE AIR M-' ASS GEOPOTENTIAL ALT T YEXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (_)_ (FT) (DEG C) G(KG/M3) (KG/M33) (KLBGL_ E E E E E-D E E E E-0i 4,4796E-DZ E E E E E E E E-01 7,1571E E E E E E E E E E E E-_ E E E E E E E E E E E E-01 1, E E E ,352E E E-01 7,1016E E E E E E Z?76E E E-01 7,0831E-01 4,4218E-_2_ E E E E E-_ E E E E i02E E E E E-01 4_4044E ,290E E E E-01.4._398_7'E -_ E E E E E E E E E E E E E E-01_ E E ii E E E _5_a E _ '.5570E E TO 610

44 ) - (2) (3) ) (---- ' (5) (6) (7) (8) (9). 1 L P -- INTEGRATED H T RHO GAS _LI E. LIFT H2- LFIJIE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) 610 _6.239E E- 01 _1.508 _ 7,557.-D._-96 -_ E E _._ Is,,IJ3 -Z E E E E E E , E _71_7-_l E E E E E E E E E E E _ E _968E-O_ 1 _6.i43_7-4I.._ E E ,0468E-0. 5Z a 7,,_.486_E,--_ _4 1..4, a E-Z E E E E E E _ _0252E E E-0_1 4_374- o E E E E-01 4._3116E-0Q E E-l E E E E _ E-01 1._ E-01 _6.8878E E E _ E _ E E-0A E , E E E E E _ E-01_ _ 4062E E E-2_... _594 _6.076E _ E-Ot E E E E E o3860E-01 6e8412E E E E E E E _ 6.045E E E E E E E E-01 6e8131E E-02 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TO _...

45 (1) (2) (3) (4) (5) (6) (7) (8) (9) 10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (K-G/M3) (LB/F.3) _ E E E E E E E E-01 6,8038E E-DZ E E-01 1, E E E-Q E E E E-01 4,2358E E , E E-01 6,7757E E E E E E E02, E E E E E E E ,2850E E E-Q E E E E-01 _4,2-5E-_02_ E E E E ? E E E E E-Z E E E E-01 4 E.i_9E_ E E E E _E E E E E-01 4, 1773E-g E E E E E E E E E _65_5E_-_2_ E E E E-01 4._1597E-02_ E E E 6653E E E E E E E- 0_1_ E-02_ E , E ,1633E E E E E-01 _ E E TO 570 _

46 -( - -_1. (2) ) (3) (4) (5) (6) _ J_ P _ IN_- T G R A T ED - T H _L.E '-...I. I. -H- _....E -.. G--- X.E (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3). (KG/M3) (LB/FT3) E E E-_ 6,5-Q1 I._,.i3ET E E _74. M-._S_-g-_-....J. 1-E-_.32_ E E E E E E _10?.-' E E E E-_ E E ?.1125E E E E _ E E E E _ E E E E E JE _ E-D _ E _E--_ E E E E E E _ E-01. _ E-01 6o5407E E+03..? E E--0 _. 6'5312E I E _ -' E E E E E E E E E E E _.0208E E E E E E E E E E E E-01.0O478E E E E E E E E E E E E+I E E E E E E E E-01 4.*0242E E ? E E E E TO 550

47 (1) (2) (3) (4) (5) (6) (7) (8) (9)... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE... IF_T_HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3)(KG/M E E-i i E E E E E E E , E E E E-O E ,596E E E E E E E E E E E E E E _7E-0_ E E E E E E E E E E E E E E E-0_2 -I> E E E E E E E E E E-Q E E E E E E E E E E-02_ E E E E-01 _3_.9'12-O- _ E E E-01 _ E E E E E E E E E E E-01 _3.9233E E E E E E Ei E E E E- E E E E E-01._3._90_55E E E E E E TO 530

48 (i) l _. (2) (3) HT_._-_--_-_ (4) L_------_-_ (5). (6) L,_ (7) -G ,, [ j NT_EQ-_ALLITHp. E HT----P--- (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) 53_ E E-0 _ E _.9_ _ 52_2373E-_Oi b69 3._6.7EE- DJ E E E E E-0; E _._ E E E E E E E E E E E E Et E E E-O01 F-_ 3_ E E-01.9_._._ E E E E E E E E E _0 5_.3_21E+_ _ E E ' 01 3._ E _ E ,6304E E E *300E E-01-1_ E E E e290E i7_ E _6.6097E-01 6'1221E E E E E E E E _ E E-P E E E+03 29E ,0707E E E E E E E E E _ E E *5578E iE ?79 9E E ,0373E E E E E E _5371E E E TO 510

49 (1) (2) (3) (4) (5) (6) (7) (8) (9).I1... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIEFT.HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M31 LB/FlL_ E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-0Z E E E E E-7Z E E E-01 5,9875E-01 3,7379E-1f E E E E E-O E E E E E-Q E E E E-01 3,7198E_ E E E E E E E E E E E E E E-0i.. 7_QZL-D E E E E E E E E-,Oi E-O _97L E E E E-01 _3.6836E E E E01 _ E i E E E-01 _5.8812E-01_ E E E E E-01 3I E-DZ E _ --22t E-0 1 _- _ - 801_ E E E TO 490-

50 --J -)- (2) -(3) (4) ( _ 5--) )_ ) ( p INTE RATED -----E- H...-- T.. _ G.--_ I L L.FTJ_ L E (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) -49_ E _._6_ _ E E-01 1t E-01 _ZE-.._[._ 5. 8 ' E E E E E _~487 4 *.984E _ 22_ _4E-_ _2973E E ,9_73E ,7572E E E E E E E-01 5,8134E E-02 ~~ --~--c L~r~^. _ _- ^A /484 4.^.-I---. 4,953E+03 4.* ^ ^A ^^ ^ _--~ L-~~--~-----~ E L~I---~-- 1, E E-01 _Qj - I E _.943E+!03 -^ E-... _65.793/E_ _89.25E E E E E E-02 /481 /4,922E _ 6, 700SE-01, E-01 5_7745E /+912E E-01 1,831 _6.2239E-O_ i-0-3J E ,6783E E E E E+0' * E-01 i, E E E-02 /477 4_.882E _ E E E _E , 871E E-01 _1, E E E-02 /475 /+4.861E E E E E E E ,1609E-01 5*7064E E E E E E E ,831E E E E E E , E E E-01 3_.5/4+1E E , E E E E TO 470

51 ) (2) (3) (4) (5) (6) (7) (8) (9)..... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFTHE (MB) '(KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3).(KG/M3) A...L I E E E E E E E E E E-0Q F E E E E-0_ E E E E E E E E E E E E E E-_ E-_02_ ,749E E E E E-0_ E E E E-01 3,4953E E E E E E E E E E E-02 n E E ,0131E E-01 3,4769E E E E _5597E E E E E E E E* E E E-01 3l,4586E-8-2._ E E E-01 _5.5303E-01 _3.452E E E E-01 5,5205E-gi 3-44kE-_0_2_ E , E E E _02E E E E-01 5,5008E E ,626E E E E-_ E E E E E-_ 1 _ E E E E E TO 450

52 () (2) (3) (4) (5) (6) (7) 7 i --- Ul P N I TGRATED H -T RHO.--- Q_-A----. LIFH2... F..._LIFT A-E_ LJ[I. E-,_ (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) _5_ EP+03._,? p12 1_ E- 5_._3EI-_..EI E* E-Oi E E E i6E E _44Z, 4_.5Z5_ E E^ _ 2 2J9_71, r E-01 1_.94_ 0 _ 8 I85IF-j._-507_ 5t, 1E-_A1.. _~_I E E E E E E+Q E ,8538E E-01 3,3849E _4 4_._545E E _E _534E+tO E E E E E-01 3,3664E E _ E E E E E _ E E E OE-O E _ E-_01 _._ E E E _ E- 01 _1.972 _5.7792E E E-02 _437_ 4*.473E+_ _ 2761 _ E _ 5,7685_E--01 5_.3429E E _ E E E E E E _5_._7471E-01i E E-01 3_, 434_ E _ 2._ E-01 i E E E E E E E E E+03 6 _ i E E E E E E ,7043E E E E E E E E TO 430

53 (1) (2) (3) (4) (5) (6) (7) (8) (9) (101 P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/_ l... LBTEL.TL E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-2O E E E E E E E E E E-Q E E E E E-Q E E E E E E E E-01i E E-0_ E E E-01 5,1441E-01 3t.32_lJ3E E , E E E E E E E E E E E E-01 5.ii41E-Oi E E E E- 01._ 5O.1041E-01 _3.1864E E E E E E E E E iE f E _79E-01 2_ _4781E-o E E TO 410

54 . _.(1). )- (2) (3) (4) (5) (6). _. (7) -. (8 9,_--P_-!_I P INTEGRATED E---- E _T.H H _-- T_. T.. _..LELTJF &O O._. JA_SA_.. L.- _ IFT E--L UFl-H-M -L LFI _L E L3 (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/H3) (LB/FT E _ -q E _4_ - 5t... 40_0 _-D 16z _ _187E E-01 _6E--_ _3_- Q -_ I E E E E E-02 _ _67E+03 _ _3171_ E E E E E E E E E E E E E _ 4.136E _ E-01_ E E-01_ 3._30 j-_ _5,86E _ _ 064E-_1 9 1.E-0 21_ E E E E E E+03_ 7_ iE _ E E-0.31 EQ o E+03 7_85 78 _. 235_74_ _ E-O1 2.12,3_ E _ _._ 9E-9_l E _ -31_ E-0i,, E E E _ E_03 _ _-31._ E E-01i _4.9534E _ E E ,371E-01 _4.9434E-01._3, j.qe-_ E * E E-01 4,9333E-01 3,0797E _ 4.044E +03_ 7274 _ E E-, E-01 _ _ E E E-01 _ E E E E E E E E E E E-01 3_.0545E E E E E-0i E-02 _ E E E-01 _4.8727E E _.... TO 390

55 (1) (2) (3) (4) (5) (6) (7) (8).(9) ( ) -... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) _(M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/)3(KG ) (LBl/ET E E-01 2, E-01 4,8727E E E E E E E Et E E E E E E E E E E E E E E E E E-01 4,8220E-01 3,01.03_ E E E E-01 3,0040E-IZ E E E E-0i E E E E-01 4,7916E E-Z E E E E E E E-01i ii52e E E-f E E i403e-oi 4.761tE ZZZE E E E E-0i 2,9659E E E E E-01 Z9595E D E E E-01 4 Z7305E-01 2*9532E E E E E _ 2 63Oi E E E E E-01 _2_94o_05E-_2_ E E E E E E E :0632E E-O1A- 29_277E E E-D E E-0i1._ E _5..4. _ 18_3E-_1_ E-O E E-02 _ 390 TO 370

56 . J (... 2_L )- (3.) (_-)- -- (6) J5) - C 7) --- _-- (8) 9..--) f >,_ i I_NTIRA_._T_EP-- S... H. _.-L _ AS I_._- -E.LI (MB) (KG/M2) (M) (FT) (DEG C) (KG(KG/M3) (KG/M3) (KG/M3) (LR/FT3) E _ E I E E , E E E E *.758E _,_ E E ,9970E E E E E E-01 4,6182E E-02 ~-~ E_ _JI E _. 9E E EA- _9-..._._._5_.I&. -J53 --_J_._71_7E-- toj 7A6_5. 25_ 84 9 a E E ,9527E-01 4,5874E E E _3_E E E-01 2._5. 0_ 3_ E _ _2_994E E E-01. 5_ E E ,.9195E E E E _ E-0_ E E E _ E- 2.32_ F E E E E E E E _ E _8751E E E-0_ E E E E E E _ ?2158E E E E E E E E E E _ ,63 5*1919E E E E E E-01 2, E E E TO 350

57 (1) (2) (3) (4) (5) (6) (7)(8) (9) (10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG1/M3. LBLFT E ,1799E E E-01 2,7867E E E E E-01 2,7803E E E E E-O E-0_ E , E E E E E E E E E E E E E E E E-01 2, E E E-0O E E E-O E E E E E E E E E E E E E E E E E E E E E E E E E E E E* E E E E E E E E-01i E E E E-01_ 4,3083E-0 2._6896E_-_ E E E-0 4, 2979E-01 _2._6831E.E E E E-01,.2875E E E ,9631E E-0, E-01_ E E E E E-1_0_...- O E E E E E TO 330

58 -- _ L _-(3)- (2) (4) (5) (6), _ (7) (8) ( P INTEGRATED H T,_- RHO GA_ _._-T J~Z... LI_M_-E _-_HE-_ -- (HB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/3) (K M3) (L/FT3) E E _ ,370E _-40,52 4,93268E _E-_01_..4._5_ E E E E E E E E-01.. _0.[_ 2 O, ;, E E E E E E E E E E-02 3_ E E E E-01 _E_ E _33 _ E- 01 2,52 4.5E E , E E E E E ,60. _ E- 01 _.2.._5_ E i9E E _ E_ E-O1 451E- -_ E _ _8052E E E E E E E E E _47E E , 4.448_0_E-Di.Q_ 4_,199E ' 2 2._ F E , E E-01 4o1094E E ,227E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E TO 310

59 (1) (2) (3) (4) (5) (6)(7)(8)(9)(10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT E E E E E E E E E E F E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-01 2, E E E E E-01 2, E E E E E E E E-02_ E E E E-01 2_.398E ,032E ,5226E E E-01 2._4331E E E E E E E E E E E E E E E E E E E E ,64E E E E E-01 _2.3998f.-Q_ E E E-01_ E E. 310 TO 290

60 _( (3) (4) (5) (6) _I_... (7) L-.... I----_.-----P-.-- I N _NTEDP.. '_L.._._......H S _ E- -._-_E (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E-01._2, E-01.._ _1 3.gl _961E E _E E E E E E E _ E E-O _I_[-_I0_-. - _ E t E E E E E E E E E E _ _. 4.37,36E-0 1_ 2, E-_QJ_._L52.9E-..7_69_-'E 2a - _ OE _-1 9, ,889E E E E E E E-01 _ E- _ F_- 0 33S-2_ E E *4.0227E-O E-0 _.. 36,E-QL_ E E E E E E _ E E E E E _ E , E E *828E E E E E E E E-0i E E E E E E E E E E E E E _ E E E E E E E-01 77E E E E E TO E E-02 _ 290 TO 270

61 (1) (2) (3) (4) (5)(6) (7) (8)(9) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3.) E E-01 2, E E _E-0Z E E E E E E E E E _E-02_ E E E E E E , E E E E E E E-01i E E E E E E-01 2,2178E E E E E E E E E E E E E E E E-O02 i E E E E E E E E E-0i 2., 83-2_ E E E E E E E E E-01 2.L7OIE-Z _ E E E-O E E E E E E E E E E E E E _E E-0J E E E01 3, E-O E-_ E E E-_0 3i._41_3Ei. -_O 2 _5_E- iz_.z,29_ge_-d E E-01_ E E E TO 250

62 ... (1) -... (2) L _-- <3-A_ - -t^jl^^-^ -(3) - - ^ -J(4) - 4 > - - -J5^_-._ (5) -., _(^L (6) (7) (8) () < } ( l - - P IT P-.INTEGRATED H T _L._- RHO.L._I.. GAS L fi.-l_ (MB) (KG/M2) (M) (FT) (DEG C) (KG/N3) (KG/M3) (KG/M3) (LB/FT E ½445E-O , E E E-0O _ E E E E E _._2_.532E _ E E-01 _,3.3_.66 O i,:_ 246 _ E E-Di E E E iiE E E E E E E *585E E-01 2 I_ 08Q _49_E ,8549E ZQ_ E E E E-01 2,0669E _24_ E+03 O _ E ,3.5626E E-k_ * 4 60E E_ *5507E E-0 1._ ,450E ,24 3*8034E E E E E E E E E ,429E E _47E E _E-_ E _ E E E E /09E E o4907E E E E E E E E E E E E E E E E E E E E E E E E E E E E TO 230

63 (1) (2) (3) (4) (5) (6) (7) (8) (9) () P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFTHE PRESSURE AIR MASS GEOPOTENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE (MB) (KG/M2) (H) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT E E E E E E E E E E E* E E E E E E E E E E E E E E E E E E E E , E E E E E E E E E E E E E _ E E E E E E E E E E E E E E E-1Z_ E E E E E E E E E ?2E E E E E-O E E E E E-.0_1 1.85_9-E- 0_ E E E E-01_.851_E E E E E E E E E-qi E-01 _ E-012 _ E E _1_567E E-01 1._._ E * E I1417E OE-Oi E TO 210

64 -,._12 _ (:3) (1_) (5) (7) (8) _... P INTEGRATED H.. L T RHO. -.. LI J L_ I l... (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3)... (KG/M3) (KG/M3) (LB/FT3) E i _ _679-_DI -J E+03 -_ E i26E- 01 2_96_lEJ E E-01 3, E E E E _8._-_ ,3285E E-._,. 9 -_ E E E E E i02E , E E E-01 i.7734e-q E E _1_E_ E-01 2o8268E E +0_ _3 7-_f_,J-.1,_7_...-_._ '3o2642E E ,50 3o2481E E-01i E E E E , 0071E E E E E E-01 1o E o1999E-01 3, E-01 2o7575E-01 1o7215E _030E _ ,1838E E-01 2,7437E E E _7E E E E i 516E-01 3, E-01 2,7160E E _.P00_0E0_ ,13 55E E E E-02 1a-94 1*.989E E-01 3, E E-O E E E E E-01 i16696e E E-01 3,968 2.*8724E-01 2,6605E E _ 1._9_5E _ ,50 3,0712E-01 3, E-01 2,6467E E E , E E E-0i E TO 190

65 (1) (2) (3) (4) (5) (6) (7) (8)9)(11 P INTEGRATED H T RHO GAS LIFT H2 LIFT. -HE.L.IF_... PRESSURE AIR MASS GEOPOTENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE (MB) (KGIM2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (G/M3) _... _leile E E E E-01 _ _ Et E E E-01 1i6350.E-Z E E E E-01i 16263E ,918E E E E E E E E E E E E-01 4, E E-0 1 L, 6.OE E E E E E-Q E E E-01 2,5358E E E E E E E-_Z E E E E-01 1,5658E-.Z E , E E E-01 i. 551E-_Z E E E E-01 i,54_85-j E E E E E-0_ E E-0i E E-01i E E , E-O E E E E E E E-01i_.._39f-0P_ E E E E-01 1_5052E E _2.78i8E E E E E E E E _E E E E E-01 1_.4.7 9_ E E _481_ E E E TO 170

66 - (1.) _(2) (3) (4) (5) (6) ( L. -p P - INT GR I fgr A T E ED H - D H T T GAS M t LIfl_..LI IE LIEL.tE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG1/M3) (KG/M3) (LB/FT3) E E E E-Q. 1 4._5_._._ 2_,5 3 En _A E E E E E E E E E E E E E E E E E E-02 t E E Q E-_O E E E E E E E-02 16i1 l52e _ _ E-O_1 I E-01_ E-01,_39E- o E E E E E E E E E E E E E E E E E _ E E E E E E E E E E E-01 _1.3408E E E E E E E E E E E E E E-01 2*.1063E E E E E E E E E E E E TO 150

67 (1) (2) (3) (4) (5) (6) (7) (8)(9).... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE... LIFT.HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) :LB/FT E , E E E-01.Z976E-Q E E E E E E E-01 5, E-01 2,0508E-01 1,2803E E E E E E E E E E E E* E-01 5, E E-01._2543E E , E E E-01i E E , E E E-01.23E _0_2_ E E E-01i E E E E E E E E+03 i E E E E-O? E E E-01 1?9261E !-' E E E E-01 i._1_938e-_ E E i E E-01 a.185j.1e-d E+03 i4230 _ E E-01 1,8845E-0_..7 65E i_.385e*03 i E E E- l.i67_j- i. _ E E E E E E+03 i J I386E.0_...5_-I728. i.9898_e- _ E E E E E E E-_ E E E-01 _1.8153E E E E E E E TO 130

68 -(- 1 -_) - (2) (3) (4-) (5) -(6) (7) -- (8)-9) JA--l P INTEGRATED H T RHO L..._.L F L_ GASA _-L...._....- _E----- (MB) (KGIM2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E JE_ E E E E E E E E E+03 _ _ E O0E-0 5._1 E,.9_ E E E E E E E E E E E E E E E-0_ _263E _.9778E q?,F,_tgJ _t 7 _6-_ E E-01 6* E E-01 1.o 0554E E E E E E-02 0'~ 120 *1.232E E E E E E , E-01_ E E E E E E E-01 1.i0208E-02O E /9816._ _8813E i E E _ E E E-01 1o6074E E E E E E E o170E E E E E E E / E E E E E E E E l 0E _ E E E E E E E E E TO 110 O...

69 (1) (2) (3) (4) (5) (6) (7)(8)(9) (10) P INTEGRATED H T RHO GAS LIFT_ H2 LIFT HE.I E.. PRESSURE AIR MASS GEOPOTENTIAL ALT TEMPERATURE AIR DENSITYEXPANSION PURE GRADE A GRADE A (MB) _ (KGtM2) (M) (FT) (DEG C) (KG/M3) (KG/M3).(KG/M3). /FTL E E E E E E E E E E E E E E E E E-01i E E E E E E-01 1,4688E E E E E E-O1 _ E E E E E-01 8._9967E-O_ E E E E-0_1._8_92iZE-.fl_ E E E E E E , E E 1.396E ?1E-.3_ E* E E E Q6E-Q E E E E E E E E-01 _1.3580E-01 _ 8_.4776E E E E E-01 q 8_J_3_9_ ll E* E E-$01 _1._3303E E E E-01. B E E E E E _ E E- 01 8,1316E E i54E E E E E E E- 0.2_74_E _347E E E E L E ?4472E E E E TO 90

70 (1 ) (2) (3) (4) (5) (6) (7) _ _p _ INTIRA. -E..H I_ LLLI E L_1- (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) LB/FT3) _ L. -_ E t1E _ E E E E Z6E E E l 5_16_E- J _ E E E E-0i E E E E E E E E E _._Q E E E E _l--Ql, I E E E E E E E E E E E E E E _ E E E E E E E E E-01 6*7475E E E E E _Qf-_ E E E E E E E l1i220e E E-03 74_ 7.605E E-01 1_ E-01 i E E E E _ E E E E E i E E E _.297E E E E E E E E E E _--..-._ ^

71 (1) (2) (3) (4) (5) (6) (7) (8) (9) _(10). P INTEGRATED H T RHO GAS LIFT H2 LIFT HE.. LIFT... E (MB) (KGH/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (Li_f E , E E E E ,092E E E E _9-fl E E _3E E E E E E E-02 5,7959E-Q E E E E E E E-01 11, E E E E E-02 _8.8685E _FJ-_03_ E E E-02 8,7299E-02 _ 5A499E-l3._ E ,9694E E E E E E E E-02 5, 2_69E-_Q E E E E-02. 5,1.9Q.9E-0Q E E E-02 8,1t756_-_..39E0, E E E E-02. 5_.017_E- D E E E-02 7,8985E-0Z.4... t.939-f ,758E , E E E E-_3_ E E E E fJ E E E E-02,6695E E ,29 _8.5142E E E E E E E-02_ E E E E E-02 _7.0524E E-2_4_ E ,0185E *4605E E TO 50

72 (1) (2) (3) ( 4) (5) (6) _-_-_ (7) _- (8). _1 (9. -P IN E (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) TEGRATE D H T -_O GAS -- L-...._-----LE L E E t 4. 5_-_g _ 9-2 -I_ L 49 5._040E E-0. 2Z-Q E E E E E E _ E _..-_ 5_6 4.-_:. 46 4,.732E ,3591E E E E E _ E E-02 6$200QE E E E-02 17, _t8- -. ZI E _ E , 387- E-DZ _5... 5_F Et E E E E E E E E ji69E-03 o" E , E- Q? E E E-Q E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E _ E E E E E E E E E E E E E E E E E E TO 30

73 (1) (2) (3) (4) (5) (6) (7) (8) (9)(10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE PRESSURE AIR MASS- GEOPOTENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E-02 25, E-02 4,0845E-02 2, 5499E E E E E E E E E E E E E E E E E ,73 4,0906E E-02 3,5251E E E E E E E ,473E , E E E E E E E E E E E-02 35, E E E-_ E E E E E E E E E E E E E E _35E E E E E E-P E E E E E E E E E-02 _1.3351E E E E E-02 1.i2493E E E E E E E* E E E E E E E E E_-_ E E-02 72, E E-02 _9.079_E E E-02 80, E E E TO 10

74 -... (1) A (2) (3) 3 L - -- (4) L - _ -_ - -<?L (5) _ (6) A, - < (7) 7 L - (8) m - _-_- - _----(9) jio (!o) - - P -- INTEGRATED H ---- T RHO GAS LIFT H2.L ft HE_. -.-.I-.IF_- E].. (MB) (KG/M2) (M) (FT) (DEG C) (KG/H3) (KG/H3) (KG/M3) (LB/FT3) E E E E-02 8 F E E E E _0_ E E E E E l 001E i,4827e E E E E E E E E E E E E E E E E E E E* i.198E E E-02 _6_38_ E , E E E E E ' E E E-02 7o4693E-04 O o E E E-02 l.1829e E E E E E E E _ E E-02 1,1559E E-Ok E E-02 92, E E-02 7.,1315E E E E E E ,777E i E E E E E E E E E E E i1722E E E _8.468E E E E E E E E E E E E E E E TO 8.0

75 (1) (2) (3) (4) (5) (6) (7) (8)(9) (10)... P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (m) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E E E E E E E E E E i152E E-04 7, E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E *128E , E E E E E E E E E E E E E E E E E E E * 7 16E E E E E E E E E E-I E * E E E E *407E * E E-03 _7.9190E E-04 6*l 6.304E E E-03 _7.7809E E E *8690E ,12 8*2517E E E TO 6.0

76 -( 1 t- L - -_) (2) (3) (4) (5) (6) (7) (8) (9) (10) -?P -INTEGRATED H T RHO GAS LIFT H2 LIFT HE.._..._ j.. PRESSURE AIR MASS GEOPOTENTIAL ALTf TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) 6,00 6_200E _- _ E , E-03 7,6430E-03 _ 4j o149E ,7890E , E E-03 4.*79.-_. 5,90 6*097E ,15 8,7092E E-03 7,5053E-03 4,6854E E E E E E E ,82 8,5496E E E E-04 5,75' 5.943E E E E E E , E , E E E E _31 8.3_06E E E , E E E E E-04 5,55 5,736E E E E E-04 5, E * E ,5103E E E-04 5, E ,9928E E E E * 5 582E ,43 7*9134E ?3627E E E-04 5,35 5,530E E E E-03 4_2147E E *07 _ E-03 _ E E E *.427E E ,1416E E E E , E , 0681E E E *324E E E E E-04 5*10 5,272E E , E E E-04 5 *05 5*221E E E E-03 3*9596E E E E E E-04 6*0 0 TO 5.00

77 (1) (2) (3) (4) (5) (6) (7) (8)(9(0) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LIFT HE (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB_/F_) E E E E ?E-04 4, E E E E E-04 4, E ,1238E E E E-04 4, E , E E E-03 3,7902E E E E E E E E E E E E E E E E-_O E E E E E-1G E E E E _E- _ ,705E E E-03 5,6660E E-04 F E E E E _51E-_4., 4, E E E E E-04 4, E E E E _112E E ,2627E E E _693E E E E E E-04.4, E ,1071E ,6821E E E-04 4, E , E , E E E E E E E E E E E-03 _ E E E E E E _6E-04, EE E , E E E TO 4.00

78 .. <(1>_lL) _...(2) 4(3)) (5)... (6) (7 ) ---- (8) (9) -_o.j P INTEGRATED H T _-_J -._ RHO GAS LIFT_-. L I (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E _ E E-03 4, 98E-_A - 0_Z E , IE E E E ~90 4^.03q±lA_,AE+01AJ S E < , E E E E E _ -28., E *1057E-03 4*7291E E-O 3 * E E E-03 4,6627E E E E E E-03 2*8694E-04 3, E *2567E ,8909E iE-03 2,8280E-0_ 3 * E E E-03 4,4639E E-O E E E E E *673E _ E E E E-Oq E E E E E ,570E E E E E E E _4* 4 633E-03 4i+1340E-O E-O2 0 3., E E E E E-04 3, E E , E E E E E E E E E E E E-03 2e 4169E-04 3, E E , E E E E E E E E E E E E E _.105E E , E-03 3,6104E-03 2,2539E-O0... 4,00 TO 3.00

79 (1) (2) (3) (4) (5) (6) (7) (8).... 9)_......_ P INTEGRATED H T RHO GAS LIFT H2 LIFT HE... FTE.. PRESSURE AIR MASS GEOPOTENTIL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3)... LB/FT3) 3o E+O E ,8980E E E-_. 2, E E E E E E ,00 4,0387E-= o7576E E-03 2o 728E-04 2, E , E E-03 3o4155E E- 4 2,80 2,898E ,8882E o6176E-03 3,3507E E E E E-03 _3.286iE-03 _ E o795E i E , E E ilE_-04,. 2,65 2o743E E , E-03 3?1570E-03 o 97_08E-4 2,60 2,692E01i 4048i o5886E ,.4 3o3389E E E-04 2, E i3321i ,5140E ,6 3,2694E E E_0 4. 2o50 2o589E ,94 3,4395E , E iE-03 i..:8504e-o_ 2,45 2o537E i ,3652E l31 i0e-03 2, 9000E-03 _ o8104e e485E+0i , E ,2 3o06i9E E-03._77_i. 2,35 2,434E* ,2168E e E E-03 _ E ,382E E E-03 _.2o 784E_-03 1,6908E E , E ,8554E-03 2.'6447E E 04 2, E+O ,9952E E-03 2e5 82E E-l E , E E E E-Q 2o10 2.i75E E e 6500E E E ,i24E E e5818E E-03._ , E ,27 2,7018E ,4 o,5137e E-03 i,4535e'-'04 3,00 TO 2,00 E-_

80 ( U(2) -) (3) (4) (5) - (6) (----- ) ---- (8) --- (9) (3L-- j... P INTEGRATED H T RHO GAS _ LIFT jh... LT fjlel-_- LJ... (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E E+t ,.73 2,6288E * 4 458E E E_0i i_ E E E E E E J E E E E E / E E E E E E E E E E E E E E E _.1941E E E- 3, 1-8. rj_ E E E E E E+01 -/44384/ _ E E E E E o j.. -A*-5Jl, l_* J At- L-_ E E E E E _ E E E E E E E E E-05 i *00E E DE E gl_ E E E E E E i E E E E E E E E E E E E E E E E E E E-05 1, EtO_ E , E E E E E E E E TO

81 .. (1) (2) (3) (4) (5) - (6) (2) (7) ^.L (8) (9) (10) P INTEGRATED H T RHO GAS LIFT H2 LIFT HE F IT_..E -PRESSURE AIR - ASS GEOPOTENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E _ E E E ?E E E i.i1856e E iE E ,2-614E E E E E _ E-03 _ _1.1_616E-03_ E E E E E E E E _8_E *8 _1.1377E E E E+OO E-03 _ E E-03 _- 6503_ E E _1i_37E-._. 03._ E-_0_3... 9_9E-0L E E E E E E E-03 _ E E-03 6._30.E05 u l E E , E E _2 E_ O E E-0 _ ,3.0658E E E E E E E E E E E E-04 6_. 0245E E E E E E E E E E E E E E E E E '83E E E E E E E E-04.5,678E E E E E-04 _5.6090_E-0_ E E E E-04 _55317E TO.80 _

82 (12).... (3) 3) (4) (5) (6) (7) (8) (9)...(...._. INTEGRATE H T RHO GAS LIFT H. LIFT E.LIFT_HE _ (9 JMB) _ ( K.<.G/M_2)_ (H) (FT) (DEG C) (KG/M3) (KG/M_3) (KG/M3).. B/F_ _4E_+00_ 4_9588 _ E-03 l189, E E-5,8_738E _8._2_0_1E E E E E-05 * _097E i.0040e E E-04 5,4012E E E E E E E E E E E E E E E E E E E E E E, E E E E E E E E E E E E E E-05 o' E E E E E E E E E E E E E E E E E E E E E E E E E-05.65_ E E E E E-05 * E E E E-04 4,4318E E E E E E E E E E E-05 * E* E E E E E E , E E E TO.60

83 (1) (2) (3) (4) (5) (6) (7) (8) (9)_ (10) P INTEGRATED H T RHO GAS LIFT H2 L.. _IFT HE _ L F HIFE'... PRESSURE AIR M-ASS GEOPOTENTIAL ALT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (MB) (KG/M2) (M) (FT) (DEG C) (KG/M3) (KG/M3.) (KG/M3) (LB/FT3) E E E E E E , E E-04O E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-05, E E E E E-05_ E E E E E-05, E E E E E E E E E _2E-5,48 4.,988E E E E E E ,1307E ,7040E E-04 3,.2982E-05, E ,0078E E E E E , E E E E-05, E , E E E E E E E-04 4,8588E E-05, Ef E E E E-05,41 4,262E E E E E-05, E E-04_ E E E ~~~~~~ TO.40

84 (1)-L - A _-- _-(2) ( (3)( A (4) ( - -^ (5) (6) L (7) (8) ^ L (9) - -JtJl (10) - P INTEGRATED H T RHO GAS LIFT H2 LIFT HE LFT.. ~PRESSURE AIR MASS GEOPOTENTIAL A~LT TEMPERATURE AIR DENSITY EXPANSION PURE GRADE A GRADE A (NB) (KG/M2) (m) (FT) (DEG C) (KG/M3) (KG/M3) (KG/M3) (LB/FT3) E E E E E *055E , E E E-04 2.?7669E E, E E E E-05 * E E E E E E, E E E E-05 * E E E E E Eu E E E E E L E E-04 3._ : E E E E E *225E E E E E *121E E E E-04 2.i613-_ E E E E-04 2.*0934E E E E E E *809E E E E E o706EO E o2667E E E-05 * E E E E E E E E E E-05 * E E E E E-05 * E E *7913E E E E E E E E E E E E E TO.20

Atmospheric Thermodynamics

Atmospheric Thermodynamics Atmospheric Thermodynamics Atmospheric Composition What is the composition of the Earth s atmosphere? Gaseous Constituents of the Earth s atmosphere (dry air) Constituent Molecular Weight Fractional Concentration

More information

The Standard Atmosphere

The Standard Atmosphere The Standard Atmosphere The Standard Atmosphere Some definitions Absolute altitude Geometric altitude Geopotential altitude Some physics The hydrostatic equation Construction of the standard atmosphere

More information

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr.

References: Parcel Theory. Vertical Force Balance. ESCI Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. References: ESCI 340 - Cloud Physics and Precipitation Processes Lesson 3 - Stability and Buoyancy Dr. DeCaria Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

There are three phases of matter: Solid, liquid and gas

There are three phases of matter: Solid, liquid and gas FLUIDS: Gases and Liquids Chapter 4 of text There are three phases of matter: Solid, liquid and gas Solids: Have form, constituents ( atoms and molecules) are in fixed positions (though they can vibrate

More information

hapter 13 Archimedes Up-thrust

hapter 13 Archimedes Up-thrust hapter 13 Archimedes Up-thrust In science, buoyancy is an upward force exerted by a fluid that opposes the weight of an immersed object. The buoyant force is also called Archimedes Up-thrust force. Proof

More information

Study of the viability of a glider drone for the return of experiments carried by weather balloons

Study of the viability of a glider drone for the return of experiments carried by weather balloons Bachelor s Degree in Aerospace Vehicle Engineering Study of the viability of a glider drone for the return of experiments carried by weather balloons Appendices Author: Albert Gassol Baliarda Director:

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

More information

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force

Lecture 1. Equations of motion - Newton s second law in three dimensions. Pressure gradient + force force Lecture 3 Lecture 1 Basic dynamics Equations of motion - Newton s second law in three dimensions Acceleration = Pressure Coriolis + gravity + friction gradient + force force This set of equations is the

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 10 Complete the items below Name: Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

Chapter 2 Earth s atmosphere (Lectures 4 and 5)

Chapter 2 Earth s atmosphere (Lectures 4 and 5) Chapter 2 Earth s atmosphere (Lectures 4 and 5) Keywords: Earth s atmosphere; International standard atmosphere; geopotential altitude; stability of atmosphere. Topics 2.1 Introduction 2.2 Earth s atmosphere

More information

M o d u l e B a s i c A e r o d y n a m i c s

M o d u l e B a s i c A e r o d y n a m i c s Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 8-0 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 08-01- 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s

More information

Linear Transport Relations (LTR)

Linear Transport Relations (LTR) Linear Transport Relations (LTR) Much of Transport Phenomena deals with the exchange of momentum, mass, or heat between two (or many) objects. Often, the most mathematically simple way to consider how

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi

Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Mechanical Engineering Department Third year class Gas Dynamics Tables Lecturer: Dr.Naseer Al-Janabi Ref. Fundamentals of Gas Dynamics, 2e - R. Zucker, O. Biblarz Appendixes A. B. C. D. E. F. G. H. I.

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2 PHY 302 K. Solutions for Problem set # 12. Textbook problem 10.55: Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L 8η v R 2 8ηF πr 4 (1) where η is viscosity

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

NEBB Fundamental Formulas

NEBB Fundamental Formulas Approved NEBB - May 1, 17 Page 1 of 8 Version 1.3 A = Area (ft²) IP, (m²) SI M = Mass (lb) IP, (kg) SI ACH = Air Changes per Hour ma = Mixed Air Ak = Effective Area m = meter (metre) AV = Average m³/s

More information

Formulae and code for the U.S. Standard Atmosphere (1976)

Formulae and code for the U.S. Standard Atmosphere (1976) -100 C -80 C -60 C -40 C -20 C 0 C +20 C Geopotential altitude Formulae and code for the U.S. Standard Atmosphere (1976) It is sometimes convenient to have at hand a mathematical model for the atmosphere

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Measurement and Problem Solving What Is a Measurement? Quantitative observation. Comparison to an agreed upon standard. Every measurement has a number and a unit. 2 A Measurement The unit tells you to

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chater / Fluid Statics CHAPTER Fluid Statics FE-tye Exam Review Problems: Problems - to -9. (C) h (.6 98) (8.5.54) 96 6 Pa Hg. (D) gh 84. 9.8 4 44 76 Pa. (C) h h. 98. 8 Pa w atm x x water w.4 (A) H (.6

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009 Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

PHYSICS 220 Lecture 16 Fluids Textbook Sections

PHYSICS 220 Lecture 16 Fluids Textbook Sections PHYSICS 220 Lecture 16 Fluids Textbook Sections 10.1-10.4 Lecture 16 Purdue University, Physics 220 1 States of Matter Fluids Solid Hold Volume Hold Shape Liquid Hold Volume Adapt Shape Gas Adapt Volume

More information

Chapter 1 Dimensions, Units, and Their Conversion

Chapter 1 Dimensions, Units, and Their Conversion 1.1 Units and Dimensions Chemical Engineering principles First Year/ Chapter One Chapter 1 Dimensions, Units, and Their Conversion Dimensions are our basic concepts of measurement such as length, time,

More information

International Standard Atmosphere Web Application

International Standard Atmosphere Web Application International Standard Atmosphere Web Application Keith Atkinson 6 February 2016 Atkinson Science welcomes your comments on this Theory Guide. Please send an email to keith.atkinson@atkinsonscience.co.uk.

More information

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan

Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards. Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics common core standards Dr. Janel Hanrahan Satellites, Weather and Climate Module 33: Atmospheric sciences and the mathematics

More information

Phys102 First Major-182 Zero Version Coordinator: A A Naqvi Thursday, February 14, 2019 Page: 1

Phys102 First Major-182 Zero Version Coordinator: A A Naqvi Thursday, February 14, 2019 Page: 1 Coordinator: A A Naqvi Thursday February 14 2019 Page: 1 Q1. Figure 1 shows a graph of a wave traveling to the left along a string at a speed of 34 m/s. At this instant what is the transverse velocity

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Chapter 2 Measurement and Problem Solving. What Is a Measurement? Scientific Notation 8/20/09. Introductory Chemistry, 3 rd Edition Nivaldo Tro

Chapter 2 Measurement and Problem Solving. What Is a Measurement? Scientific Notation 8/20/09. Introductory Chemistry, 3 rd Edition Nivaldo Tro Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2009, Prentice Hall What Is a Measurement? Quantitative

More information

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere

ATMO/OPTI 656b Spring 08. Physical Properties of the Atmosphere Physical Properties of the Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

Chapter 1 Matter,Measurement, and Problem Solving

Chapter 1 Matter,Measurement, and Problem Solving Chapter 1 Matter,Measurement, and Problem Solving Classification of Matter matter is anything that has mass and occupies space we can classify matter based on whether it s solid, liquid, or gas State Shape

More information

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Chapter 10 Problems Problems

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

A Framework for Dynamical True Altitude Modeling in Aviation. Josaphat A. Uvah. University of West Florida, Pensacola, USA

A Framework for Dynamical True Altitude Modeling in Aviation. Josaphat A. Uvah. University of West Florida, Pensacola, USA US-China Education Review A, March 2017, Vol. 7, No. 3, 161-168 doi: 10.17265/2161-623X/2017.03.004 D DAVID PUBLISHING A Framework for Dynamical True Altitude Modeling in Aviation Josaphat A. Uvah University

More information

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Units and Measurement - Metrics A. The International System of Units

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below)

READ ONLY. Adopting Agency BSC SFM. Adopt Entire Chapter X X X X X X X X X Adopt Entire Chapter as amended (amended sections listed below) CALIFORNIA MECHANICAL CODE MATRIX ADOPTION TABLE APPENDIX D UNIT CONVERSION TABLES (Matrix Adoption Tables are non-regulatory, intended only as an aid to the user. See Chapter 1 for state agency authority

More information

DIMENSIONS AND UNITS

DIMENSIONS AND UNITS DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Course Principles Climate Sciences: Atmospheric Thermodynamics

Course Principles Climate Sciences: Atmospheric Thermodynamics Atmospheric Thermodynamics Climate Sciences: Atmospheric Thermodynamics Ch1 Composition Ch5 Nucleation Ch6 Processes Ch7 Stability Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text:

More information

ATMOSPHERIC THERMODYNAMICS

ATMOSPHERIC THERMODYNAMICS ATMOSPHERIC THERMODYNAMICS 1. Introduction 1.1 The field of thermodynamics Classical thermodynamics deals with energy and the transformations of the nature of energy. To a certain extent, it classifies

More information

Types of Forces. Pressure Buoyant Force Friction Normal Force

Types of Forces. Pressure Buoyant Force Friction Normal Force Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes

More information

Unit 4: The Nature of Matter

Unit 4: The Nature of Matter 16 16 Table of Contents Unit 4: The Nature of Matter Chapter 16: Solids, Liquids, and Gases 16.1: Kinetic Theory 16.2: Properties and Fluids 16.3: Behavior of Gases 16.1 Kinetic Theory Kinetic Theory kinetic

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus

1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus 1) Law of Orbits - all planets move in elliptical orbits with the Sun at one focus 2) Law of equal areas - ANGULAR MOMENTUM IS CONSERVED A line that connects a planet to the Sun sweeps out equal areas

More information

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases Chapter 10 part 1: Ideal Gases Read: BLB 10.1 5 HW: BLB 10.2,19a,b, 23, 26, 30, 39, 41, 45, 49 Sup 10:1 6 Know: What is pressure? Gases Which elements exist as gases at ordinary temperature and pressure?

More information

PHYSICS HYDROSTATICS FORM 5

PHYSICS HYDROSTATICS FORM 5 Pressure Pressure is defined as force per unit area. Pressure = Force Area Pressure = Newton (metre) 2 1 Pa = 1N/m 2 Which of the following exerts a greater pressure? A woman of mass 70kg stepping on your

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

More information

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get

ρ mixture = m mixture /V = (SG antifreeze ρ water V antifreeze + SG water ρ water V water )/V, so we get CHAPTER 10 1. When we use the density of granite, we have m = ρv = (.7 10 3 kg/m 3 )(1 10 8 m 3 ) =.7 10 11 kg.. When we use the density of air, we have m = ρv = ρlwh = (1.9 kg/m 3 )(5.8 m)(3.8 m)(.8 m)

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9. Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =! Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Interference superposition principal: most waves can be added y(x, t) =y 1 (x vt)+y 2 (x + vt) wave 1 + wave 2 = resulting wave y 1 +

More information

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chater / Fluid Statics CHAPTER Fluid Statics FE-tye Exam Review Problems: Problems - to -9. (C) h (.6 98) (8.5.54) 96 6 Pa Hg. (D) gh 84. 9.8 4 44 76 Pa. (C) h h. 98. 8 Pa w atm x x water w.4 (A) H (.6

More information

States of Matter: Study Guide

States of Matter: Study Guide Name: nswer KEY States of Matter: Study Guide Period: Date: 1. Describe the volume, shape and molecular arrangement in the following states of matter: Solid Volume Shape Molecular rrangement Definite Definite

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

ATMO551a Fall Vertical Structure of Earth s Atmosphere

ATMO551a Fall Vertical Structure of Earth s Atmosphere Vertical Structure of Earth s Atmosphere Thin as a piece of paper The atmosphere is a very thin layer above the solid Earth and its oceans. This is true of the atmospheres of all of the terrestrial planets.

More information

AE 245 homework #1 solutions

AE 245 homework #1 solutions AE 245 homework #1 solutions Tim Smith 24 January 2000 1 Problem1 An aircraft is in steady level flight in a standard atmosphere. 1. Plot the total or stagnation pressure at the nose of the aircraft as

More information

Chapter 2: Measurements and Problem Solving

Chapter 2: Measurements and Problem Solving C h 2 : M e a s u r e m e n t s a n d P r o b l e m S o l v i n g P a g e 1 Chapter 2: Measurements and Problem Solving Read Chapter 2, work problems. Look over the lab assignments before the lab. Keep

More information

Chapter 1: Matter and Energy 1-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 1: Matter and Energy 1-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1: Matter and Energy Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1-1 1.1 Matter and Its Classification Matter is anything that occupies space and

More information

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field. Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

More information

CAE 331/513 Building Science Fall 2015

CAE 331/513 Building Science Fall 2015 CAE 331/513 Building Science Fall 2015 Week 5: September 24, 2015 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com

More information

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force

More information

Umm Al-Qura University Dr. Abdulsalam Ali. Physics 101. Lecture 1. Lecturer: Dr. Abdulsalam Ali Soud

Umm Al-Qura University Dr. Abdulsalam Ali. Physics 101. Lecture 1. Lecturer: Dr. Abdulsalam Ali Soud Physics 101 Lecture 1 Lecturer: Dr. Abdulsalam Ali Soud Course Text Book Course Text Book Physics 4 th By James S. Walker COURSE SYLLABUS Week No. 1 2 3 4 Contents Introduction to Physics 1- Unit of Length,

More information

Dynamic Meteorology: lecture 2

Dynamic Meteorology: lecture 2 Dynamic Meteorology: lecture 2 Sections 1.3-1.5 and Box 1.5 Potential temperature Radiatively determined temperature (boxes 1.1-1.4) Buoyancy (-oscillations) and static instability, Brunt-Vaisala frequency

More information

APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations

APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations A ampere AASHTO American Association of State Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute

More information

Physics 220: Classical Mechanics

Physics 220: Classical Mechanics Lecture 10 1/34 Phys 220 Physics 220: Classical Mechanics Lecture: MWF 8:40 am 9:40 am (Phys 114) Michael Meier mdmeier@purdue.edu Office: Phys Room 381 Help Room: Phys Room 11 schedule on course webpage

More information

Measurement Chapter 1.6-7

Measurement Chapter 1.6-7 Unit 1 Essential Skills Measurement Chapter 1.6-7 The Unit 1 Test will cover material from the following Chapters and Sections: 1.all 2.5-8 3.all 2 Two types of Data: When we make observations of matter,

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Adding these quantities together gives the total kilogram moles.

Adding these quantities together gives the total kilogram moles. Adding these quantities together gives the total kilogram moles. Example 14 In normal living cells, the nitrogen requirement for the cells is provided from protein metabolism (i.e., consumption of the

More information

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere

ATMO/OPTI 656b Spring 09. Physical properties of the atmosphere The vertical structure of the atmosphere. Physical properties of the atmosphere To first order, the gas pressure at the bottom of an atmospheric column balances the downward force of gravity on the column.

More information

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or Chapter 10 Chemical Quantities or 1 2 How you measure how much? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters. We count pieces in MOLES.

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion

Chapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are

More information

Chapter 10. Solids & Liquids

Chapter 10. Solids & Liquids Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density

More information

INTRODUCTION TO FLUID STATICS AND DYNAMICS

INTRODUCTION TO FLUID STATICS AND DYNAMICS INTRODUCTION TO FLUID STATICS AND DYNAMICS INTRODUCTION TO FLUID STATICS AND DYNAMICS by J. Kovacs, Michigan State University 1. Introduction.............................................. 1 2. Archimedes

More information

APPENDIX H CONVERSION FACTORS

APPENDIX H CONVERSION FACTORS APPENDIX H CONVERSION FACTORS A ampere American Association of State AASHTO Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute Volume ACI American Concrete Institute

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Homework #4 Solutions

Homework #4 Solutions MAT 303 Spring 03 Problems Section.: 0,, Section.:, 6,, Section.3:,, 0,, 30 Homework # Solutions..0. Suppose that the fish population P(t) in a lake is attacked by a disease at time t = 0, with the result

More information

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation Measurement Chapter 2 Measurements and Problem Solving Quantitative observation Comparison based on an accepted scale e.g. Meter stick Has 2 parts number and unit Number tells comparison Unit tells scale

More information

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ). Section 1.1 Direction Fields Key Terms/Ideas: Mathematical model Geometric behavior of solutions without solving the model using calculus Graphical description using direction fields Equilibrium solution

More information

Fluid Mechanics Abdusselam Altunkaynak

Fluid Mechanics Abdusselam Altunkaynak Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.

More information

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES

APPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance

More information

Physics 4C Spring 2017 Test 1

Physics 4C Spring 2017 Test 1 Physics 4C Spring 017 Test 1 Name: April 19, 017 Please show your work! Answers are not complete without clear reasoning. When asked for an expression, you must give your answer in terms of the variables

More information

First Order ODEs (cont). Modeling with First Order ODEs

First Order ODEs (cont). Modeling with First Order ODEs First Order ODEs (cont). Modeling with First Order ODEs September 11 15, 2017 Bernoulli s ODEs Yuliya Gorb Definition A first order ODE is called a Bernoulli s equation iff it is written in the form y

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information