Advanced Quantum Mechanics

Size: px
Start display at page:

Download "Advanced Quantum Mechanics"

Transcription

1 Advanced Quantum Mechanics Rajdeep Sensama Scatteing Theoy Ref : Sakuai, Moden Quantum Mechanics Tayo, Quantum Theoy of Non-Reativistic Coisions Landau and Lifshitz, Quantum Mechanics

2 Recap of Pevious Casses S Matix and decomposition of scatteed state in fee patice basis Fee patice with momentum k and enegy E Fee patice with momentum k and enegy E (, ) Detecto S = h (+) (t!)i Popagato in pesence of scattee d ẑ G R = G R + G R VG R + G R VG R VG R +... = G R + G R VG R G G = + = + G VG + G VG VG +... Pobabiity consevation ----> Unitaity of S

3 Recap of Pevious Casses T = V [ G V ] Fee Pop. with G = V + VG V + VG VG V +... = V + VG T T Fee Pop with G T captues a the effects of V inc. mutipe scatteings T V VG V VG VG V = = + D Scatteed State A e ikx C e ikx B e -ikx D e -ikx 3D Scatteed State (+) (~) = (2 ) 3/2 appee i~p ~ + eip f( ~p, ~p)

4 Recap of Pevious Casses Bon Appoximation T = V + VG V + VG VG V +... Vaidity: Bon. Appox/ st Bon Appox. Weak potentias High Enegy of Incident patices 2 nd Bon Appox. q = ~p ~p =2p sin 2 3 d Bon Appox. V () =V <<a A) Squae We f( ) = 2mV.5 = >a q 2 appe sin(qa) q a cos(qa) f(θ) 2 /a 2 qa=.,.5,.,.5. 2mV a 2 = Diffeentia Scatteing Coss Section goes down monotonicay.5 p 2 B) Yukawa Potentia f(θ) 2 λ 2..5 p 2 θ p p/λ=.,.5,.,.5 2mV /λ 2 = p f( ) = 2mV q V () = V e As λ --->, with V /λ fixed, the Yukawa potentia goes ove to the Couomb potentia. In this imit, ecove the Ruthefod cosssection. d d = (2m)2 (ZZ e 2 ) 2 6p 4 sin 4 ( /2)

5 Recap of Pevious Casses Expansion in Patia waves f(~p, ~p )= 4 2 p X m T (E) Y m ( ˆp )Y m (ˆp) f(~p, ~p )= X (2 + )f (p)p (cos ) = θ Scatteed Wavefunction: (+) (~) = X (2 + ) P (cos ) [ + 2ipf (2 ) 3/2 (p)] eip 2ip outgoing spheica wave e i(p ) incoming spheica wave Consevation of Angua Momentum > Unitaity of S S Matix : S (p) =+2ipf (p) S (p) =) S (p) =e 2i (p) phase shift in channe T Matix: T (p) = ei (p) sin (p) = cot (p) i

6 Recap of Pevious Casses Expansion in Patia waves f(~p, ~p )= 4 2 p X m T (E) Y m ( ˆp )Y m (ˆp) f(~p, ~p )= X (2 + )f (p)p (cos ) = θ Scatteing Ampitude: f( ) = X (2 + )P (cos ) ei (p) sin (p) p Diffeentia Coss Section: d d = f( ) 2 = X (2 + )(2 + ) p 2 P (cos )P (cos )sin (p)sin (p)e i[ (p) (p)] intefeence of diffeent channes Tota Coss Section: = 4 X p 2 (2 + ) sin 2 (p) intefeence washed out

7 Low Enegy Scatteing and few Patia Waves Use the expansion of a pane wave into spheica waves in 3D Use othonomaity of Y m Use the fact that k is aong z and Y m (, ) = P (cos ) m Use fo x << to show fo sma k, k How sma shoud k be? Range of intega is R, the ange of potentia. So, kr << fo this to be vaid

8 Low Enegy Scatteing and few Patia Waves Let us use the sef-consistent eqn. fo T matix Note that we want k, k to be sma, but q sum is unesticted Howeve, we have and So, Expand the seies to show that each tem has the fom V kq V pk Now use the fact that fo eastic scatteing k=k and T (E)/k ~ T kk (E) Fo ow E << /(2m R 2 ) Low E scatteing is dominated by a few patia waves OK to conside ony = channe fo E >, s-wave scatteing

9 Cacuating Phase Shifts in simpe potentias The staight fowad appoach (woks ony in few seective cases) is to sove the Schodinge equation with the potentia, and obtain the phase shift fom the asymptotic fom of the wave-function fa fom the oigin by compaing it with (+) () = X (2 + ) P (cos ) (2 ) 3/2 2ip e 2i (p) eip e i(p ) Spheicay Symmetic Squae Potentia We/Baie: V() V Potentia Baie V() Potentia We V() Had Sphee a a V a V () =V <<a = >a Scatteing states behave ike fee patice fa fom the potentia egion. Since they have KE, we ae ooking fo states with E> The potentia we can sustain bound states, but we ae not inteested in them (fo now).

10 Spheicay Symmetic Potentia We/Baie: Use spheica co-od angua pat given by Y (+) (, ) = X i (2 + )R ()P (cos ) = X i (2 + ) u ()P (cos ) d 2 appe u () d 2 + ( + ) 2 u () = Radia Equation: 2mV () p 2 + V () =V <<a = >a >a Fee patice soutions fa fom oigin R () =c j (p)+c 2 n (p) =c () h () (p)+c (2) h (2) (p) Spheica Besse Functions Spheica Hanke Functions h ((2)) (p) =j (p) ± in (p) p h ((2)) /2) e±i(p (p) ± ip Compaing with (+) X () = (2 + ) P (cos ) (2 ) 3/2 2ip e 2i (p) eip e i(p ) c () = 2 e2i (p) c (2) = 2 R () =e i [cos j (p) sin n (p)]

11 Spheicay Symmetic Potentia We/Baie: R () =c j (p)+c 2 n (p) =c () h () (p)+c (2) h (2) (p) Spheica Besse Functions Spheica Hanke Functions Compaing with (+) () = X (2 + ) P (cos ) (2 ) 3/2 2ip e 2i (p) eip e i(p ) c () = 2 e2i (p) c (2) = 2 R () =e i [cos j (p) sin n (p)] c () and c (2) ae obtained fom the continuity of the ogaithmic deivative at =a. = appe R dr d =a tan (p) = paj (pa) j (pa) pan (pa) n (pa) Note that ti now we have not used the specific squae-wave fom of the potentia. This esut is vaid fo any potentia that vanishes at a finite ange

12 Spheicay Symmetic Potentia We/Baie: To find the paamete β, we need the soution inside the potentia egion A) Had Sphee Potentia Bounday Condition : wfn. vanishes at =a V() = appe dr R d =a! a tan (p) = paj (pa) pan (pa) j (pa) n (pa) tan (p) = j (pa) n (pa) s-wave phase shift d d (p) = = sin2 k 2 ' a 2 fo ka pa Negative phase shift fo epusive potentia Geneicay tue fo finite potentia baie as we. Indicates that the wave-fn is pushed out

13 Spheicay Symmetic Potentia We/Baie: To find the paamete β, we need the soution inside the potentia egion B) Potentia We/ Baie V() V Potentia Baie V() Potentia We a a V Inside Son.: egua at = j (q) q 2 2m = E V = appe dr R d =a = qaj (qa) j (qa) tan (p) = pj (pa) pn (pa) qj (qa)j (pa)/j (qa) qj (qa)n (pa)/j (qa) (p) p 2+

14 Squae Potentia We: s-wave Scatteing s-wave scatteing Conside the = channe in the ow enegy imit tan (p) pa ength s Fo squae we = qaj (qa) j (qa) Using j (x) = sin x = qa cot(qa) x Scatteing Length a s = a a s diveges when qa = (2n+) π/2 Scatteing Coss-Section + =4 a 2 s Scatteing Ampitude f (p) = p cot (p) ip = a s + ip = a s +ipa s f () = a s f does not divege when qa = (2n+) π/2, f is -/ ip at this point --- Unitay imit β 5 a s ma 2 V 2ma 2 V

15 s-wave Scatteing Length Fo age u () e i sin(p + ) e i sin p( a s ) e i p( a s ) So a s has the intepetation of the fist point in space whee the extapoation of the fa soution hits zeo. Note that it is not a zeo of the actua soution. d 2 appe u () d 2 + 2mV () p 2 + ( + ) 2 u () = U() u() Conside p=, = a Fo puey epusive potentia cuvatue is away fom axis. Scatteing Length is aways positive

16 s-wave Scatteing Length Fo age u () e i sin(p + ) e i sin p( a s ) e i p( a s ) So as has the intepetation of the fist point in space whee the extapoation of the fa soution hits zeo. Note that it is not a zeo of the actua soution. a u () u () u () a U() V() U() V() V() U() Fo attactive potentia wes, the scatteing ength is initiay negative As we incease the we depth,the scatteing ength becomes moe and moe negative ti it eaches - Beyond this point, the scatteing ength stats at + and keeps deceasing This is the point whee we have the fist bound state in the system

17 Effective Range Expansion H. A. Bethe, Phys. Rev. 76, 38 (949) What happens when we go to age enegies, aka what is the next tem in f f (p) = p cot (p) ip = a s + ip = a s +ipa s Schodinge Eqn fo 2 diffeent momenta d 2 appe u () d 2 + 2mV () p 2 + ( + ) 2 u () = d 2 u d 2 +[p2 V ()]u () = d 2 u 2 d 2 +[p2 2 V ()]u 2 () = u 2 d 2 u d 2 u d 2 u 2 d 2 =(p2 p 2 2)u u 2 u 2 du d u du 2 d R =(p 2 p 2 2) Z R du u 2 Conside the asymptotic fom of the soutions at age p() = sin[p + (p)] sin (p) The asymptotic son. aso foows simia eqns as u 2 d d d 2 d R =(p 2 p 2 2) Z R d 2

18 Effective Range Expansion H. A. Bethe, Phys. Rev. 76, 38 (949) Subtact the equations fo u and ψ, 2 d d u 2 du d d 2 d + u du 2 d R =(p 2 p 2 2) At =R, LHS vanishes by continuity eqn.s. At =, tems in LHS invoving u vanish as u()=. Z R d 2 u u 2 d 2 d 2 Z d =(p 2 p 2 d 2) d 2 u u 2 Int extended to since the integand vanishes outside the ange of potentia Using expicit fom ψ at =, p 2 cot (p 2 ) p cot (p )=(p 2 p 2 2) p!, p 2! p p cot (p) = a s p 2 Z d p ' Z p 2 d 2 u 2 a s u u p Effective ange of potentia Z d 2 u u 2 p cot (p) = a s p 2 f (p) = a s + ip + p 2 Effective ange expansion

19 Univesaity of ow enegy scatteing We have seen that the ow enegy scatteing fom a potentia can be chaacteized by a few paametes E.g. s-wave scatteing can be paametized by a s,, etc. Ceay this cannot depend on a the detais of the shape of the potentia Fo squae we = qa cot(qa) Scatteing Length a s = a + q 2 2m = E V So we can have many diffeent potentias at the micoscopic eve, whose ow enegy scatteing (say a s, ) ae same. E.g. can choose diffeent V and a fo a squae we so that qa is fixed. Low enegy scatteing is same fo both. We can even get away with a simpe potentia (say deta fn) povided we manage to get the coect scatteing ength This is you fist gimpse into the genea phenomenon of univesaity: Many systems which ook diffeent on a micoscopic scae (i.e. diffeent V) can show same phenomena at ow enegy. This is at the heat of theoetica endeavous to cacuate popeties of compicated systems.

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms.

Objectives. We will also get to know about the wavefunction and its use in developing the concept of the structure of atoms. Modue "Atomic physics and atomic stuctue" Lectue 7 Quantum Mechanica teatment of One-eecton atoms Page 1 Objectives In this ectue, we wi appy the Schodinge Equation to the simpe system Hydogen and compae

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

Relating Scattering Amplitudes to Bound States

Relating Scattering Amplitudes to Bound States Reating Scatteing Ampitudes to Bound States Michae Fowe UVa. 1/17/8 Low Enegy Appoximations fo the S Matix In this section we examine the popeties of the patia-wave scatteing matix ( ) = 1+ ( ) S k ikf

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 5 Lectue 5 Centa Foce Pobem (Chapte 3) What We Did Last Time Intoduced Hamiton s Pincipe Action intega is stationay fo the actua path Deived Lagange s Equations Used cacuus of vaiation

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

The Solutions of the Classical Relativistic Two-Body Equation

The Solutions of the Classical Relativistic Two-Body Equation T. J. of Physics (998), 07 4. c TÜBİTAK The Soutions of the Cassica Reativistic Two-Body Equation Coşkun ÖNEM Eciyes Univesity, Physics Depatment, 38039, Kaysei - TURKEY Received 3.08.996 Abstact With

More information

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by

Lecture 1. time, say t=0, to find the wavefunction at any subsequent time t. This can be carried out by Lectue The Schödinge equation In quantum mechanics, the fundamenta quantity that descibes both the patice-ike and waveike chaacteistics of patices is wavefunction, Ψ(. The pobabiity of finding a patice

More information

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.7 Homewok obem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe ROBLEM: A ocaized distibution of chage has a chage density ρ()= 6 e sin θ (a) Make a mutipoe expansion of the potentia

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Nuclear Reactions: Lecture on two-body description. Ismail Boztosun

Nuclear Reactions: Lecture on two-body description. Ismail Boztosun Nucea Reactions: Lectue on two-body desciption Isai Boztosun Feb 0 Wasaw boztosun@adeniz.edu.t Contents Fundeantes: Types of nucea eactions Obsevabes Copound vs Diect eactions Coision theoy-eastic scatteing

More information

Three-dimensional systems with spherical symmetry

Three-dimensional systems with spherical symmetry Thee-dimensiona systems with spheica symmety Thee-dimensiona systems with spheica symmety 006 Quantum Mechanics Pof. Y. F. Chen Thee-dimensiona systems with spheica symmety We conside a patice moving in

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 6 Kepe Pobem (Chapte 3) What We Did Last Time Discussed enegy consevation Defined enegy function h Conseved if Conditions fo h = E Stated discussing Centa Foce Pobems Reduced

More information

PHYS 705: Classical Mechanics. Central Force Problems I

PHYS 705: Classical Mechanics. Central Force Problems I 1 PHYS 705: Cassica Mechanics Centa Foce Pobems I Two-Body Centa Foce Pobem Histoica Backgound: Kepe s Laws on ceestia bodies (~1605) - Based his 3 aws on obsevationa data fom Tycho Bahe - Fomuate his

More information

221B Lecture Notes Scattering Theory I

221B Lecture Notes Scattering Theory I Why Scatteing? B Lectue Notes Scatteing Theoy I Scatteing of paticles off taget has been one of the most impotant applications of quantum mechanics. It is pobably the most effective way to study the stuctue

More information

Def: given incident flux nv particles per unit area and unit time. (n is density and v speed of particles)

Def: given incident flux nv particles per unit area and unit time. (n is density and v speed of particles) 8 Scatteing Theoy I 8.1 Kinematics Poblem: wave packet incident on fixed scatteing cente V () with finite ange. Goal: find pobability paticle is scatteed into angle θ, φ fa away fom scatteing cente. Solve

More information

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field.

= ρ. Since this equation is applied to an arbitrary point in space, we can use it to determine the charge density once we know the field. Gauss s Law In diffeentia fom D = ρ. ince this equation is appied to an abita point in space, we can use it to detemine the chage densit once we know the fied. (We can use this equation to ve fo the fied

More information

Unit 6 Lecture Number 36

Unit 6 Lecture Number 36 Seect/Specia Topics fom Theoy of Atomic Coisions and Spectoscopy P. C. Deshmuh Depatment of Physics Indian Institute of Technoogy Madas Chennai 636 Unit 6 Lectue Numbe 36 Quantum Theoy of Coisions Pat

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 7 Maximal score: 25 Points. 1. Jackson, Problem Points.

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 7 Maximal score: 25 Points. 1. Jackson, Problem Points. Physics 505 Eecticity and Magnetism Fa 00 Pof. G. Raithe Pobem et 7 Maxima scoe: 5 Points. Jackson, Pobem 5. 6 Points Conside the i-th catesian component of the B-Fied, µ 0 I B(x) ˆx i ˆx i d (x x ) x

More information

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 3.3 Homewok Pobem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe POBLEM: A thin, fat, conducting, cicua disc of adius is ocated in the x-y pane with its cente at the oigin, and is

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Scattering Theory Ref : Sakurai, Modern Quantum Mechanics Taylor, Quantum Theory of Non-Relativistic Collisions Landau and Lifshitz,

More information

1.2 Partial Wave Analysis

1.2 Partial Wave Analysis February, 205 Lecture X.2 Partia Wave Anaysis We have described scattering in terms of an incoming pane wave, a momentum eigenet, and and outgoing spherica wave, aso with definite momentum. We now consider

More information

PHYS 705: Classical Mechanics. Central Force Problems II

PHYS 705: Classical Mechanics. Central Force Problems II PHYS 75: Cassica Mechanics Centa Foce Pobems II Obits in Centa Foce Pobem Sppose we e inteested moe in the shape of the obit, (not necessay the time evotion) Then, a sotion fo = () o = () wod be moe sef!

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

However, because the center-of-mass is at the co-ordinate origin, r1 and r2 are not independent, but are related by

However, because the center-of-mass is at the co-ordinate origin, r1 and r2 are not independent, but are related by PHYS60 Fa 08 Notes - 3 Centa foce motion The motion of two patices inteacting by a foce that has diection aong the ine joining the patices and stength that depends ony on the sepaation of the two patices

More information

Pressure in the Average-Atom Model

Pressure in the Average-Atom Model Pessue in the Aveage-Atom Moe W.. Johnson Depatment of Physics, 225 Nieuwan Science Ha Note Dame Univesity, Note Dame, IN 46556 Febuay 28, 2002 Abstact The (we-known) quantum mechanica expession fo the

More information

Discretizing the 3-D Schrödinger equation for a Central Potential

Discretizing the 3-D Schrödinger equation for a Central Potential Discetizing the 3-D Schödinge equation fo a Centa Potentia By now, you ae faiia with the Discete Schodinge Equation fo one Catesian diension. We wi now conside odifying it to hande poa diensions fo a centa

More information

Vector Spherical Harmonics and Spherical Waves

Vector Spherical Harmonics and Spherical Waves DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH5020 Eectomagnetic Theoy Mach 2017 by Suesh Govinaajan, Depatment of Physics, IIT Maas Vecto Spheica Hamonics an Spheica Waves Let us sove

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism F Eectomagnetism exane. skana, Ph.D. Physics of Magnetism an Photonics Reseach Goup Magnetostatics MGNET VETOR POTENTL, MULTPOLE EXPNSON Vecto Potentia Just as E pemitte us to intouce a scaa potentia V

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon Annihilation of Relativistic Positons in Single Cystal with poduction of One Photon Kalashnikov N.P.,Mazu E.A.,Olczak A.S. National Reseach Nuclea Univesity MEPhI (Moscow Engineeing Physics Institute),

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Physics 2D Lecture Slides Dec 1. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Dec 1. Vivek Sharma UCSD Physics Physics D Lectue Sides Dec 1 Vivek Shama UCSD Physics Lean to extend S. Eq and its soutions fom toy exampes in 1-Dimension (x) thee othogona dimensions ( x,y,z) = ix ˆ + ˆjy+ kz ˆ Then tansfom the systems

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Lecture Principles of scattering and main concepts.

Lecture Principles of scattering and main concepts. Lectue 15. Light catteing and aboption by atmopheic paticuate. Pat 1: Pincipe of catteing. Main concept: eementay wave, poaization, Stoke matix, and catteing phae function. Rayeigh catteing. Objective:

More information

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers Supporting Information for Suppressing Kein tunneing in graphene using a one-dimensiona array of ocaized scatterers Jamie D Was, and Danie Hadad Department of Chemistry, University of Miami, Cora Gabes,

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN

Analytical calculation of the power dissipated in the LHC liner. Stefano De Santis - LBNL and Andrea Mostacci - CERN Analytical calculation of the powe dissipated in the LHC line Stefano De Santis - LBNL and Andea Mostacci - CERN Contents What is the Modified Bethe s Diffaction Theoy? Some inteesting consequences of

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

On- and off-shell Jost functions and their integral representations

On- and off-shell Jost functions and their integral representations PRAMANA c Indian Academy of Sciences Vo. 86, No. 5 jouna of May 16 physics pp. 947 956 On- off-she Jost functions thei intega epesentations U LAHA J BHOI Depatment of Physics, Nationa Institute of Technoogy,

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2

and Slater Sum Rule Method * M L = 0, M S = 0 block: L L+ L 2 5.7 Lectue #4 e / ij and Sate Sum Rue Method 4 - LAST TIME:. L,S method fo setting up NLM L SM S many-eecton basis states in tems of inea combination of Sate deteminants * M L = 0, M S = 0 boc: L L+ L

More information

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is

Mutual Inductance. If current i 1 is time varying, then the Φ B2 flux is varying and this induces an emf ε 2 in coil 2, the emf is Mutua Inductance If we have a constant cuent i in coi, a constant magnetic fied is ceated and this poduces a constant magnetic fux in coi. Since the Φ B is constant, thee O induced cuent in coi. If cuent

More information

WOODS-SAXON POTENTIAL IN THE PRESENCE OF A COSMIC STRING

WOODS-SAXON POTENTIAL IN THE PRESENCE OF A COSMIC STRING Physica Macedonica 61, 01) p. 85-89 ISSN 1409-7168 WOODS-SAXON POTENTIAL IN THE PRESENCE OF A COSMIC STRING K. Jusufi 1 and D. Jakimovski 1 Depatament of Physics, Facuty of Natua Sciences and Mathematics,

More information

All we can detect are outgoing waves far outside the region of scattering. For an ingoing plane

All we can detect are outgoing waves far outside the region of scattering. For an ingoing plane Scatteing Theoy Michael Fowle 1/16/8 Refeences: Baym, Lectues on Quantum Mechanics, Chapte 9 Sauai, Moden Quantum Mechanics, Chapte 7 Shana, Pinciples of Quantum Mechanics, Chapte 19 Intoduction Almost

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

arxiv: v1 [physics.gen-ph] 18 Aug 2018

arxiv: v1 [physics.gen-ph] 18 Aug 2018 Path integal and Sommefeld quantization axiv:1809.04416v1 [physics.gen-ph] 18 Aug 018 Mikoto Matsuda 1, and Takehisa Fujita, 1 Japan Health and Medical technological college, Tokyo, Japan College of Science

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Topics in Nuclear Astrophysics

Topics in Nuclear Astrophysics Topics in Nucea Astophysics Michae Wiesche Univesity of Note Dame Hydogen buning in Sun xposive eactions in the SN shock font Heium buning in Red Giants Note Dame JINA ectues, Fa 003 p-pocess on acceting

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

What molecular weight polymer is necessary to provide steric stabilization? = [1]

What molecular weight polymer is necessary to provide steric stabilization? = [1] 1/7 What molecula weight polyme is necessay to povide steic stabilization? The fist step is to estimate the thickness of adsobed polyme laye necessay fo steic stabilization. An appoximation is: 1 t A d

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Scattering theory. Chapter 14

Scattering theory. Chapter 14 Chapte 14 Scatteing theoy Almost eveything we know about nuclei and elementay paticles has been discoveed in scatteing expeiments, fom Ruthefod s supise at finding that atoms have thei mass and positive

More information

The pseudopotential in resonant regimes

The pseudopotential in resonant regimes The pseudopotentia in esonant egimes Ludovic Picoupenko To cite this vesion: Ludovic Picoupenko. The pseudopotentia in esonant egimes. 12 pages - Submitted to PRA. 2005. HAL Id: ha-00007776

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Deflection of light due to rotating mass a comparison among the results of different approaches

Deflection of light due to rotating mass a comparison among the results of different approaches Jounal of Physics: Confeence Seies OPEN ACCESS Deflection of light due to otating mass a compaison among the esults of diffeent appoaches Recent citations - Gavitational Theoies nea the Galactic Cente

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces.

F(r) = r f (r) 4.8. Central forces The most interesting problems in classical mechanics are about central forces. 4.8. Cental foces The most inteesting poblems in classical mechanics ae about cental foces. Definition of a cental foce: (i) the diection of the foce F() is paallel o antipaallel to ; in othe wods, fo

More information

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0}, ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION E. J. IONASCU and A. A. STANCU Abstact. We ae inteested in constucting concete independent events in puely atomic pobability

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma Reseach & Reviews: Jounal of Pue and Applied Physics Field emission of Electons fom Negatively Chaged Cylindical Paticles with Nonlinea Sceening in a Dusty Plasma Gyan Pakash* Amity School of Engineeing

More information

S7: Classical mechanics problem set 2

S7: Classical mechanics problem set 2 J. Magoian MT 9, boowing fom J. J. Binney s 6 couse S7: Classical mechanics poblem set. Show that if the Hamiltonian is indepdent of a genealized co-odinate q, then the conjugate momentum p is a constant

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

PH126 Exam I Solutions

PH126 Exam I Solutions PH6 Exam I Solutions q Q Q q. Fou positively chage boies, two with chage Q an two with chage q, ae connecte by fou unstetchable stings of equal length. In the absence of extenal foces they assume the equilibium

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

PHY481: Electromagnetism

PHY481: Electromagnetism PHY48: Electomagnetism HW5 Lectue Cal Bombeg - Pof. of Physics Bounday condition ( ) = C n cos n + V x, y ( ) n= ( ) = V cos x V x,± a 5.3 V = V cos x a & ' at y = ± a Geneal solution (fo even bounday

More information