A solver for free-surface flow in heterogeneous porous media

Size: px
Start display at page:

Download "A solver for free-surface flow in heterogeneous porous media"

Transcription

1 A solver for free-surface flow n heterogeneous porous meda Olver Oxtoby Johan Heyns Aeronautc Systems, Councl for Scentfc and Industral Research Pretora, South Afrca

2 Free-surface flow: Sloshng Smple small-ampltude slosh for valdaton Sngle baffle confguraton nterfoam suffers sgnfcant spurous dsspaton Reducton n spurous dsspaton due to pecewse lnear pressure dscretsaton Slde 2 Emprcal data from Dodge, The new dynamc behavour of lquds n movng contaners", 2000

3 Free-surface flow: Sloshng Pecewse-lnear pressure nterpolaton reduces parastc currents on nonorthogonal grds nterfoam Hydro

4 Free-surface flow: Sloshng Improvement n capture of volent sloshng 2 nd order Crank-Ncolson, HRAC nterface capturng scheme used here Popular commercal codes suffer nterface smearng

5 Weak compressblty Accounts for temporal varaton of gas densty Sutable for low mach number, hgh densty rato flows No computatonal penalty Varatons n ρ g Absolute pressures Slde 5

6 Objectves Porous modellng n OpenFOAM : Implemented as porous drag sourceterm and pressure-jump BCs Regons of constant porosty + thn porous baffles Regons hard-wred n mesh generaton process Am: Develop a solver for multphase porous flow Arbtrary varyng porosty feld + dscontnutes Easy to specfy: (funky)setfelds Flexble: slow tme-dependence, etc.

7 Governng equatons Volume averagng: porous + multphase Contnuty: Momentum: Volume fracton: u: Intrnsc velocty F: Porosty a: Volumefracton F: Body force porous drag (Ergun) + gravty: ) ( 2 ) ( ) ( 0 ) ( j j j j j j u x t F S x x p u u x u t u x F F F F F F F a a p p g u D u D F F F F F ) ( ) ( u j j j x u x u S 2 1

8 Equaton dscretsaton Densty dscontnuty Consstent dscontnutes n convectve & temporal terms Pressure gradent dscontnuty Porosty dscontnuty Dscontnuty n velocty Consstent dscontnutes n pressure & convectve terms Volume fracton t ( Fu ) ( Fu x j j p u ) F x Velocty

9 Equaton dscretsaton Handlng dscontnutes by correct and consstent nterpolaton of porosty, densty, pressure & velocty to cell faces Consstent treatment n Rhe-Chow pressure-projecton equaton: Φ ave ρ ave p = Φu Δt Φu u + Save ρ ave Consderng a 1D cell par gves us necessary condtons whch the nterpolatons must meet F 1 F 2 F ave =?

10 Condtons for consstency 1. Steady sngle-phase 1D flow 1 Φ ave = 1 w 1 Φ 1 + w 1 Φ 2 and 1 Φ ave Sf = 1 Φ 1 S Φ 2 S 2 (w = convectve weghtng) 2. Steady u, non-unform ρ ave = ρ f 3. Unsteady u, non-unform F 1 F 2 p f = Φ 1ρ 2 p 1 + Φ 2 ρ 1 p 2 ρ f Φu u 2 u 1 1 w ρ 2 wρ Δx(ρ 2 S 1 ρ 2 S 2 ) Φ 1 ρ 2 + Φ 2 ρ 1

11 1D Channel Two-flud 1D flow F 1 F 0.5 F 1 Strong lnear pressure profle Need least-squares gradent on non-orthogonal grds

12 Porous baffle benchmark Experment: Porous dam-break (P. Ln, 1998) Mesh ndependence Valdaton 10k elt structured vs 40k elt structured vs 10k elt unstructured Open top Water Crushed stone / glass beads Stone: F = 0.49, D p = 1.59 cm Glass: F = 0.39, D p = 3 mm

13 Porous baffle benchmark Free surface plot Crushed stone baffle Mesh ndependence Valdaton: No calbraton of coeffcents Coarse (1x0.5 cm) Fne (0.5x0.25 cm) Unstructured Experment

14 Harbour breakwater Packed bed of breakwater armour unts Packed stone F = 0.1 D p = 0.25 m Gravel F = 0.2 D p = 1 cm Armour unts F = 0.65 D p = 0.4 m

15 Harbour breakwater Packed bed of breakwater armour unts

16 Tappng of melt from FeS furnace Rough approxmaton to a typcal ferroslcon smelter Actve zone F = 0.2 Inactve zone F = 0.1; Dp = 1cm Input: Gas producton ~ 10 m 3 /s (below electrodes) Estmated porostes/partcle szes Taphole Crust F = 0.1 D p = 0.5cm Electrode crater Melt zone F = 1 F = 0.5; 0.2; 0.1

17 Tappng of melt from FeS furnace Taphole gassng metal heght? Input: Gas producton ~ 10 m 3 /s Estmated porostes/partcle szes Valdaton : Crater pressure ~ 10 kpa Mass outflow rate ~ 10 kg/s Metal heght ~2 cm above taphole

18 Surface Tenson Smoothng used to amelorate spurous currents n surface-tenson domnated flows Addtonal smooth volume fracton * * a a a a 0 x x Normalsed smoothng parameter (relatve to mesh) no tunng requred nterfoam Hydro Water droplet transported n mneral ol n 100 mcron channel

19 Flud-structure nteracton Free-surface + 6DOF sold floatngblock tutoral Acceleraton relaxaton (nterfoam) Atken acceleraton (Hydro) Slde 19

20 Flud-structure nteracton Statonary bobbng boat Non-orthogonalty causes nterfoam blowup

21 Thank you Acknowledgements: Johan Heyns Development n collaboraton wth Engys Contact: Olver Oxtoby ooxtoby@csr.co.za

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Ahmad Shakibaeinia Assistant Professor Department of Civil, Geological & Mining Engineering Polytechnique Montreal

Ahmad Shakibaeinia Assistant Professor Department of Civil, Geological & Mining Engineering Polytechnique Montreal Natonal Center for Atmospherc Research (NCAR) IMAGe TOY2017: Workshop on Multscale Geoscence Numercs Ahmad Shakbaena Assstant Professor Department of Cvl, Geologcal & Mnng Engneerng Polytechnque Montreal

More information

Introduction to Turbulence Modeling

Introduction to Turbulence Modeling Introducton to Turbulence Modelng Professor Ismal B. Celk West Vrgna nversty Ismal.Celk@mal.wvu.edu CFD Lab. - West Vrgna nversty I-1 Introducton to Turbulence CFD Lab. - West Vrgna nversty I-2 Introducton

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL 1. Introducton Chrstophe Vallée and Thomas Höhne In dfferent scenaros of small break Loss of Coolant Accdent (SB-LOCA), stratfed twophase

More information

DynaflowC.F.D. conference

DynaflowC.F.D. conference DynaflowC.F.D. conference Lattce Boltzmann Smulatons and Applcaton to Multphase Flow Sacha Jelc, Senor C.F.D. Thermal Engneer Exa GmbH January 13th 2011 Agenda Company Overvew Current Applcatons Overvew

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

CFD simulation with multiphase flows in porous media and open mineral storage pile

CFD simulation with multiphase flows in porous media and open mineral storage pile Computatonal Methods n Multphase Flow V 421 CFD smulaton wth multphase flows n porous meda and open mneral storage ple S. Torno, J. Toraño, I. Dego, M. Menéndez, M. Gent & J. Velasco School of Mnes, Unversty

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Optimal Control of Temperature in Fluid Flow

Optimal Control of Temperature in Fluid Flow Kawahara Lab. 5 March. 27 Optmal Control of Temperature n Flud Flow Dasuke YAMAZAKI Department of Cvl Engneerng, Chuo Unversty Kasuga -3-27, Bunkyou-ku, Tokyo 2-855, Japan E-mal : d33422@educ.kc.chuo-u.ac.jp

More information

Computational Study of Transition of Oil-water Flow Morphology due to Sudden Contraction in Microfluidic Channel

Computational Study of Transition of Oil-water Flow Morphology due to Sudden Contraction in Microfluidic Channel Computatonal Study of Transton of Ol-water Flow Morphology due to Sudden Contracton n Mcrofludc Channel J. Chaudhur 1, S. Tmung 1, T. K. Mandal 1,2, and D. Bandyopadhyay *1,2 1 Department of Chemcal Engneerng,

More information

The Governing Equations

The Governing Equations The Governng Equatons L. Goodman General Physcal Oceanography MAR 555 School for Marne Scences and Technology Umass-Dartmouth Dynamcs of Oceanography The Governng Equatons- (IPO-7) Mass Conservaton and

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1955-1962 1955 NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD Introducton by Tomok IZUMI a* and

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA Analyss of Unsteady Aerodynamcs of a Car Model wth Radator n Dynamc Ptchng Moton usng LS-DYNA Yusuke Nakae 1, Jro Takamtsu 1, Hrosh Tanaka 1, Tsuyosh Yasuk 1 1 Toyota Motor Corporaton 1 Introducton Recently,

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Airflow and Contaminant Simulation with CONTAM

Airflow and Contaminant Simulation with CONTAM Arflow and Contamnant Smulaton wth CONTAM George Walton, NIST CHAMPS Developers Workshop Syracuse Unversty June 19, 2006 Network Analogy Electrc Ppe, Duct & Ar Wre Ppe, Duct, or Openng Juncton Juncton

More information

Turbulence and its Modelling

Turbulence and its Modelling School of Mechancal Aerospace and Cvl Engneerng 3rd Year Flud Mechancs Introducton In earler lectures we have consdered how flow nstabltes develop, and noted that above some crtcal Reynolds number flows

More information

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland

Turbulent Transport in Single-Phase Flow. Peter Bernard, University of Maryland Turbulent Transport n Sngle-Phase Flow Peter Bernard, Unversty of Maryland Assume that our goal s to compute mean flow statstcs such as U and One can ether: 1 u where U Pursue DNS (.e. the "honest" approach)

More information

NUMERICAL ANALYSIS OF TSUNAMI-INDUCED INUNDATION BEHIND BUILDINGS ALONG COASTS

NUMERICAL ANALYSIS OF TSUNAMI-INDUCED INUNDATION BEHIND BUILDINGS ALONG COASTS Proceedngs of the 7 th Internatonal Conference on Asan and Pacfc Coasts (APAC 2013) Bal, Indonesa, September 24-26, 2013 NUMERICAL ANALYSIS OF TSUNAMI-INDUCED INUNDATION BEHIND BUILDINGS ALONG COASTS T.

More information

Mass transfer in multi-component mixtures

Mass transfer in multi-component mixtures Chapters -0 ex. 7, of 5 of boo See also Krshna & Wesselngh Chem. Eng. Sc. 5(6) 997 86-9 Mass transfer n mult-component mxtures Ron Zevenhoven Åbo Aadem Unversty Thermal and Flow Engneerng Laboratory tel.

More information

ESA modelling and cycle design

ESA modelling and cycle design ESA modellng and cycle desgn WP and WP 5 Unversty of Belgrade MATESA Dssemnaton day, Oslo 16.6.016 Motvaton Develop rgorous 3D models (CFD) to understand the processes, examne the nfluence of condtons

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Supplemental Material: Causal Entropic Forces

Supplemental Material: Causal Entropic Forces Supplemental Materal: Causal Entropc Forces A. D. Wssner-Gross 1, 2, and C. E. Freer 3 1 Insttute for Appled Computatonal Scence, Harvard Unversty, Cambrdge, Massachusetts 02138, USA 2 The Meda Laboratory,

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Diffusion Mass Transfer

Diffusion Mass Transfer Dffuson Mass Transfer General onsderatons Mass transfer refers to mass n transt due to a speces concentraton gradent n a mture. Must have a mture of two or more speces for mass transfer to occur. The speces

More information

1. Mean-Field Theory. 2. Bjerrum length

1. Mean-Field Theory. 2. Bjerrum length 1. Mean-Feld Theory Contnuum models lke the Posson-Nernst-Planck equatons are mean-feld approxmatons whch descrbe how dscrete ons are affected by the mean concentratons c and potental φ. Each on mgrates

More information

The Possibility of Capturing Shock Waves by Computer Simulation in Environmental Scanning Electron Microscope P. Vyroubal 1 1

The Possibility of Capturing Shock Waves by Computer Simulation in Environmental Scanning Electron Microscope P. Vyroubal 1 1 očník 2013 Číslo V The Possblty of Capturng Shock Waves by Computer Smulaton n Envronmental Scannng Electron Mcroscope P. Vyroubal 1 1 Department of Electrcal and Electronc Technology, Faculty of Electrcal

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP

NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer Surendra Sa Unversty of

More information

NUMERICAL SIMULATION OF TURBULENT FLOW AROUND A BUILDING COMPLEX

NUMERICAL SIMULATION OF TURBULENT FLOW AROUND A BUILDING COMPLEX BBAA VI Internatonal Colloquum on: Bluff Bodes Aerodynamcs & Applcatons lano, Italy, July, 0-4 008 NUEICAL SIULATION OF TUBULENT FLOW AOUND A BUILDING COPLEX Sungsu Lee, Choon-Bum Cho, Kyung-Soo Yang and

More information

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs)

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs) Problem adapted reduced models based on Reacton-Dffuson Manfolds (REDIMs) V Bykov, U Maas Thrty-Second Internatonal Symposum on ombuston, Montreal, anada, 3-8 August, 8 Problem Statement: Smulaton of reactng

More information

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001

Homogeneous model: Horizontal pipe and horizontal well. Flow loops can't duplicate field conditions. Daniel D. Joseph. April 2001 Homogeneous model of producton of heavy ol through horzontal ppelnes and wells based on the Naver-Stokes equatons n the ppelne or the well and Darcy's law n the reservor Homogeneous model: Danel D. Joseph

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran

ChE 512: Topic 1 Reactions at a fluid non-porous solid interface. P.A. Ramachandran he 512: Topc 1 Reactons at a flud non-porous sold nterface P.. Ramachandran rama@wustl.edu OUTLIE External Transport: Flm oncept Mass transfer coeffcents Effect of transport on reacton multaneous heat

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Computational Astrophysics

Computational Astrophysics Computatonal Astrophyscs Solvng for Gravty Alexander Knebe, Unversdad Autonoma de Madrd Computatonal Astrophyscs Solvng for Gravty the equatons full set of equatons collsonless matter (e.g. dark matter

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning European Symposum on Computer Arded Aded Process Engneerng 15 L. Pugjaner and A. Espuña (Edtors) 2005 Elsever Scence B.V. All rghts reserved. Three-Phase Dstllaton n Packed Towers: Short-Cut Modellng and

More information

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES ISSN NO : 49-7455 Numercal Studes on Flow Features past a Backward Facng Sharp Edge Step Introducng Hybrd RANS-LES Abstract Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer

More information

Implement of the MPS-FEM Coupled Method for the FSI Simulation of the 3-D Dam-break Problem

Implement of the MPS-FEM Coupled Method for the FSI Simulation of the 3-D Dam-break Problem Implement of the MPS-FEM Coupled Method for the FSI Smulaton of the 3-D Dam-break Problem Youln Zhang State Key Laboratory of Ocean Engneerng, School of Naval Archtecture, Ocean and Cvl Engneerng, Shangha

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

MPS Simulation of Sloshing Flows in a Tuned Liquid Damper

MPS Simulation of Sloshing Flows in a Tuned Liquid Damper Proceedngs of the Twenty-seventh (2017) Internatonal Ocean and Polar Engneerng Conference San Francsco, CA, USA, June 25-30, 2017 Copyrght 2017 by the Internatonal Socety of Offshore and Polar Engneers

More information

GENERAL EQUATIONS OF PHYSICO-CHEMICAL

GENERAL EQUATIONS OF PHYSICO-CHEMICAL GENERAL EQUATIONS OF PHYSICO-CHEMICAL PROCESSES Causes and conons for the evoluton of a system... 1 Integral formulaton of balance equatons... 2 Dfferental formulaton of balance equatons... 3 Boundary

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov. Turbulence Lecture 1 Non-lnear Dynamcs Strong non-lnearty s a key feature of turbulence. 1. Unstable, chaotc behavor.. Strongly vortcal (vortex stretchng) 3 s & 4 s Taylor s work on homogeneous turbulence

More information

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD IOP Conference Seres: Earth and Envronmental Scence Energy confguraton optmzaton of submerged propeller n oxdaton dtch based on CFD To cte ths artcle: S Y Wu et al 01 IOP Conf. Ser.: Earth Envron. Sc.

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

Earth-surface Dynamics Modeling & Model Coupling

Earth-surface Dynamics Modeling & Model Coupling Earth-surface Dynamcs Modelng & Model Couplng A short course James PM Syvtsk & Erc WH Hutton, CSDMS, CU-Boulder Wth specal thanks to Pat Wberg, Carl Fredrchs, Courtney Harrs, Chrs Reed, Rocky Geyer, Alan

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

Ionization fronts in HII regions

Ionization fronts in HII regions Ionzaton fronts n HII regons Intal expanson of HII onzaton front s supersonc, creatng a shock front. Statonary frame: front advances nto neutral materal In frame where shock front s statonary, neutral

More information

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD)

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) Auwal Dodo*, Valente Hernandez-Perez, Je Zhu and Saffa Rffat Faculty of Engneerng,

More information

Particle Deposition in AERMOD: Overview

Particle Deposition in AERMOD: Overview Partcle Deposton n AERMOD: Overvew 2018 Regonal/State/Locals Modelng Workshop Boston, MA James Thurman U.S. EPA/OAQPS/AQAD/AQMG 6/19/2018 U.S. Envronmental Protecton Agency 1 Background Recent nterest

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

SOLUTION - Examination paper for TPG4160 Reservoir Simulation

SOLUTION - Examination paper for TPG4160 Reservoir Simulation Department of Petroleum Engneerng and Appled Geophyscs SOLUTION - Examnaton paper for TPG4160 Reservor Smulaton Academc contact durng examnaton: Jon Kleppe Phone: 91897300/73594925 Examnaton date: May

More information

A Detached Direct Numerical Simulation of Two-Phase Turbulent Bubbly Channel Flow

A Detached Direct Numerical Simulation of Two-Phase Turbulent Bubbly Channel Flow A Detached Drect Numercal Smulaton of Two-Phase Turbulent Bubbly Channel Flow Igor A. Bolotnov, Kenneth E. Jansen, Donald A. Drew, Assad A. Obera, Rchard T. Lahey, Jr., and Mchael Z. Podowsk Center for

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave

1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave 014 4th Internatonal Conference on Future nvronment and nergy IPCB vol.61 (014) (014) IACSIT Press, Sngapore I: 10.776/IPCB. 014. V61. 6 1-mensonal Advecton-ffuson Fnte fference Model ue to a Flow under

More information

Numerical Studies on Supersonic Turbulent Flow over a Backward Facing Sharp Edge Step Using Hybrid RANS-LES

Numerical Studies on Supersonic Turbulent Flow over a Backward Facing Sharp Edge Step Using Hybrid RANS-LES www.eter.everscence.org Numercal Studes on Supersonc Turbulent Flow over a Bacward Facng Sharp Edge Step Usng Hybrd RANS-LES Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng,

More information

CFD Simulation of Pore Pressure Oscillation Method for the Measurement of Permeability in Tight Porous-Media

CFD Simulation of Pore Pressure Oscillation Method for the Measurement of Permeability in Tight Porous-Media CFD Smulaton of Pore Pressure Oscllaton Method for the Measurement of Permeablty n Tght Porous-Meda Seyed Armn Madan 1, Mehd Mokhtar *, Abdennour Seb 3 1 Ol Center Research, Lafayette, LA, USA.,3 Petroleum

More information

Ming-Chung Chan and Chun-Ho Liu

Ming-Chung Chan and Chun-Ho Liu Large-eddy smulaton of turbulent flows and pollutant transport nsde and above dealzed urban street canyons under dfferent unstable thermal stratfcaton Mng-Chung Chan and Chun-Ho Lu Department of Mechancal

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale

Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Development of Numercal Smulaton Capabltes for In Stu Heatng of Ol Shale Sharad Kelkar, Rajesh Pawar Los Alamos Natonal Laboratory Nazsh Hoda, Chen Fang ExxonMobl Upstream Research Company Presented at

More information

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM The 5th Internatonal Symposum on Computatonal Scences (ISCS) 28 May 2012, Yogyakarta, Indonesa SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM Dede Tarwd 1,2 1 Graduate School

More information

THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL (LES-SSAM) OF A HIGH REYNOLDS NUMBER FLOWS

THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL (LES-SSAM) OF A HIGH REYNOLDS NUMBER FLOWS /2 THE COUPLED LES - SUBGRID STOCHASTIC ACCELERATION MODEL LES-SSAM OF A HIGH REYNOLDS NUMBER FLOWS Vladmr Sabel nov DEFA/EFCA ONERA, France In collaboraton wth: Anna Chtab CORIA, Unversté de Rouen, France

More information

Wojciech Bartnik, Andrzej Strużyński

Wojciech Bartnik, Andrzej Strużyński Wojcech Bartnk, Andrzej Strużyńsk THE INFLENCE OF THE HYDRALIC PARAMETERS ON THE BEGINNING OF BED LOAD TRANSPORT IN MONTAIN RIVERS OBTAINED BY MEANS OF THE NISA PROGRAM Agrcultural nversty of Cracow Department

More information

PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY 2-D NUMERICAL SIMULATIONS

PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY 2-D NUMERICAL SIMULATIONS ISTP-16, 005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA PERMEABILITY-POROSITY RELATIONSHIP ASSESSMENT BY -D NUMERICAL SIMULATIONS J. Pnela*, S. Kruz*, A. F. Mguel* +, A. H. Res*, M. Aydn**

More information

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich Chapter 02: Numercal methods for mcrofludcs Xangyu Hu Techncal Unversty of Munch Possble numercal approaches Macroscopc approaches Fnte volume/element method Thn flm method Mcroscopc approaches Molecular

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

O 2 ( 1 ) PRODUCTION AND OXYGEN-IODINE KINETICS IN FLOWING AFTERGLOWS FOR ELECTRICALLY EXCITED CHEMICAL-OXYGEN-IODINE LASERS*

O 2 ( 1 ) PRODUCTION AND OXYGEN-IODINE KINETICS IN FLOWING AFTERGLOWS FOR ELECTRICALLY EXCITED CHEMICAL-OXYGEN-IODINE LASERS* O 2 ( 1 ) PRODUCTION AND OXYGEN-IODINE KINETICS IN FLOWING AFTERGLOWS FOR ELECTRICALLY EXCITED CHEMICAL-OXYGEN-IODINE LASERS* Ramesh Arakon, Natala Y. Babaeva, and Mark J. Kushner Ames, IA 50011, USA arakon@astate.edu

More information

Adjustment of Dissipative Terms to Improve Two and Three- Dimensional Euler Flow Solutions

Adjustment of Dissipative Terms to Improve Two and Three- Dimensional Euler Flow Solutions Seyed Saed Bahranan Adjustment of Dsspatve Terms to Improve Two and Three- Dmensonal Euler Flow Solutons SEED SAIED BAHRAINIAN Department of Mechancal Engneerng Shahd Chamran Unversty AHWA IRAN bahranan@scu.ac.r

More information

Uncertainty and auto-correlation in. Measurement

Uncertainty and auto-correlation in. Measurement Uncertanty and auto-correlaton n arxv:1707.03276v2 [physcs.data-an] 30 Dec 2017 Measurement Markus Schebl Federal Offce of Metrology and Surveyng (BEV), 1160 Venna, Austra E-mal: markus.schebl@bev.gv.at

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS ISSN: 345-3109 RCEE Research n Cvl and Envronmental Engneerng www.rcee.com Research n Cvl and Envronmental Engneerng 014 (04) 190-198 NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS Rasoul Daneshfaraz

More information

DIRECT NUMERICAL SIMULATIONS OF FLUID DRAG FORCES OF NON-SPHERICAL PARTICLE

DIRECT NUMERICAL SIMULATIONS OF FLUID DRAG FORCES OF NON-SPHERICAL PARTICLE Eleventh Internatonal Conference on CFD n the Mnerals and Process Industres CSIRO, Melbourne, Australa 7-9 December 2015 DIRECT NUMERICAL SIMULATIONS OF FLUID DRAG FORCES OF NON-SPHERICAL PARTICLE Sathsh

More information

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n

N-Body Simulation. Typical uncertainty: π = 4 Acircle/Asquare! 4 ncircle/n. πest π = O(n N-Body Smulaton Solvng the CBE wth a 6-D grd takes too many cells. Instead, we use a Monte-Carlo method. Example: Monte-Carlo calculaton of π. Scatter n ponts n square; count number ncrcle fallng wthn

More information

NUMERICAL SIMULATION OF CONDENSATION ON A CAPILLARY GROOVED STRUCTURE

NUMERICAL SIMULATION OF CONDENSATION ON A CAPILLARY GROOVED STRUCTURE Proceedngs of MECE'OO 2000 nternatonal Mechancal Engneerng Congress and Exhbton November 5-1 0, 2000, Orlando, Florda, USA 2000 MECE 2-13-2-7 NUMERCAL SMULATON OF CONDENSATON ON A CAPLLARY GROOVED STRUCTURE

More information

Electrostatic Potential from Transmembrane Currents

Electrostatic Potential from Transmembrane Currents Electrostatc Potental from Transmembrane Currents Let s assume that the current densty j(r, t) s ohmc;.e., lnearly proportonal to the electrc feld E(r, t): j = σ c (r)e (1) wth conductvty σ c = σ c (r).

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Title. Author(s)Tabe, Yutaka; Lee, Yongju; Chikahisa, Takemi; Kozaka. CitationJournal of Power Sources, 193(1): Issue Date

Title. Author(s)Tabe, Yutaka; Lee, Yongju; Chikahisa, Takemi; Kozaka. CitationJournal of Power Sources, 193(1): Issue Date Ttle Numercal smulaton of lqud water and gas flow n electrolyte membrane fuel cells usng the lattce Bo Author(s)Tabe, Yutaka; Lee, Yongju; Chkahsa, Takem; Kozaka CtatonJournal of Power Sources, 93(): 24-3

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Computational Analysis of Cavitating Marine Propeller Performance using OpenFOAM

Computational Analysis of Cavitating Marine Propeller Performance using OpenFOAM Fourth Internatonal Symposum on Marne Propulsors smp 15, Austn, Texas, USA, June 2015 Workshop: Propeller Performance Computatonal Analyss of Cavtatng Marne Propeller Performance usng OpenFOAM Abolfazl

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Study on Effect of Different Porosity on Thermally Driven Heat Transfer in a Centrifugal Force Field

Study on Effect of Different Porosity on Thermally Driven Heat Transfer in a Centrifugal Force Field 5th Internatonal Conference on Cvl Engneerng and Transportaton (ICCET 015) Study on Effect of Dfferent Porosty on Thermally Drven Heat Transfer n a Centrfugal Force Feld 1 Xa Je1,a*, Chang Ha-png,b, and

More information

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

Lecture # 15: Review for Final Exam

Lecture # 15: Review for Final Exam AerE 311L & AerE343L Lecture Notes Lecture # 15: Revew for Fnal Exam Hu Hu Department of Aerospace Engneerng, Iowa State Unversty Ames, Iowa 50011, U.S.A AerE343L: Dmensonal Analyss and Smltude L Commonly

More information