The Solutions of the Classical Relativistic Two-Body Equation

Size: px
Start display at page:

Download "The Solutions of the Classical Relativistic Two-Body Equation"

Transcription

1 T. J. of Physics (998), c TÜBİTAK The Soutions of the Cassica Reativistic Two-Body Equation Coşkun ÖNEM Eciyes Univesity, Physics Depatment, 38039, Kaysei - TURKEY Received Abstact With the eativistic Kepe pobem, a two-body system is studied fo positonium, the hydogen atom and m >> m cases.. Intoduction It is we known that the eativistic two-body pobem has a ong histoy and it contains some difficuties. Thee ae two ways to undestand this system: Fist, one is via fied theoy, which the second invoves action-at-a-distance theoy [] (both of which ae discussed by Havas []). Howeve, thee have been sevea attempts to obtain the obit soution fo a cassica eativistic two-body system inteacting eectomagneticay. If it is soved exacty, then the eativistic bound state pobem in quantum mechanics wi be we undestood with it wi be possibe to stat fom coesponding pobem in the cassica mechanics and quantize it [3]. Nevetheess, it must be emphasized that these appoaches ae amost esticted to cicua obits. In Schid s wok [4], the concentic cicua motion of two cassica eativistic point chages inteacting eectomagneticay had been descibed. The simia discussion was aso made by Andeson-Baeye [5] and Codeo-Ghiadi [6]. It is known that the cassica Kepe pobem is a typica two-body pobem [7] and it was fist discussed eativisticay by Cawey [8]. On the othe hand it must be pointed out that the obita discussion of eativistic two-body system is not ony consisted of the cicua obits. Recenty, a moe genea 07

2 soution was obtained by Baut-Caig [9] in which the beginning action is same with ou action [0]. In this wok the eativistic Kepe pobem, which is a specia case of ou action, wi be studied, and the most genea obita soution wi be discussed fo the attactive and epusive potentia. Then the case of the positonium (m = m ) and the hydogen atom (m ) wi be discussed fo the eativistic two body system inteacting (e e /) potentia. Finay, the case of m >> m wi be discussed.. The Reativistic Kepe Pobem Ou one-time paamete action fo inteacting eectomagnetic two-body system is given as foows [0]. A = dt [m v + m v + e ] e ( v v ), () whee m,m ae masses coesponding to e,e chages, espectivey; v and v ae vecto veocities; and T is cente of mass time. The fist two tems ae kinetic enegy, the thid tem is the mutua inteaction tem. On the othe hand thee ae non-dynamica but hoonomic constaints on 4-veocity with x. iµ x.µ i = (i =, ; c =). This action becomes fo one patice: { A = dt m v + e e }. () The Hamitonian is obtained easiy in the poa coodinates: H = m + p ɛ K = m + p + p ϑ ɛk, (3) whee K = e e,andɛ = ±; fom which it is obvious that the potentia is the attactive fo ɛ = and the epusive fo ɛ =. The equations of motion in poa coodinates ae 08. = H p = ϑ. = H p ϑ = p m + p + p ϑ p ϑ m + p + p ϑ (4a) (4b) p = H ṙ = p ϑϑ. ɛk (4c) p. ϑ = H ϑ = p. ϑ =0, p ϑ = = Constant. (4d)

3 It can be seen easiy that the enegy is aso conseved as the angua momentum p ϑ ; E = m + p + p ϑ ɛk = Constant. (5) Now we find the obit equation. It is obvious that it is easiy obtained fom Eqns. (4a) and (4b): d dϑ = p (6) dϑ = [ K 4 whee u =(/) and afte integation it is found [ u = = ɛek + + (E m )( K ) K E K 4 du ] u + EɛK u + E m (7) ] cos K4 (θ θ 0). (8) We take c =. In ode to obtain the coect esut we have to epace c and m mc at the Eq. (8) o m mc and v (v/c) attheeq.().thenitcanbeseen that it is (/) =(/mete) inmks. If we intoduce C = ɛek K 4, β = K4, e = + (E m )( K 4 ) E K 4, (9) whee the β and e ae dimensioness constant and C has dimension of m.theneq. (8) becomes = C[ + e cos β(ϑ ϑ 0)], (0) which can be aso witten as = C[ +echβ(ϑ ϑ 0)], () whee C = ɛek K K 4 = C, β = 4 =iβ, cos iβ = chβ. () It is obvious that Eqs. (0) and () ae simia to the genea conic equations. If it is chosen β = then these equations ae educed to the cassica Kepe s equation [7]. Now et s examine the obits fo the diffeent vaues of e and foattactive potentia (ɛ =). 09

4 I- e>: a- When (E m K ) > 0, 4 < the soution is Eq. (0) which is simia to the noneativistic motion. The obit is a hypeboa when cos β(ϑ ϑ 0 ) > 0 and the minimum distance that the patice can appoach is min =[/C( + e)]. When cos β(ϑ ϑ 0 ) < 0 the soution is unphysica. b- When (E m K ) < 0, 4 > the soution is eativistic and given by Eq. (). The obit is a spia which comes fom max =[/C( +e)] and fas to the oigine. The numbe of it s evoution depends on e. II- e<: a- When (E m K ) < 0, 4 < the soution is Eq. (0) which is simia to the noneativistic soution. The obit is a pecessing eipse by about ϑ K4 π pe evoution. b- When (E m ) > 0, K4 > the soution is Eq. (), which is the eativistic soution. III- e =,E m =0: a- When K < the soution is Eq. (), coesponding to the noneativistic motion: = C[ + cos β(ϑ ϑ 0)]. (3) The obit is a paaboa and the min distance that the patice can come is min =(/C). b- When K4 > the eativistic soution is = C[ +chβ(ϑ ϑ 0)]. (4) The obit is a semipaaboa, oiginating fom and faing to the oigin. IV- e =0: a- When K4 < the soution is = C and the obit is a cice as with noneativistic motion. b- When K4 > thee is no soution. On the othe hand, we can aso discuss the antipatice soutions. In ode to obtain anti-patice soutions, we must epace E E in the patice soutions. As it wi be easiy seen in Tabe, thee is a coss eationship between the patice and anti-patice soutions. Fo exampe, the patice soution when e>, ɛ= + becomes the anti-patice soution fo e>, ɛ=. Thee ae aso othe simia soutions. This shoud not come as a supise as we expect it to confom with quantum mechanics. If the potentia is epusive (e = ) we must epace C C and C C in the above soutions. Thus the a soutions fo the eativistic Kepe pobem can be odeed as in Tabe. It is obvious that these soutions ae moe genea than Cawey s soutions [8]. 0

5 3. Two-Body System Now et s etun to the action descibed by Eqn. () and negect the inteacting tem between the veocities and the sef inteaction tems. Eqn. () then becomes A = dt [m v + m v + e ] e. (5) It is known that the tota momentum of the system is a constant in the COM [0]. If it is chosen identicay zeo then the Hamitonian is obtained easiy: H = m + p + m + p ɛ K, (6) whee p is the eative momentum ( p = p = p when p = 0), is the eative coodinate K = e e,andɛ = ±. Binomia expansion of this Hamitonian contains the Beit Hamitonian in quantum mechanics []. It is obvious that the enegy is a constant of motion. In poa coodinates, E = m + p + p ϑ + m + p + p ϑ ɛk = Constant. (7) The equations of motion ae aso obtained easiy. = H = p + p m + p + p ϑ m + p + p ϑ ϑ. = H = p ϑ + p ϑ m + p + p ϑ m + p + p ϑ p = H ṙ = p ϑϑ. ɛk (8a) (8b) (8c) p. ϑ = H ϑ =0, p ϑ = = Constant. (8d) As is expected, the tota angua momentum is a constant of motion. The obits equation can be found afte itte ageba: dϑ = (E + ɛ K ( ) E + ɛ K d ) 4 ( ) E + ɛ K [ ]. (9) (m + m 4 )+ +(m m )

6 I- When m = m = m (The positonium case) It wi be seen easiy that the ast tem at the denominato is zeo. Thus the Eq. (9) becomes du dϑ = [ K 4 ], (0) u 4 + EɛK u + E 4m 4 4 whee u =/. This equation is same with the Eq. (7) when = and m =m. Theefoe the soutions given in the Tabe can be adapted to this case easiy. II- When m (The case of hydogen atom): To cacuate the imit of the Eq. (9) when m we must epace E E +m. Atfe some ageba it becomes dϑ = du [ K 4 ]. () u + E ɛk u + E m ageba: It is aso obvious that this equation is same as the Eq. (7) when E = E. III- When m >> m : Afte we epaced E E + m at the Eq. (9), Eq. () is obtained with itte dϑ d = () (m + V ) (m + m ) 4 + (m m ) (m +V ) whee V = E + e K. If we ommit the second and highe ode tems with espect to (/m ), and afte expanding the denominato of the ast tem in the squae oot in binomia seies, we obtain: dϑ = du ( K 4 ) ( ), (3) u E + ɛk + m ɛk m u + E m + m E m whee u = /. As is seen, this intega contains the coection tems accoding to one patice system, which ae m ɛk m u + m E m. Nevetheess, it is obvious that this intega is simia to Eq. (7) if the constants in the squae oot ae edefined. Consequenty obits ae aso simia to the eativistic Kepe obits.

7 Tabe. The eativistic Kepe soution of patice and antipatice fo attactive and epusive potentia whee (*): Noneativistic soutions, (#): Unphysica soutions, (x): Reativistic soutions Patice Antipatice K 4 < K 4 > K 4 < K 4 > (*) (cos βϕ > 0) (x) (cos βϑ < 0) e> e m > H. boa ε = (at.) = c[ + e cos βϕ ] = C [ + e cos βϑ ] (x) (#) e m < 0 - = C[ +echβϑ ] - = C[ +echβϑ ] (*) (cos βϑ < 0) (x) (cos βϑ > 0) ɛ = e m > (ep.) = C[ + e cos βϑ ] = C [ + e cos βϑ ] (#) (x) e m < = C[ +echβϑ ] = C [ + e chβϑ ] (x) (#) e< ɛ = e m > Eipse (att.) = C[ +echβϑ ] = C [ + e chβϑ ] ( ) (#) e m < = C[ + e cos βϑ ] = C [ + e cos βϑ ] (#) (X) ε = - - (ep.) e m > 0 = C[ +echβϑ ] = C[ + e chβϑ ] (#) (X) e m < = C[ + e cos βϑ ] = C [ + e cos βϑ ] e =0 E m =0 ɛ = (*) (x) (#) (#) Paaboa (att.) = C[ + cos βϑ ] = C[ +echβϑ ] = C [ + cos βϑ ] ɛ = (#) (#) (x) (x) (ep.) = C[ +chβϑ ] = C [ + cos βϑ ] = C[ +chβϑ ] = C [ + cos βϑ ] = C[ +chβϑ ] e =0 E = m ( K4 ) ɛ = (*) (#) - - cice (att.) = C = C ɛ = (#) (x) - - (ep.) = C = C

8 Refeences [] A.O. Baut, Eectodynamics and Cassica Theoy of Fieds and Patices (Second Edition Dove, New Yok 980) Ch.6. [] P. Havas, Phys. Rev., 74 (948) 456. [3] A. Degaspeis, Phys. Rev. D., 3 (97) 73. [4] A. Schid, Phys. Rev., 3 (963) 767. [5] C.M. Andesen and Hans C. von Baeye, Ann. Phys., 60 (970) 67. C.M. Andesen and Hans C. von Baeye, Phys. Rev., D. 5 (97) 80. [6] P. Codeo and G.-C. Ghiadi, J. Math. Phys., 7 (973) 85. [7] H. Godstein, Cassica Mechanics (Second Edition, Addison-Wesey Pubishing Company, 980) Ch. 3. [8] Robet G. Cawey, J. Math. Phys., 8 (967) 09. [9] A.O. Baut and G. Caig, Physica A, 97 (993) 75. [0] C. Önem, The Cass Rea. Two-Body Pob. with Sef Inteaction, N. Cimento B, 0 (995) 0. [] H.A. Bethe and E.E. Sapete, Quantum Mechanics of One and Two Eecton Atoms (Spinge-Veag, 957) p.9. 4

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms.

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms. Modue "Atomic physics and atomic stuctue" Lectue 7 Quantum Mechanica teatment of One-eecton atoms Page 1 Objectives In this ectue, we wi appy the Schodinge Equation to the simpe system Hydogen and compae

More information

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by Lectue The Schödinge equation In quantum mechanics, the fundamenta quantity that descibes both the patice-ike and waveike chaacteistics of patices is wavefunction, Ψ(. The pobabiity of finding a patice

More information

Three-dimensional systems with spherical symmetry

Three-dimensional systems with spherical symmetry Thee-dimensiona systems with spheica symmety Thee-dimensiona systems with spheica symmety 006 Quantum Mechanics Pof. Y. F. Chen Thee-dimensiona systems with spheica symmety We conside a patice moving in

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 6 Kepe Pobem (Chapte 3) What We Did Last Time Discussed enegy consevation Defined enegy function h Conseved if Conditions fo h = E Stated discussing Centa Foce Pobems Reduced

More information

PHYS 705: Classical Mechanics. Central Force Problems I

PHYS 705: Classical Mechanics. Central Force Problems I 1 PHYS 705: Cassica Mechanics Centa Foce Pobems I Two-Body Centa Foce Pobem Histoica Backgound: Kepe s Laws on ceestia bodies (~1605) - Based his 3 aws on obsevationa data fom Tycho Bahe - Fomuate his

More information

However, because the center-of-mass is at the co-ordinate origin, r1 and r2 are not independent, but are related by

However, because the center-of-mass is at the co-ordinate origin, r1 and r2 are not independent, but are related by PHYS60 Fa 08 Notes - 3 Centa foce motion The motion of two patices inteacting by a foce that has diection aong the ine joining the patices and stength that depends ony on the sepaation of the two patices

More information

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.7 Homewok obem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe ROBLEM: A ocaized distibution of chage has a chage density ρ()= 6 e sin θ (a) Make a mutipoe expansion of the potentia

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensama sensama@theoy.tif.es.in Scatteing Theoy Ref : Sakuai, Moden Quantum Mechanics Tayo, Quantum Theoy of Non-Reativistic Coisions Landau and Lifshitz, Quantum Mechanics

More information

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 3.3 Homewok Pobem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe POBLEM: A thin, fat, conducting, cicua disc of adius is ocated in the x-y pane with its cente at the oigin, and is

More information

PHYS 705: Classical Mechanics. Central Force Problems II

PHYS 705: Classical Mechanics. Central Force Problems II PHYS 75: Cassica Mechanics Centa Foce Pobems II Obits in Centa Foce Pobem Sppose we e inteested moe in the shape of the obit, (not necessay the time evotion) Then, a sotion fo = () o = () wod be moe sef!

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

An Application of Bessel Functions: Study of Transient Flow in a Cylindrical Pipe

An Application of Bessel Functions: Study of Transient Flow in a Cylindrical Pipe Jouna of Mathematics and System Science 6 (16) 7-79 doi: 1.1765/159-591/16..4 D DAVID PUBLISHING An Appication of Besse Functions: Study of Tansient Fow in a Cyindica Pipe A. E. Gacía, Lu Maía Gacía Cu

More information

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2 5.7 Lectue #4 e / ij and Sate Sum Rue Method 4 - LAST TIME:. L,S method fo setting up NLM L SM S many-eecton basis states in tems of inea combination of Sate deteminants * M L = 0, M S = 0 boc: L L+ L

More information

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is Mutua Inductance If we have a constant cuent i in coi, a constant magnetic fied is ceated and this poduces a constant magnetic fux in coi. Since the Φ B is constant, thee O induced cuent in coi. If cuent

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism F Eectomagnetism exane. skana, Ph.D. Physics of Magnetism an Photonics Reseach Goup Magnetostatics MGNET VETOR POTENTL, MULTPOLE EXPNSON Vecto Potentia Just as E pemitte us to intouce a scaa potentia V

More information

Course Updates. Reminders: 1) Assignment #10 due next Wednesday. 2) Midterm #2 take-home Friday. 3) Quiz # 5 next week. 4) Inductance, Inductors, RLC

Course Updates. Reminders: 1) Assignment #10 due next Wednesday. 2) Midterm #2 take-home Friday. 3) Quiz # 5 next week. 4) Inductance, Inductors, RLC Couse Updates http://www.phys.hawaii.edu/~vane/phys7-sp10/physics7.htm Remindes: 1) Assignment #10 due next Wednesday ) Midtem # take-home Fiday 3) Quiz # 5 next week 4) Inductance, Inductos, RLC Mutua

More information

Homework 1 Solutions CSE 101 Summer 2017

Homework 1 Solutions CSE 101 Summer 2017 Homewok 1 Soutions CSE 101 Summe 2017 1 Waming Up 1.1 Pobem and Pobem Instance Find the smaest numbe in an aay of n integes a 1, a 2,..., a n. What is the input? What is the output? Is this a pobem o a

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to

Coordinate Geometry. = k2 e 2. 1 e + x. 1 e. ke ) 2. We now write = a, and shift the origin to the point (a, 0). Referred to Coodinate Geomet Conic sections These ae pane cuves which can be descibed as the intesection of a cone with panes oiented in vaious diections. It can be demonstated that the ocus of a point which moves

More information

Pressure in the Average-Atom Model

Pressure in the Average-Atom Model Pessue in the Aveage-Atom Moe W.. Johnson Depatment of Physics, 225 Nieuwan Science Ha Note Dame Univesity, Note Dame, IN 46556 Febuay 28, 2002 Abstact The (we-known) quantum mechanica expession fo the

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

Conducting fuzzy division by using linear programming

Conducting fuzzy division by using linear programming WSES TRNSCTIONS on INFORMTION SCIENCE & PPLICTIONS Muat pe Basaan, Cagdas Hakan adag, Cem Kadia Conducting fuzzy division by using inea pogamming MURT LPER BSRN Depatment of Mathematics Nigde Univesity

More information

KEPLER S LAWS OF PLANETARY MOTION

KEPLER S LAWS OF PLANETARY MOTION EPER S AWS OF PANETARY MOTION 1. Intoduction We ae now in a position to apply what we have leaned about the coss poduct and vecto valued functions to deive eple s aws of planetay motion. These laws wee

More information

Relating Scattering Amplitudes to Bound States

Relating Scattering Amplitudes to Bound States Reating Scatteing Ampitudes to Bound States Michae Fowe UVa. 1/17/8 Low Enegy Appoximations fo the S Matix In this section we examine the popeties of the patia-wave scatteing matix ( ) = 1+ ( ) S k ikf

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons

Calculation of Quark-antiquark Potential Coefficient and Charge Radius of Light Mesons Applied Physics Reseach ISSN: 96-9639 Vol., No., May E-ISSN: 96-9647 Calculation of Quak-antiquak Potential Coefficient and Chage Radius of Light Mesons M.R. Shojaei (Coesponding autho ) Depatment of Physics

More information

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2. Cental oce Poblem ind the motion of two bodies inteacting via a cental foce. Cental oce Motion 8.01 W14D1 Examples: Gavitational foce (Keple poblem): 1 1, ( ) G mm Linea estoing foce: ( ) k 1, Two Body

More information

Seidel s Trapezoidal Partitioning Algorithm

Seidel s Trapezoidal Partitioning Algorithm CS68: Geometic Agoithms Handout #6 Design and Anaysis Oigina Handout #6 Stanfod Univesity Tuesday, 5 Febuay 99 Oigina Lectue #7: 30 Januay 99 Topics: Seide s Tapezoida Patitioning Agoithm Scibe: Michae

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

Discretizing the 3-D Schrödinger equation for a Central Potential

Discretizing the 3-D Schrödinger equation for a Central Potential Discetizing the 3-D Schödinge equation fo a Centa Potentia By now, you ae faiia with the Discete Schodinge Equation fo one Catesian diension. We wi now conside odifying it to hande poa diensions fo a centa

More information

MSE 561, Atomic Modeling in Material Science Assignment 1

MSE 561, Atomic Modeling in Material Science Assignment 1 Depatment of Mateial Science and Engineeing, Univesity of Pennsylvania MSE 561, Atomic Modeling in Mateial Science Assignment 1 Yang Lu 1. Analytical Solution The close-packed two-dimensional stuctue is

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field.

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field. Gauss s Law In diffeentia fom D = ρ. ince this equation is appied to an abita point in space, we can use it to detemine the chage densit once we know the fied. (We can use this equation to ve fo the fied

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

The Schwarzschild Solution

The Schwarzschild Solution The Schwazschild Solution Johannes Schmude 1 Depatment of Physics Swansea Univesity, Swansea, SA2 8PP, United Kingdom Decembe 6, 2007 1 pyjs@swansea.ac.uk Intoduction We use the following conventions:

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

13.10 Worked Examples

13.10 Worked Examples 13.10 Woked Examples Example 13.11 Wok Done in a Constant Gavitation Field The wok done in a unifom gavitation field is a faily staightfowad calculation when the body moves in the diection of the field.

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

Angular Momentum Theory.

Angular Momentum Theory. Angua Momentum Theoy. Mace Nooijen, Univesity of Wateoo In these ectue notes I wi discuss the opeato fom of angua momentum theoy. Angua momentum theoy is used in a age numbe of appications in chemica physics.

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

arxiv: v1 [physics.gen-ph] 18 Aug 2018

arxiv: v1 [physics.gen-ph] 18 Aug 2018 Path integal and Sommefeld quantization axiv:1809.04416v1 [physics.gen-ph] 18 Aug 018 Mikoto Matsuda 1, and Takehisa Fujita, 1 Japan Health and Medical technological college, Tokyo, Japan College of Science

More information

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017)

Pendulum in Orbit. Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ (December 1, 2017) 1 Poblem Pendulum in Obit Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 08544 (Decembe 1, 2017) Discuss the fequency of small oscillations of a simple pendulum in obit, say,

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Merging to ordered sequences. Efficient (Parallel) Sorting. Merging (cont.)

Merging to ordered sequences. Efficient (Parallel) Sorting. Merging (cont.) Efficient (Paae) Soting One of the most fequent opeations pefomed by computes is oganising (soting) data The access to soted data is moe convenient/faste Thee is a constant need fo good soting agoithms

More information

The Precession of Mercury s Perihelion

The Precession of Mercury s Perihelion The Pecession of Mecuy s Peihelion Owen Biesel Januay 25, 2008 Contents 1 Intoduction 2 2 The Classical olution 2 3 Classical Calculation of the Peiod 4 4 The Relativistic olution 5 5 Remaks 9 1 1 Intoduction

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Newton s Laws, Kepler s Laws, and Planetary Orbits

Newton s Laws, Kepler s Laws, and Planetary Orbits Newton s Laws, Keple s Laws, and Planetay Obits PROBLEM SET 4 DUE TUESDAY AT START OF LECTURE 28 Septembe 2017 ASTRONOMY 111 FALL 2017 1 Newton s & Keple s laws and planetay obits Unifom cicula motion

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Probability Estimation with Maximum Entropy Principle

Probability Estimation with Maximum Entropy Principle Pape 0,CCG Annua Repot, 00 ( c 00) Pobabiity Estimation with Maximum Entopy Pincipe Yupeng Li and Cayton V. Deutsch The pincipe of Maximum Entopy is a powefu and vesatie too fo infeing a pobabiity distibution

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 7 Maximal score: 25 Points. 1. Jackson, Problem Points.

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 7 Maximal score: 25 Points. 1. Jackson, Problem Points. Physics 505 Eecticity and Magnetism Fa 00 Pof. G. Raithe Pobem et 7 Maxima scoe: 5 Points. Jackson, Pobem 5. 6 Points Conside the i-th catesian component of the B-Fied, µ 0 I B(x) ˆx i ˆx i d (x x ) x

More information

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011 Enegy Levels Of Hydogen Atom Using Ladde Opeatos Ava Khamseh Supeviso: D. Bian Pendleton The Univesity of Edinbugh August 11 1 Abstact The aim of this pape is to fist use the Schödinge wavefunction methods

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Kepler s problem gravitational attraction

Kepler s problem gravitational attraction Kele s oblem gavitational attaction Summay of fomulas deived fo two-body motion Let the two masses be m and m. The total mass is M = m + m, the educed mass is µ = m m /(m + m ). The gavitational otential

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Method for Approximating Irrational Numbers

Method for Approximating Irrational Numbers Method fo Appoximating Iational Numbes Eic Reichwein Depatment of Physics Univesity of Califonia, Santa Cuz June 6, 0 Abstact I will put foth an algoithm fo poducing inceasingly accuate ational appoximations

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Theorem on the differentiation of a composite function with a vector argument

Theorem on the differentiation of a composite function with a vector argument Poceedings of the Estonian Academy of Sciences 59 3 95 doi:.376/poc..3. Avaiae onine at www.eap.ee/poceedings Theoem on the diffeentiation of a composite function with a vecto agument Vadim Kapain and

More information

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a)

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a) Why Pofesso Richad Feynman was upset solving the Laplace equation fo spheical waves? Anzo A. Khelashvili a) Institute of High Enegy Physics, Iv. Javakhishvili Tbilisi State Univesity, Univesity St. 9,

More information

Problems with Mannheim s conformal gravity program

Problems with Mannheim s conformal gravity program Poblems with Mannheim s confomal gavity pogam June 4, 18 Youngsub Yoon axiv:135.163v6 [g-qc] 7 Jul 13 Depatment of Physics and Astonomy Seoul National Univesity, Seoul 151-747, Koea Abstact We show that

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

Lecture Principles of scattering and main concepts.

Lecture Principles of scattering and main concepts. Lectue 15. Light catteing and aboption by atmopheic paticuate. Pat 1: Pincipe of catteing. Main concept: eementay wave, poaization, Stoke matix, and catteing phae function. Rayeigh catteing. Objective:

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion

Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion Commun. Theo. Phys. Beijing, China) 43 25) pp. 577 581 c Intenational Academic Publishes Vol. 43, No. 4, Apil 15, 25 Petubation to Symmeties and Adiabatic Invaiants of Nonholonomic Dynamical System of

More information

B l 4 P A 1 DYNAMICS OF RECIPROCATING ENGINES

B l 4 P A 1 DYNAMICS OF RECIPROCATING ENGINES DYNMIS OF REIROTING ENGINES This chapte studies the dnaics of a side cank echaniss in an anatica wa. This is an eape fo the anatica appoach of soution instead of the gaphica acceeations and foce anases.

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

Force of gravity and its potential function

Force of gravity and its potential function F. W. Phs0 E:\Ecel files\ch gavitational foce and potential.doc page of 6 0/0/005 8:9 PM Last pinted 0/0/005 8:9:00 PM Foce of gavit and its potential function (.) Let us calculate the potential function

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Holographic Renormalization of Asymptotically Lifshitz Spacetimes

Holographic Renormalization of Asymptotically Lifshitz Spacetimes Loyoa Univesity Chicago Loyoa ecommons Physics: Facuty Pubications and Othe Woks Facuty Pubications 10-2011 Hoogaphic Renomaization of Asymptoticay Lifshitz Spacetimes Robet A. McNees IV Loyoa Univesity

More information

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole

Spherical Solutions due to the Exterior Geometry of a Charged Weyl Black Hole Spheical Solutions due to the Exteio Geomety of a Chaged Weyl Black Hole Fain Payandeh 1, Mohsen Fathi Novembe 7, 018 axiv:10.415v [g-qc] 10 Oct 01 1 Depatment of Physics, Payame Noo Univesity, PO BOX

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics)

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics) The main paadox of KAM-theoy fo esticted thee-body poblem (R3BP celestial mechanics) Segey V. Eshkov Institute fo Time Natue Exploations M.V. Lomonosov's Moscow State Univesity Leninskie goy 1-1 Moscow

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC

GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GENERAL RELATIVITY: THE GEODESICS OF THE SCHWARZSCHILD METRIC GILBERT WEINSTEIN 1. Intoduction Recall that the exteio Schwazschild metic g defined on the 4-manifold M = R R 3 \B 2m ) = {t,, θ, φ): > 2m}

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Deflection of light due to rotating mass a comparison among the results of different approaches

Deflection of light due to rotating mass a comparison among the results of different approaches Jounal of Physics: Confeence Seies OPEN ACCESS Deflection of light due to otating mass a compaison among the esults of diffeent appoaches Recent citations - Gavitational Theoies nea the Galactic Cente

More information

Cyclic pursuit in three dimensions

Cyclic pursuit in three dimensions 49th IEEE Confeence on Decision and Conto Decembe 5-7, Hiton Atanta Hote, Atanta, GA, USA Cycic pusuit in thee dimensions K. S. Gaoway, E. W. Justh, and P. S. Kishnapasad Abstact Pusuit stategies fo inteacting

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3)

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated to yield r(θ) = R sin 2 θ (3) Physics 506 Winte 2008 Homewok Assignment #10 Solutions Textbook poblems: Ch. 12: 12.10, 12.13, 12.16, 12.19 12.10 A chaged paticle finds itself instantaneously in the equatoial plane of the eath s magnetic

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information