Machine learning for Dynamic Social Network Analysis

Size: px
Start display at page:

Download "Machine learning for Dynamic Social Network Analysis"

Transcription

1 Machine learning for Dynamic Social Network Analysis Manuel Gomez Rodriguez Max Planck Ins7tute for So;ware Systems UC3M, MAY 2017

2 Interconnected World SOCIAL NETWORKS TRANSPORTATION NETWORKS WORLD WIDE WEB PROTEIN INTERACTIONS INFORMATION NETWORKS INTERNET OF THINGS 2

3 Many discrete events in con7nuous 7me Qmee,

4 Variety of processes behind these events Events are (noisy) observa7ons of a variety of complex dynamic processes FAST News spread in TwiXer Video becomes viral in Youtube Product reviews and sales in Amazon Ar7cle crea7on in Wikipedia A user gains recogni7on in Quora SLOW in a wide range of temporal scales. 4

5 Example I: Idea adop7on/viral marke7ng S D means D follows S 3.25pm Bob Chris7ne 3.00pm Beth 3.27pm Joe David 4.15pm t Friggeri et al., 2014 They can have an impact in the off- line world 5

6 Example II: Informa7on crea7on & cura7on Addi7on Refuta7on t Ques7on Answer Upvote t t

7 Example III: Learning trajectories 1st year computer science student Introduc9on to programming Discrete math Project presenta9on For/do- while loops Define Set theory func9ons Powerpoint Graph Theory Class vs. Keynote inheritance Export Geometry pptx to pdf t If else How to write Logic switch Private func9ons PP templates Class destructor Plot library 7

8 Detailed event traces DETAILED TRACES OF ACTIVITY The availability of event traces boosts a new generation of data- driven models and algorithms t 8

9 Previously: discrete- 7me models & algorithms Epoch 1 Epoch 2 Epoch 3 Epoch 4 Discrete- 7me models ar7ficially introduce epochs: 1. How long is each epoch? Data is very heterogeneous. 2. How to aggregate events within an epoch? 3. What if no event within an epoch? 4. Time is treated as index or condi7oning variable, not easy to deal with 7me- related queries. 9

10 Outline of the Seminar REPRESENTATION: TEMPORAL POINT PROCESSES 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps This lecture APPLICATIONS: MODELS 1. Informa7on propaga7on 2. Opinion dynamics 3. Informa7on reliability 4. Knowledge acquisi7on APPLICATIONS: CONTROL 1. Influence maximiza7on 2. Ac7vity shaping 3. When- to- post Slides/references: learning.mpi-sws.org/uc3m-seminar 10

11 Representa7on: Temporal Point Processes 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps 11

12 Temporal point processes Temporal point process: A random process whose realiza7on consists of discrete events localized in 7me Discrete events History, Dirac delta func7on Formally: 12

13 Model 7me as a random variable Prob. between [t, t+dt) density History, Prob. not before t Likelihood of a 7meline: 13

14 Problems of density parametriza7on (I) It is difficult for model design and interpretability: 1. Densi7es need to integrate to 1 (i.e., par77on func7on) 2. Difficult to combine 7melines 14

15 Problems of density parametriza7on (II) Difficult to combine 7melines: + = Sum of random processes 15

16 Intensity func7on density Prob. between [t, t+dt) History, Prob. not before t Intensity: Probability between [t, t+dt) but not before t Observa7on: It is a rate = # of events / unit of 7me 16

17 Advantages of intensity parametriza7on (I) Suitable for model design and interpretable: 1. Intensi7es only need to be nonnega7ve 2. Easy to combine 7melines 17

18 Advantages of intensity parametriza7on (II) Easy to combine 7meline: + = Sum of random processes 18

19 Rela7on between f*, F*, S*, λ* Central quan7ty we will use! 19

20 Representa7on: Temporal Point Processes 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps 20

21 Poisson process Intensity of a Poisson process Observa7ons: 1. Intensity independent of history 2. Uniformly random occurrence 3. Time interval follows exponen7al distribu7on 21

22 Fisng a Poisson from (historical) 7meline Maximum likelihood 22

23 Sampling from a Poisson process We would like to sample: We sample using inversion sampling: 23

24 Inhomogeneous Poisson process Intensity of an inhomogeneous Poisson process Observa7ons: 1. Intensity independent of history 24

25 Fisng an inhomogeneous Poisson Maximum likelihood Design such that max. likelihood is convex (and use CVX)

26 Nonparametric inhomogeneous Poisson process Posi7ve combina7on of (Gaussian) RFB kernels: 26

27 Sampling from an inhomogeneous Poisson Thinning procedure (similar to rejec7on sampling): 1. Sample from Poisson process with intensity Inversion sampling 2. Generate 3. Keep the sample if Keep sample with prob.

28 Termina7ng (or survival) process Intensity of a termina7ng (or survival) process Observa7ons: 1. Limited number of occurrences 28

29 Self- exci7ng (or Hawkes) process History, Intensity of self- exci7ng (or Hawkes) process: Triggering kernel Observa7ons: 1. Clustered (or bursty) occurrence of events 2. Intensity is stochas7c and history dependent 29

30 Fisng a Hawkes process from a recorded 7meline Maximum likelihood The max. likelihood is jointly convex in and

31 Sampling from a Hawkes process Thinning procedure (similar to rejec7on sampling): 1. Sample from Poisson process with intensity Inversion sampling 2. Generate 3. Keep the sample if Keep sample with prob. 31

32 Summary Building blocks to represent different dynamic processes: Poisson processes: Inhomogeneous Poisson processes: We know how to fit them and how to sample from them Termina9ng point processes: Self- exci9ng point processes: 32

33 Representa7on: Temporal Point Processes 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps 33

34 Superposi7on of processes Sample each intensity + take minimum = Addi7ve intensity 34

35 Mutually exci7ng process Bob History Chris7ne History Clustered occurrence affected by neighbors 35

36 Mutually exci7ng termina7ng process Bob Chris7ne History Clustered occurrence affected by neighbors 36

37 Representa7on: Temporal Point Processes 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps 37

38 Marked temporal point processes Marked temporal point process: A random process whose realiza7on consists of discrete marked events localized in 7me History, 38

39 Independent iden7cally distributed marks Distribu7on for the marks: Observa7ons: 1. Marks independent of the temporal dynamics 2. Independent iden7cally distributed (I.I.D.) 39

40 Dependent marks: SDEs with jumps History, Marks given by stochas7c differen7al equa7on with jumps: Observa7ons: Dri; Event influence 1. Marks dependent of the temporal dynamics 2. Defined for all values of t 40

41 Dependent marks: distribu7on + SDE with jumps History, Distribu7on for the marks: Observa7ons: Dri; Event influence 1. Marks dependent on the temporal dynamics 2. Distribu7on represents addi7onal source of uncertainty 41

42 Mutually exci7ng + marks Bob Chris7ne Marks affected by neighbors Dri; Neighbor influence 42

43 REPRESENTATION: TEMPORAL POINT PROCESSES 1. Intensity func7on 2. Basic building blocks 3. Superposi7on 4. Marks and SDEs with jumps APPLICATIONS: MODELS 1. Informa7on propaga7on 2. Opinion dynamics 3. Informa7on reliability 4. Knowledge acquisi7on This lecture Next lecture APPLICATIONS: CONTROL 1. Influence maximiza7on 2. Ac7vity shaping 3. When- to- post Slides/references: learning.mpi-sws.org/sydney-seminar 43

Learning with Temporal Point Processes

Learning with Temporal Point Processes Learning with Temporal Point Processes t Manuel Gomez Rodriguez MPI for Software Systems Isabel Valera MPI for Intelligent Systems Slides/references: http://learning.mpi-sws.org/tpp-icml18 ICML TUTORIAL,

More information

Introduc)on to Ar)ficial Intelligence

Introduc)on to Ar)ficial Intelligence Introduc)on to Ar)ficial Intelligence Lecture 13 Approximate Inference CS/CNS/EE 154 Andreas Krause Bayesian networks! Compact representa)on of distribu)ons over large number of variables! (OQen) allows

More information

Graphical Models. Lecture 1: Mo4va4on and Founda4ons. Andrew McCallum

Graphical Models. Lecture 1: Mo4va4on and Founda4ons. Andrew McCallum Graphical Models Lecture 1: Mo4va4on and Founda4ons Andrew McCallum mccallum@cs.umass.edu Thanks to Noah Smith and Carlos Guestrin for some slide materials. Board work Expert systems the desire for probability

More information

Least Squares Parameter Es.ma.on

Least Squares Parameter Es.ma.on Least Squares Parameter Es.ma.on Alun L. Lloyd Department of Mathema.cs Biomathema.cs Graduate Program North Carolina State University Aims of this Lecture 1. Model fifng using least squares 2. Quan.fica.on

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma IS4200/CS6200 Informa0on Retrieval PageRank Con+nued with slides from Hinrich Schütze and Chris6na Lioma Exercise: Assump0ons underlying PageRank Assump0on 1: A link on the web is a quality signal the

More information

DART Tutorial Sec'on 1: Filtering For a One Variable System

DART Tutorial Sec'on 1: Filtering For a One Variable System DART Tutorial Sec'on 1: Filtering For a One Variable System UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 1 Evalua:on

More information

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13

Computer Vision. Pa0ern Recogni4on Concepts Part I. Luis F. Teixeira MAP- i 2012/13 Computer Vision Pa0ern Recogni4on Concepts Part I Luis F. Teixeira MAP- i 2012/13 What is it? Pa0ern Recogni4on Many defini4ons in the literature The assignment of a physical object or event to one of

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Hidden Markov Models Luke Ze@lemoyer - University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

STAD68: Machine Learning

STAD68: Machine Learning STAD68: Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 1 Evalua;on 3 Assignments worth 40%. Midterm worth 20%. Final

More information

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University

An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology. Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University An Introduc+on to Sta+s+cs and Machine Learning for Quan+ta+ve Biology Anirvan Sengupta Dept. of Physics and Astronomy Rutgers University Why Do We Care? Necessity in today s labs Principled approach:

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Sta$s$cal sequence recogni$on

Sta$s$cal sequence recogni$on Sta$s$cal sequence recogni$on Determinis$c sequence recogni$on Last $me, temporal integra$on of local distances via DP Integrates local matches over $me Normalizes $me varia$ons For cts speech, segments

More information

Metropolis Sampler and Markov Chains

Metropolis Sampler and Markov Chains Lecture 9 Metropolis Sampler and Markov Chains MCMC: Markov Chain Monte Carlo Last &me: Simulated Annealing Minimize by iden+fying with the energy of an imaginary physical system undergoing an annealing

More information

Introduc)on to Ar)ficial Intelligence

Introduc)on to Ar)ficial Intelligence Introduc)on to Ar)ficial Intelligence Lecture 10 Probability CS/CNS/EE 154 Andreas Krause Announcements! Milestone due Nov 3. Please submit code to TAs! Grading: PacMan! Compiles?! Correct? (Will clear

More information

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond

Outline. What is Machine Learning? Why Machine Learning? 9/29/08. Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Outline Machine Learning Approaches to Biological Research: Bioimage Informa>cs and Beyond Robert F. Murphy External Senior Fellow, Freiburg Ins>tute for Advanced Studies Ray and Stephanie Lane Professor

More information

Quan&fying Uncertainty. Sai Ravela Massachuse7s Ins&tute of Technology

Quan&fying Uncertainty. Sai Ravela Massachuse7s Ins&tute of Technology Quan&fying Uncertainty Sai Ravela Massachuse7s Ins&tute of Technology 1 the many sources of uncertainty! 2 Two days ago 3 Quan&fying Indefinite Delay 4 Finally 5 Quan&fying Indefinite Delay P(X=delay M=

More information

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on prac0ce problems from the textbook

More information

Reduced Models for Process Simula2on and Op2miza2on

Reduced Models for Process Simula2on and Op2miza2on Reduced Models for Process Simulaon and Opmizaon Yidong Lang, Lorenz T. Biegler and David Miller ESI annual meeng March, 0 Models are mapping Equaon set or Module simulators Input space Reduced model Surrogate

More information

CS 6140: Machine Learning Spring 2017

CS 6140: Machine Learning Spring 2017 CS 6140: Machine Learning Spring 2017 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis@cs Assignment

More information

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim Gene Regulatory Networks II 02-710 Computa.onal Genomics Seyoung Kim Goal: Discover Structure and Func;on of Complex systems in the Cell Identify the different regulators and their target genes that are

More information

Matrix products in integrable probability

Matrix products in integrable probability Matrix products in integrable probability Atsuo Kuniba (Univ. Tokyo) Mathema?cal Society of Japan Spring Mee?ng Tokyo Metropolitan University 27 March 2017 Non-equilibrium sta?s?cal mechanics Stochas?c

More information

Polynomials and Gröbner Bases

Polynomials and Gröbner Bases Alice Feldmann 16th December 2014 ETH Zürich Student Seminar in Combinatorics: Mathema:cal So

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Professor Wei-Min Shen Week 13.1 and 13.2 1 Status Check Extra credits? Announcement Evalua/on process will start soon

More information

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang

Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval. Lecture #3 Machine Learning. Edward Chang Founda'ons of Large- Scale Mul'media Informa'on Management and Retrieval Lecture #3 Machine Learning Edward Y. Chang Edward Chang Founda'ons of LSMM 1 Edward Chang Foundations of LSMM 2 Machine Learning

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading

Par$cle Filters Part I: Theory. Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Par$cle Filters Part I: Theory Peter Jan van Leeuwen Data- Assimila$on Research Centre DARC University of Reading Reading July 2013 Why Data Assimila$on Predic$on Model improvement: - Parameter es$ma$on

More information

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr

Two common difficul:es with HW 2: Problem 1c: v = r n ˆr Two common difficul:es with HW : Problem 1c: For what values of n does the divergence of v = r n ˆr diverge at the origin? In this context, diverge means becomes arbitrarily large ( goes to infinity ).

More information

Experimental Designs for Planning Efficient Accelerated Life Tests

Experimental Designs for Planning Efficient Accelerated Life Tests Experimental Designs for Planning Efficient Accelerated Life Tests Kangwon Seo and Rong Pan School of Compu@ng, Informa@cs, and Decision Systems Engineering Arizona State University ASTR 2015, Sep 9-11,

More information

Quantum mechanics with indefinite causal order

Quantum mechanics with indefinite causal order Quantum mechanics with indefinite causal order Flaminia Giacomini, Esteban Castro- Ruiz, Časlav rukner University of Vienna Ins@tute for Quantum Op@cs and Quantum Informa@on, Vienna Vienna Theory Lunch

More information

Class Notes. Examining Repeated Measures Data on Individuals

Class Notes. Examining Repeated Measures Data on Individuals Ronald Heck Week 12: Class Notes 1 Class Notes Examining Repeated Measures Data on Individuals Generalized linear mixed models (GLMM) also provide a means of incorporang longitudinal designs with categorical

More information

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum Graphical Models Lecture 3: Local Condi6onal Probability Distribu6ons Andrew McCallum mccallum@cs.umass.edu Thanks to Noah Smith and Carlos Guestrin for some slide materials. 1 Condi6onal Probability Distribu6ons

More information

Par$$oned Elias- Fano indexes. Giuseppe O)aviano Rossano Venturini

Par$$oned Elias- Fano indexes. Giuseppe O)aviano Rossano Venturini Par$$oned Elias- Fano indexes Giuseppe O)aviano Rossano Venturini Inverted indexes Core data structure of Informa$on Retrieval Documents are sequences of terms 1: [it is what it is not] 2: [what is a]

More information

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem. The BCS Model Sara Changizi This presenta5on closely follows parts of chapter 6 in Ring & Schuc The nuclear many body problem. Outline Introduc5on to pairing Essen5al experimental facts The BCS model Pure

More information

7. Quantum Monte Carlo (QMC)

7. Quantum Monte Carlo (QMC) Molecular Simulations with Chemical and Biological Applications (Part I) 7. Quantum Monte Carlo (QMC) Dr. Mar(n Steinhauser 1 HS 2014 Molecular Simula(ons with Chemical and Biological Applica(ons 1 Introduc5on

More information

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables.

Stat Lecture 20. Last class we introduced the covariance and correlation between two jointly distributed random variables. Stat 260 - Lecture 20 Recap of Last Class Last class we introduced the covariance and correlation between two jointly distributed random variables. Today: We will introduce the idea of a statistic and

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Professor Wei-Min Shen Week 8.1 and 8.2

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on. Professor Wei-Min Shen Week 8.1 and 8.2 CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Professor Wei-Min Shen Week 8.1 and 8.2 Status Check Projects Project 2 Midterm is coming, please do your homework!

More information

Examining the Evidence: Using data to pose and answer ques8ons about Earth s changing climate! Free Polar Explorer: Sea Level app and ac8vi8es

Examining the Evidence: Using data to pose and answer ques8ons about Earth s changing climate! Free Polar Explorer: Sea Level app and ac8vi8es Examining the Evidence: Using data to pose and answer ques8ons about Earth s changing climate! Free Polar Explorer: Sea Level app and ac8vi8es www.polarexplorer.org Margie Turrin & Dave Porter What are

More information

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15

Computer Vision. Pa0ern Recogni4on Concepts. Luis F. Teixeira MAP- i 2014/15 Computer Vision Pa0ern Recogni4on Concepts Luis F. Teixeira MAP- i 2014/15 Outline General pa0ern recogni4on concepts Classifica4on Classifiers Decision Trees Instance- Based Learning Bayesian Learning

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6:00pm 8:50pm Mon. and Wed. Location: SL105 Spring 2016 Reading assignments We will increase the bar a little bit Please

More information

Par$$oned Elias- Fano Indexes

Par$$oned Elias- Fano Indexes Par$$oned Elias- Fano Indexes Giuseppe O)aviano ISTI- CNR, Pisa Rossano Venturini Università di Pisa Inverted indexes Docid Document 1: [it is what it is not] 2: [what is a] 3: [it is a banana] a 2, 3

More information

Matrix models for the black hole informa4on paradox

Matrix models for the black hole informa4on paradox Matrix models for the black hole informa4on paradox Takuya Okuda, Perimeter Ins4tute Joint work with N. Iizuka and J. Polchinski o o Black hole informa4on paradox Hawking s paradox for evapora4ng black

More information

Order- Revealing Encryp2on and the Hardness of Private Learning

Order- Revealing Encryp2on and the Hardness of Private Learning Order- Revealing Encryp2on and the Hardness of Private Learning January 11, 2016 Mark Bun Mark Zhandry Harvard MIT Let s do some science! Scurvy: a problem throughout human history Caused by vitamin C

More information

Ensemble of Climate Models

Ensemble of Climate Models Ensemble of Climate Models Claudia Tebaldi Climate Central and Department of Sta7s7cs, UBC Reto Knu>, Reinhard Furrer, Richard Smith, Bruno Sanso Outline Mul7 model ensembles (MMEs) a descrip7on at face

More information

UVA CS / Introduc8on to Machine Learning and Data Mining

UVA CS / Introduc8on to Machine Learning and Data Mining UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 13: Probability and Sta3s3cs Review (cont.) + Naïve Bayes Classifier Yanjun Qi / Jane, PhD University of Virginia Department

More information

DART Tutorial Part IV: Other Updates for an Observed Variable

DART Tutorial Part IV: Other Updates for an Observed Variable DART Tutorial Part IV: Other Updates for an Observed Variable UCAR The Na'onal Center for Atmospheric Research is sponsored by the Na'onal Science Founda'on. Any opinions, findings and conclusions or recommenda'ons

More information

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i CSE 473: Ar+ficial Intelligence Bayes Nets Daniel Weld [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hnp://ai.berkeley.edu.]

More information

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Work On: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2 and 1.3 * Read these sec0ons and study solved examples in your textbook! Work On: - Prac0ce problems from the textbook and assignments from the coursepack as assigned

More information

Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves

Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves Chapter 4. Fourier Analysis for Con5nuous-Time Signals and Systems Chapter Objec5ves 1. Learn techniques for represen3ng con$nuous-$me periodic signals using orthogonal sets of periodic basis func3ons.

More information

Systems Biology and Neuroengineering

Systems Biology and Neuroengineering Systems Biology and Neuroengineering Dion Khodagholy Columbia University Electrical Engineering Department TRANSCENDING DISCIPLINES, TRANSFORMING LIVES What is Systems Biology and Neuroengineering? Development

More information

Tsybakov noise adap/ve margin- based ac/ve learning

Tsybakov noise adap/ve margin- based ac/ve learning Tsybakov noise adap/ve margin- based ac/ve learning Aar$ Singh A. Nico Habermann Associate Professor NIPS workshop on Learning Faster from Easy Data II Dec 11, 2015 Passive Learning Ac/ve Learning (X j,?)

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. False Positives in Fourier Spectra. For N = DFT length: Lecture 5 Reading

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. False Positives in Fourier Spectra. For N = DFT length: Lecture 5 Reading A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 5 Reading Notes on web page Stochas

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. Motivations: Detection & Characterization. Lecture 2.

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University. Motivations: Detection & Characterization. Lecture 2. A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 2 Probability basics Fourier transform basics Typical problems Overall mantra: Discovery and cri@cal thinking with data + The

More information

Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport

Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport Detec%ng and Analyzing Urban Regions with High Impact of Weather Change on Transport Ye Ding, Yanhua Li, Ke Deng, Haoyu Tan, Mingxuan Yuan, Lionel M. Ni Presenta;on by Karan Somaiah Napanda, Suchithra

More information

Electricity & Magnetism Lecture 2: Electric Fields

Electricity & Magnetism Lecture 2: Electric Fields Electricity & Magnetism Lecture 2: Electric Fields Today s Concepts: A) The Electric Field B) Con9nuous Charge Distribu9ons Electricity & Magne9sm Lecture 2, Slide 1 Your Comments Suddenly, terrible haiku:

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models

MA/CS 109 Lecture 7. Back To Exponen:al Growth Popula:on Models MA/CS 109 Lecture 7 Back To Exponen:al Growth Popula:on Models Homework this week 1. Due next Thursday (not Tuesday) 2. Do most of computa:ons in discussion next week 3. If possible, bring your laptop

More information

Bayesian networks Lecture 18. David Sontag New York University

Bayesian networks Lecture 18. David Sontag New York University Bayesian networks Lecture 18 David Sontag New York University Outline for today Modeling sequen&al data (e.g., =me series, speech processing) using hidden Markov models (HMMs) Bayesian networks Independence

More information

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

More information

Cellular automata, entropy and box- coun4ng dimension

Cellular automata, entropy and box- coun4ng dimension Cellular automata, entropy and box- coun4ng dimension Cellular Automata Cellular automata (CA) models epitomize the idea that simple rules can generate complex pa=erns. A CA consists of an array of cells

More information

Quantum Energy Inequali1es

Quantum Energy Inequali1es Quantum Energy Inequali1es Elisa Ferreira PHYS 731 Ian Morrison Ref: Lectures on Quantum Energy Inequali1es, C. Fewster 1208.5399 Introduc1on and Mo1va1on Classical energy condi1ons (CEC) of GR- WEC, NEC,

More information

Exponen'al func'ons and exponen'al growth. UBC Math 102

Exponen'al func'ons and exponen'al growth. UBC Math 102 Exponen'al func'ons and exponen'al growth Course Calendar: OSH 4 due by 12:30pm in MX 1111 You are here Coming up (next week) Group version of Quiz 3 distributed by email Group version of Quiz 3 due in

More information

Mul$- model ensemble challenge ini$al/model uncertain$es

Mul$- model ensemble challenge ini$al/model uncertain$es Mul$- model ensemble challenge ini$al/model uncertain$es Yuejian Zhu Ensemble team leader Environmental Modeling Center NCEP/NWS/NOAA Acknowledgments: EMC ensemble team staffs Presenta$on for WMO/WWRP

More information

Least Mean Squares Regression. Machine Learning Fall 2017

Least Mean Squares Regression. Machine Learning Fall 2017 Least Mean Squares Regression Machine Learning Fall 2017 1 Lecture Overview Linear classifiers What func?ons do linear classifiers express? Least Squares Method for Regression 2 Where are we? Linear classifiers

More information

Lecture 13: Tracking mo3on features op3cal flow

Lecture 13: Tracking mo3on features op3cal flow Lecture 13: Tracking mo3on features op3cal flow Professor Fei- Fei Li Stanford Vision Lab Lecture 14-1! What we will learn today? Introduc3on Op3cal flow Feature tracking Applica3ons Reading: [Szeliski]

More information

Some thoughts on linearity, nonlinearity, and partial separability

Some thoughts on linearity, nonlinearity, and partial separability Some thoughts on linearity, nonlinearity, and partial separability Paul Hovland Argonne Na0onal Laboratory Joint work with Boyana Norris, Sri Hari Krishna Narayanan, Jean Utke, Drew Wicke Argonne Na0onal

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 11: Hidden Markov Models

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 11: Hidden Markov Models Machine Learning & Data Mining CS/CNS/EE 155 Lecture 11: Hidden Markov Models 1 Kaggle Compe==on Part 1 2 Kaggle Compe==on Part 2 3 Announcements Updated Kaggle Report Due Date: 9pm on Monday Feb 13 th

More information

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions:

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions: CSE 473: Ar+ficial Intelligence Par+cle Filters for HMMs Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All

More information

Latent Dirichlet Alloca/on

Latent Dirichlet Alloca/on Latent Dirichlet Alloca/on Blei, Ng and Jordan ( 2002 ) Presented by Deepak Santhanam What is Latent Dirichlet Alloca/on? Genera/ve Model for collec/ons of discrete data Data generated by parameters which

More information

Probability and Structure in Natural Language Processing

Probability and Structure in Natural Language Processing Probability and Structure in Natural Language Processing Noah Smith Heidelberg University, November 2014 Introduc@on Mo@va@on Sta@s@cal methods in NLP arrived ~20 years ago and now dominate. Mercer was

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6-8:50PM Thursday Location: AK233 Spring 2018 v Course Project I has been graded. Grading was based on v 1. Project report

More information

COMP 562: Introduction to Machine Learning

COMP 562: Introduction to Machine Learning COMP 562: Introduction to Machine Learning Lecture 20 : Support Vector Machines, Kernels Mahmoud Mostapha 1 Department of Computer Science University of North Carolina at Chapel Hill mahmoudm@cs.unc.edu

More information

REGRESSION AND CORRELATION ANALYSIS

REGRESSION AND CORRELATION ANALYSIS Problem 1 Problem 2 A group of 625 students has a mean age of 15.8 years with a standard devia>on of 0.6 years. The ages are normally distributed. How many students are younger than 16.2 years? REGRESSION

More information

Rela%ons and Their Proper%es. Slides by A. Bloomfield

Rela%ons and Their Proper%es. Slides by A. Bloomfield Rela%ons and Their Proper%es Slides by A. Bloomfield What is a rela%on Let A and B be sets. A binary rela%on R is a subset of A B Example Let A be the students in a the CS major A = {Alice, Bob, Claire,

More information

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University

A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University A6523 Modeling, Inference, and Mining Jim Cordes, Cornell University Lecture 23 Birthday problem comments Construc

More information

PHYS1121 and MECHANICS

PHYS1121 and MECHANICS PHYS1121 and 1131 - MECHANICS Lecturer weeks 1-6: John Webb, Dept of Astrophysics, School of Physics Multimedia tutorials www.physclips.unsw.edu.au Where can I find the lecture slides? There will be a

More information

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory

LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory LBT for Procedural and Reac1ve Systems Part 2: Reac1ve Systems Basic Theory Karl Meinke, karlm@kth.se School of Computer Science and Communica:on KTH Stockholm 0. Overview of the Lecture 1. Learning Based

More information

Predicate abstrac,on and interpola,on. Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on.

Predicate abstrac,on and interpola,on. Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on. Predicate abstrac,on and interpola,on Many pictures and examples are borrowed from The So'ware Model Checker BLAST presenta,on. Outline. Predicate abstrac,on the idea in pictures 2. Counter- example guided

More information

SKA machine learning perspec1ves for imaging, processing and analysis

SKA machine learning perspec1ves for imaging, processing and analysis 1 SKA machine learning perspec1ves for imaging, processing and analysis Slava Voloshynovskiy Stochas1c Informa1on Processing Group University of Geneva Switzerland with contribu,on of: D. Kostadinov, S.

More information

Aggrega?on of Epistemic Uncertainty

Aggrega?on of Epistemic Uncertainty Aggrega?on of Epistemic Uncertainty - Certainty Factors and Possibility Theory - Koichi Yamada Nagaoka Univ. of Tech. 1 What is Epistemic Uncertainty? Epistemic Uncertainty Aleatoric Uncertainty (Sta?s?cal

More information

Sample Complexity of Learning Independent of Set Theory

Sample Complexity of Learning Independent of Set Theory Sample Complexity of Learning Independent of Set Theory Shai Ben-David University of Waterloo, Canada Based on joint work with Pavel Hrubes, Shay Moran, Amir Shpilka and Amir Yehudayoff Simons workshop,

More information

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression

Last Lecture Recap UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 3: Linear Regression UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 3: Linear Regression Yanjun Qi / Jane University of Virginia Department of Computer Science 1 Last Lecture Recap q Data

More information

PSAAP Project Stanford

PSAAP Project Stanford PSAAP Project QMU @ Stanford Component Analysis and rela:on to Full System Simula:ons 1 What do we want to predict? Objec:ve: predic:on of the unstart limit expressed as probability of unstart (or alterna:vely

More information

D. Dubois, H. Prade, F. Touazi (coopéra7on avec A. Hadjali, S. Kaci)

D. Dubois, H. Prade, F. Touazi (coopéra7on avec A. Hadjali, S. Kaci) D. Dubois, H. Prade, F. Touazi (coopéra7on avec A. Hadjali, S. Kaci) Mo7va7on Two ways of expressing qualitative preferences Logical statements with priorities (possibilistic logic) Conditional preference

More information

ODEs + Singulari0es + Monodromies + Boundary condi0ons. Kerr BH ScaRering: a systema0c study. Schwarzschild BH ScaRering: Quasi- normal modes

ODEs + Singulari0es + Monodromies + Boundary condi0ons. Kerr BH ScaRering: a systema0c study. Schwarzschild BH ScaRering: Quasi- normal modes Outline Introduc0on Overview of the Technique ODEs + Singulari0es + Monodromies + Boundary condi0ons Results Kerr BH ScaRering: a systema0c study Schwarzschild BH ScaRering: Quasi- normal modes Collabora0on:

More information

Part 2. Representation Learning Algorithms

Part 2. Representation Learning Algorithms 53 Part 2 Representation Learning Algorithms 54 A neural network = running several logistic regressions at the same time If we feed a vector of inputs through a bunch of logis;c regression func;ons, then

More information

Molecular Programming Models. Based on notes by Dave Doty

Molecular Programming Models. Based on notes by Dave Doty Molecular Programming Models Based on notes by Dave Doty Outline Stable predicate decidability Stably computable predicates == semilinear predicates (and stably computable func

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Social and Economic Networks Matthew O. Jackson

Social and Economic Networks Matthew O. Jackson Social and Economic Networks Matthew O. Jackson Copyright: Matthew O. Jackson 2016 Please do not post or distribute without permission. Networks and Behavior How does network structure impact behavior?

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Learning Deep Genera,ve Models

Learning Deep Genera,ve Models Learning Deep Genera,ve Models Ruslan Salakhutdinov BCS, MIT and! Department of Statistics, University of Toronto Machine Learning s Successes Computer Vision: - Image inpain,ng/denoising, segmenta,on

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Lecture 6-2: The Vector Space Model Outline The vector space model 2 Binary incidence matrix Anthony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth...

More information

Parallel Repetition of entangled games on the uniform distribution

Parallel Repetition of entangled games on the uniform distribution Parallel Repetition of entangled games on the uniform distribution André Chailloux, Scarpa Giannicola To cite this version: André Chailloux, Scarpa Giannicola. Parallel Repetition of entangled games on

More information

Last week. The diaba)c circula)on. Associated isentropic mass budget in the Middleworld. Possible implica7ons for poten7al vor7city

Last week. The diaba)c circula)on. Associated isentropic mass budget in the Middleworld. Possible implica7ons for poten7al vor7city Aarnout van Delden http://www.staff.science.uu.nl/~delde102/c&hc.htm Diaba%c- Dynamical Interac%on in the General Circula%on (lecture 7) The diaba)c circula)on Associated isentropic mass budget in the

More information

Statistical Models for sequencing data: from Experimental Design to Generalized Linear Models

Statistical Models for sequencing data: from Experimental Design to Generalized Linear Models Best practices in the analysis of RNA-Seq and CHiP-Seq data 4 th -5 th May 2017 University of Cambridge, Cambridge, UK Statistical Models for sequencing data: from Experimental Design to Generalized Linear

More information