Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES

Size: px
Start display at page:

Download "Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES"

Transcription

1 ISSN NO : Numercal Studes on Flow Features past a Backward Facng Sharp Edge Step Introducng Hybrd RANS-LES Abstract Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer Surendra Sa Unversty of Technology, Burla, Odsha, Inda nrmalkund@gmal.com The current nvestgaton nvolves the development of a D numercal model for examnng the flud flow behavors over a backward facng sharp edge step deployng the hybrd RANS-LES turbulent model whch also ncludes a vscosty-lke varable. The model encompasses key ssues lke producton, dffuson and destructon terms. The smulatons are done wth nflow free stream Mach number of.5 correspondng to free stream pressure and velocty of N/m and m/s, respectvely. The smulaton predctons of densty, vortcty and Mach number are observed to be farly consstent and also along the expected lnes all over the whole flow regme. It s observed that both vortcty ntensty and Mach number are qute hgh at the expanson fan near the lp of the separaton as well as near the reattachment shock, whereas, the flud densty s qute low at the same. Furthermore, t s also notced that the recrculaton vcnty whch s also otherwse called as dead ar regon has experenced the least flud densty, vortcty along wth the Mach number owng to non-vscous rotaton. In addton, both densty feld and Mach number beneft us n understandng whether the flud flow s compressble or ncompressble nature. In addton, the sudden change wthn the flow feld causes the vortcty generaton resultng n uneven flow performances. Keywords: Densty, Vortcty, Mach number, Backward Facng, Sharp Edge Step, Hybrd RANS-LES. 1. Introducton Steps on the surfaces of hypersonc or supersonc arcrafts make the flow regon more challengng and hence sgnfcant researches are really essental for refnng the dynamc desgn of arcrafts. Smth [1] executed expermental studes on the flow feld and heat transfer downstream of a rearward facng step n supersonc flow. Launder and Sharma [] appled the energy dsspaton model of turbulence to nvestgate the flow feld around a spnnng dsc. Armaly et al. [3] conducted both expermental and theoretcal studes on backward facng step flow. Spalart and Allmaras [4] presented a one-equaton turbulence model for evaluatng aerodynamc flows. Anderson and Wendt [5] testfed llustrous and complete descrptons of computatonal flud dynamcs. Neumann and Wengle [6] used both DNS and LES for nvestgatng passvely controlled turbulent flow of backward-facng step. Hamed et al. [7] done the numercal smulatons of fludc control for transonc cavty flows. Chen et al. [8] expermentally nvestgated on fne structures of supersonc lamnar and turbulent flow over a backward-facng step through the Nano-based Planar Laser Scatterng (NPLS). Lu et al. [9] numercally studed on the nfluences of nflow Mach number and step heght on supersonc flows over a backward-facng step. Terekhov et al. [10] accomplshed the expermental nvestgatons on the separated flow structure behnd a backward-facng step over and above the passve dsturbance. Volume 8, Issue VI, JUNE/018 Page No:438

2 ISSN NO : From the reported studes, to the best of author nformaton, t s observed that there s not a sngle extensve numercal study on flow over a backward facng sharp edge step by means of hybrd RANS-LES technque. Wth ths standpont, the current nvestgaton establshes the numercal studes on flow characterstcs over a backward facng sharp edge step by means of hybrd RANS-LES method. Furthermore, the numercal model also ncludes key features namely producton, dffuson and destructon terms apart from the usual ssues pertanng to the present physcal problem. Addtonally, the specfed model also ncludes both compressblty and eddy vscous effects. The model s thoroughly demonstrated for the careful numercal studes on flud flow behavours relatng to flow over a backward facng sharp edge step by usng the nflow free stream velocty and the correspondng Mach number as the mportant model parameters. Eventually, a D numercal model s developed to nvestgate the flow characterstcs, pertanng to densty, vortcty and Mach number dstrbutons, over a backward facng sharp edge step usng the hybrd RANS-LES/Spalart-Allmaras turbulent model whch also ncludes a vscosty-lke varable. Fnally, the smulaton predctons of densty, vortcty and Mach number are found to be qute consstent and also along the expected lnes throughout the entre flow regme. A. Geometrc model. Descrpton of Physcal Problem Fgure 1 embodes the setup confguraton for testng the backward facng sharp edge step flow over sharp edge geometry separatng at a step heght H = m, upstream dstance from nlet to step L u = m and downstream dstance from sharp edge step to outlet L d = 0.03 m. The dstance from downstream to upper boundary layer Z = m, spanwse dstance L= m and wdth B = m. The separaton and reattachment ponts are denoted by S and R respectvely and are lkely to be obtaned after carryng out numercal smulaton. Fg 1. Backward sharp edge step. B. Intal and boundary condtons Fg. Mesh of backward sharp edge step. The nflow free stream velocty U n = m/s, for whch the dentfed statc free stream pressure p n = N/m corresponds to the Mach number Ma =.5. At the left sde ahead of the step, the ntal temperature s mantaned at 169. K. The ntal condtons whch are set on the upstream are really useful durng the smulaton along the spanwse drecton, for obtanng the flow features beyond the step. Volume 8, Issue VI, JUNE/018 Page No:439

3 ISSN NO : Mathematcal Formulaton and Numercal Procedures A. Generalzed governng transport equatons Very generalzed governng transport equatons of mass, momentum and energy stated n the conservatve form of Naver-Stokes equaton for compressble flow n assocaton wth the nfluences of turbulence are as follows. ( u ) Contnuty: 0 (1) t x Momentum: Energy: Where, u t E t x u ( u u x ) p x x x ( S T u E p k kt S tu Sh u p p T T u p T p x t ) () (3) v Total energy, E e k h (5) The Reynolds stress term s modeled n terms of the eddy vscosty and s represented by: ( S S / 3 ) k / 3 (6) t t nn The eddy vscosty s defned as a functon of the turbulent knetc energy k, and the turbulent dsspaton rate ε, and s represented by: c f k / t (7) Besdes, all the model terms/symbols/coeffcents/functons have ther usual meanngs and values. B. Hybrd RANS-LES Turbulence Modellng The Hybrd RANS-LES/Spalart Allmaras turbulence model also otherwse called as Detached Eddy Smulaton (DES) model s a one-equaton model for the eddy vscosty. The dfferental equaton s derved from emprcsm and arguments of dmensonal analyss, Gallean nvarance and selected dependence on the molecular vscosty. Grd resoluton s not necessarly fner for ths model, but, one can essentally capture the flow feld wth the related algebrac models. The transport equaton for the workng varable (otherwse known as Spalart Allmaras varable).e. vscosty-lke varable (ṽ) s represented by: ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ u cb 1S cb c 1 f (8) w w t x x x x x d t ~ f 1 The eddy vscosty s represented by: v t (9) In addton, all the model terms/symbols/coeffcents/functons have ther usual meanngs and values. C. Numercal technques The transformed governng transport equatons are solved by expendng pressure based coupled framework relatng to fnte volume method (FVM) usng the SIMPLER algorthm. Fgure demonstrates that the grd of the computatonal doman s taken to be (4) Volume 8, Issue VI, JUNE/018 Page No:440

4 ISSN NO : non-unform and also grd s refned near the vcnty where the hgh gradent s expected. A comprehensve grd-ndependence test s carred out to develop an approprate spatal dscretzaton, and the levels of teraton convergence crtera to be used. As a consequence of ths test, we have used non-unform grds for the fnal smulaton. Correspondng tme step taken n the smulaton s seconds. A. Densty dstrbuton 4. Results and Dscussons It s qute obvous that the hgh Mach nflow s the cause of more densty gradent wthn the flow feld. Moreover, t s rather apparent that because of the shock generaton, densty recovery behnd the sharp edge step s also not flawless enough for smooth and sound flud flow. Addtonally, the physcs behnd the densty gradent due to two parallel shocks can smply be understood from the coloured densty feld together wth the correspondng vertcal scale bar, as llustrated n fgure 3. If the flow feld experences densty varaton more than fve present then the flow s consdered to be compressble flow whch may be observed from the densty feld. In other words, the densty feld helps us n understandng whether the flow s compressble or ncompressble nature. Fg 3. Densty feld for flow past backward facng sharp edge step. B. Vortcty dstrbuton Fgure 4 demonstrates the coloured vortcty dstrbuton together wth the correspondng vertcal scale bar, wthn the flow feld. It may be observed that the vortcty ntensty s qute hgh at the expanson fan near the lp of the separaton as well as near the reattachment shock. Owng to vscous layer separaton at the separaton edge, the generaton of lp shock has taken place, n addton, the nteracton of shock and expanson fan has led to the generaton of vortcty. The vortcty generaton s due to sudden change wthn the flow feld. Furthermore, the vortcty generaton becomes predomnant because of the turbulent boundary layer separaton. Fg 4. Vortcty dstrbuton for flow past backward facng sharp edge step. Volume 8, Issue VI, JUNE/018 Page No:441

5 ISSN NO : C. Mach dstrbuton The physcs behnd the Mach number gradent due to two parallel shocks can smply be understood from the coloured Mach number feld together wth the correspondng vertcal scale bar, as llustrated n fgure 5. If the Mach number s more than 0.3 then the flud regon s consdered to be compressble whch may be observed from the Mach number feld. In other words, the Mach number feld helps us n understandng whether the flud regon s compressble or ncompressble nature. However, no such changes or extra specal effect s observed near the upper regon of flow feld. 5. Concluson Fg 5. Mach feld for flow past backward facng sharp edge step. A D numercal model s developed to predct the flud flow behavors over a backward facng sharp edge step wth the hybrd RANS-LES turbulent model whch comprses a vscosty-lke varable (ṽ). The model also ncorporates fundamental terms namely producton, dffuson and destructon n to account. The numercal smulatons are conducted wth nflow free stream Mach number of.5 correspondng to free stream pressure and velocty of N/m and m/s, respectvely. The smulaton results of densty, vortcty and Mach number are wtnessed to be qute consstent and also along the lnes of expectatons wthn the entre flow regme. It s notced that both vortcty ntensty and Mach number are rather hgh at the expanson fan near the lp of the separaton and near the reattachment shock, whle, the flud densty s rather low at the same. In addton, t s also observed that the recrculaton vcnty whch s also otherwse termed as dead ar regon has felt the lowest flud densty, vortcty together wth the Mach number because of non-vscous rotaton. Furthermore, both densty feld as well as Mach number helps us n realzng whether the flud flow s compressble or ncompressble nature. Also, the sudden change wthn the flow feld leads to the vortcty generaton causng the uneven flow behavors. Defntely, the present smulaton predctons wll be very much useful to get more flow performances. Acknowledgments The author would lke to thank the edtor and the revewers for ther noble thoughts, valuable tme together wth contrbutons for gvng nsghtful revews to the artcle. Volume 8, Issue VI, JUNE/018 Page No:44

6 ISSN NO : References [1] Smth, Howard E. The flow feld and heat transfer downstream of a rearward facng step n supersonc flow. No. ARL Aerospace Research Labs, Wrght Patterson AFB, Oho, (1967). [] Launder, B. E., and B. I. Sharma. "Applcaton of the energy-dsspaton model of turbulence to the calculaton of flow near a spnnng dsc." Letters n heat and mass transfer Vol. 1, Issue (1974): [3] Armaly B. F., Durst F., Perera J. C. F., and Schoenung B., Expermental and theoretcal nvestgaton of backward facng step flow, Journal of Flud Mechancs, Vol. 17, pp , (1983). [4] Spalart, Phllpe R., and Steven R. Allmaras. "A one-equaton turbulence model for aerodynamc flows." (199). [5] Anderson, John Davd, and J. F. Wendt. Computatonal flud dynamcs. Vol. 06. New York: McGraw- Hll, (1995). [6] Neumann, Jens, and Hans Wengle. "DNS and LES of passvely controlled turbulent backward-facng step flow." Flow, turbulence and Combuston (003): [7] Hamed, A., K. Das, and D. Basu. "Numercal smulatons of fludc control for transonc cavty flows." AIAA Paper 49, (004). [8] Chen, Zh, et al. "An expermental study on fne structures of supersonc lamnar/turbulent flow over a backward-facng step based on NPLS." Chnese Scence Bulletn, Vol. 57, Issue 6, (01): [9] Lu, Haxu, et al. "Effects of Inflow Mach Number and Step Heght on Supersonc Flows over a Backward-Facng Step." Advances n Mechancal Engneerng (013). [10] V. I. Terekhov, Ya. I. Smul sk, and K. A. Sharov, Expermental study of the separated flow structure behnd a backward-facng step and a passve dsturbance, Journal of Appled Mechancs and Techncal Physcs, Volume 57, Issue 1, (016) pp Volume 8, Issue VI, JUNE/018 Page No:443

Numerical Studies on Supersonic Turbulent Flow over a Backward Facing Sharp Edge Step Using Hybrid RANS-LES

Numerical Studies on Supersonic Turbulent Flow over a Backward Facing Sharp Edge Step Using Hybrid RANS-LES www.eter.everscence.org Numercal Studes on Supersonc Turbulent Flow over a Bacward Facng Sharp Edge Step Usng Hybrd RANS-LES Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng,

More information

NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP

NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP NUMERICAL INVESTIGATIONS WITH MODEL COMPARISONS ON FLUID FLOW OVER BACKWARD FACING SHARP EDGE STEP Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer Surendra Sa Unversty of

More information

Numerical Modelling for Investigations of Lip Shock Relating to Fluid Flow over a Backward Facing Rounded Step by Using Hybrid RANS-LES

Numerical Modelling for Investigations of Lip Shock Relating to Fluid Flow over a Backward Facing Rounded Step by Using Hybrid RANS-LES www.eter.everscence.org Numercal Modellng for Investgatons of Lp Shock Relatng to Flud Flow over a Backward Facng Rounded Step by Usng Hybrd RANS-LES Dr. Nrmal Kumar Kund Assocate Professor, Department

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER.

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. Campregher, Rubens Faculty of Mechancal Engneerng, FEMEC Federal Unversty of Uberlânda, UFU 38400-902 Uberlânda - Brazl campregher@mecanca.ufu.br

More information

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

Numerical Modelling and Experimental Validation of a Turbulent Separated Reattached Flow

Numerical Modelling and Experimental Validation of a Turbulent Separated Reattached Flow Numercal Modellng and Expermental Valdaton of a Turbulent Separated Reattached Flow Florn Popescu, Tănase Panat Abstract An expermental study was conducted to analyse the feld velocty of a fully developed

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Simulation of Flow Pattern in Open Channels with Sudden Expansions

Simulation of Flow Pattern in Open Channels with Sudden Expansions Research Journal of Appled Scences, Engneerng and Technology 4(19): 3852-3857, 2012 ISSN: 2040-7467 Maxwell Scentfc Organzaton, 2012 Submtted: May 11, 2012 Accepted: June 01, 2012 Publshed: October 01,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD)

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) Auwal Dodo*, Valente Hernandez-Perez, Je Zhu and Saffa Rffat Faculty of Engneerng,

More information

A STUDY ON THE PHYSICS OF SUPERSONIC MIXING FIELD WITH INJECTION AT DIFFERENT ANGLES

A STUDY ON THE PHYSICS OF SUPERSONIC MIXING FIELD WITH INJECTION AT DIFFERENT ANGLES Proceedngs of the Internatonal Conference on Mechancal Engneerng 23 (ICME23) 26-28 December 23 Dhaka Bangladesh ICME3-FL-18 A STUDY ON THE PHYSICS OF SUPERSONIC MIXING FIELD WITH INJECTION AT DIFFERENT

More information

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD)

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD) Calculaton of Aerodynamc Characterstcs of NACA 2415, 23012, 23015 Arfols Usng Computatonal Flud Dynamcs (CFD) Hmanshu Parashar Abstract A method of solvng the flow over arfols of Natonal Advsory Commttee

More information

Numerical Simulation on Supersonic Turbulent Flow past Backward Facing Rounded Step Utilizing Hybrid RANS-LES

Numerical Simulation on Supersonic Turbulent Flow past Backward Facing Rounded Step Utilizing Hybrid RANS-LES Numercal Smulaon on Supersonc Turbulen Flow pas Backward Facng Rounded Sep Ulzng Hybrd RANS-LES Absrac Dr. Nrmal Kumar Kund Assocae Professor, Deparmen of Producon Engneerng Veer Surendra Sa Unversy of

More information

Research & Reviews: Journal of Engineering and Technology

Research & Reviews: Journal of Engineering and Technology Research & Revews: Journal of Engneerng and Technology Case Study to Smulate Convectve Flows and Heat Transfer n Arcondtoned Spaces Hussen JA 1 *, Mazlan AW 1 and Hasanen MH 2 1 Department of Mechancal

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS

NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS ISSN: 345-3109 RCEE Research n Cvl and Envronmental Engneerng www.rcee.com Research n Cvl and Envronmental Engneerng 014 (04) 190-198 NUMERICAL SIMULATION OF FLOW OVER STEPPED SPILLWAYS Rasoul Daneshfaraz

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model

IC Engine Flow Simulation using KIVA code and A Modified Reynolds Stress Turbulence Model IC Engne Flow Smulaton usng KIVA code and A Modfed Reynolds Stress Turbulence Model Satpreet Nanda and S.L. Yang Mechancal Engneerng-Engneerng Mechancs Department Mchgan Technologcal Unversty Houghton,

More information

Numerical Analysis of Heat Transfer and Pressure Drop in a Channel Equipped with Triangular Bodies in Side-By-Side Arrangement

Numerical Analysis of Heat Transfer and Pressure Drop in a Channel Equipped with Triangular Bodies in Side-By-Side Arrangement mercal Analyss of Heat Transfer and Pressure Drop n a Channel Equpped wth Trangular Bodes n Sde-By-Sde Arrangement E. Manay Department of Mechancal Engneerng, Faculty of Engneerng, Bayburt Unversty, Bayburt,

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

A Comparative Investigation into Aerodynamic Performances of Two Set Finned Bodies with Circular and Non Circular Cross Sections

A Comparative Investigation into Aerodynamic Performances of Two Set Finned Bodies with Circular and Non Circular Cross Sections A Comparatve Investgaton nto Aerodynamc Performances of Two Set Fnned Bodes wth Crcular and Non Crcular Cross Sectons MAHMOUD MANI and SHADI MAHJOOB Aerospace Engneerng Department Amrkabr Unversty of Technology

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD

Energy configuration optimization of submerged propeller in oxidation ditch based on CFD IOP Conference Seres: Earth and Envronmental Scence Energy confguraton optmzaton of submerged propeller n oxdaton dtch based on CFD To cte ths artcle: S Y Wu et al 01 IOP Conf. Ser.: Earth Envron. Sc.

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Turbulence and its Modelling

Turbulence and its Modelling School of Mechancal Aerospace and Cvl Engneerng 3rd Year Flud Mechancs Introducton In earler lectures we have consdered how flow nstabltes develop, and noted that above some crtcal Reynolds number flows

More information

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics

Turbulent Flow in Curved Square Duct: Prediction of Fluid flow and Heat transfer Characteristics Internatonal Research Journal of Engneerng and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 7 July -217 www.ret.net p-issn: 2395-72 Turbulent Flow n Curved Square Duct: Predcton of Flud flow and

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves A. Ozdomar, K. Turgut Gursel, Y. Pekbey, B. Celkag / Internatonal Energy Journal 8 (2007) An Expermental and Numercal Study on Pressure Drop Coeffcent of Ball Valves www.serd.at.ac.th/rerc A. Ozdamar*

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Numerical Studies on Lip Shock Flow Behaviors over Backward Facing Sharp Edge Step with Hybrid RANS-LES

Numerical Studies on Lip Shock Flow Behaviors over Backward Facing Sharp Edge Step with Hybrid RANS-LES Numercal Sudes on Lp Shock Flow Behavors over Backward Facng Sharp Edge Sep wh Hybrd RANS-LES Dr. Nrmal Kumar Kund 1 1 Deparmen of Producon Engneerng 1 Veer Surendra Sa Unversy of Technology, Burla, Odsha,

More information

CONTROLLED FLOW SIMULATION USING SPH METHOD

CONTROLLED FLOW SIMULATION USING SPH METHOD HERI COADA AIR FORCE ACADEMY ROMAIA ITERATIOAL COFERECE of SCIETIFIC PAPER AFASES 01 Brasov, 4-6 May 01 GEERAL M.R. STEFAIK ARMED FORCES ACADEMY SLOVAK REPUBLIC COTROLLED FLOW SIMULATIO USIG SPH METHOD

More information

TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR

TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR Nnth Internatonal Conference on Computatonal Flud Dynamcs (ICCFD9), Istanbul, Turkey, July -5, ICCFD9-xxxx TURBULENT WALL JET OVER A FORWARD-BACKWARD FACING STEP PAIR Kabache Malka & Mataou Amna Unversty

More information

Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump

Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump IOP Conference Seres: Earth and Envronmental Scence Smulaton and experment of the effect of clearance of mpeller wear-rngs on the performance of centrfugal pump To cte ths artcle: S X Chen et al 01 IOP

More information

Simulation Study on Characteristics of the Vortex Structure in Human Mouth-throat Model in Cyclic Respiratory Pattern

Simulation Study on Characteristics of the Vortex Structure in Human Mouth-throat Model in Cyclic Respiratory Pattern Avalable onlne at www.scencedrect.com Energy Proceda 17 (2012 ) 1786 1792 2012 Internatonal Conference on Future Electrcal Power and Energy Systems Smulaton Study on Characterstcs of the Vortex Structure

More information

Navier-Stokes Characteristic Boundary Conditions. for Simulations of Some Typical Flows

Navier-Stokes Characteristic Boundary Conditions. for Simulations of Some Typical Flows Appled Mathematcal Scences, Vol. 4, 00, no. 8, 879-893 Naver-Stokes Characterstc Boundary Condtons for Smulatons of Some Typcal Flows Chen Ln and Tang Dengbn Nanjng Unversty of Aeronautcs and Astronautcs

More information

2 MODELS A typcal hgh-sded artculated lorry, whch was nvestgated extensvely by Baker and hs colleagues n wnd tunnels and later used n the dynamc analy

2 MODELS A typcal hgh-sded artculated lorry, whch was nvestgated extensvely by Baker and hs colleagues n wnd tunnels and later used n the dynamc analy The Seventh Internatonal Colloquum on Bluff Body Aerodynamcs and Applcatons (BBAA7) Shangha, Chna; September 2-6, 2012 Determnaton of aerodynamc characterstcs of a vehcle mmerged n the wake of brdge tower

More information

Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics Introducton to Computatonal Flud Dynamcs M. Zanub 1, T. Mahalakshm 2 1 (PG MATHS), Department of Mathematcs, St. Josephs College of Arts and Scence for Women-Hosur, Peryar Unversty 2 Assstance professor,

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL

CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL CFD VALIDATION OF STRATIFIED TWO-PHASE FLOWS IN A HORIZONTAL CHANNEL 1. Introducton Chrstophe Vallée and Thomas Höhne In dfferent scenaros of small break Loss of Coolant Accdent (SB-LOCA), stratfed twophase

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Lecture 12. Modeling of Turbulent Combustion

Lecture 12. Modeling of Turbulent Combustion Lecture 12. Modelng of Turbulent Combuston X.S. Ba Modelng of TC Content drect numercal smulaton (DNS) Statstcal approach (RANS) Modelng of turbulent non-premxed flames Modelng of turbulent premxed flames

More information

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models Handout: Large Eddy mulaton I 058:68 Turbulent flows G. Constantnescu Introducton to ubgrd-cale (G) Models G tresses should depend on: Local large-scale feld or Past hstory of local flud (va PDE) Not all

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

Effect of Different Near-Wall Treatments on Indoor Airflow Simulations

Effect of Different Near-Wall Treatments on Indoor Airflow Simulations Journal of Appled Flud Mechancs, Vol. 5, No. 4, pp. 63-70, 2012. Avalable onlne at www.jafmonlne.net, ISSN 1735-3572, EISSN 1735-3645. Effect of Dfferent Near-Wall Treatments on Indoor Arflow Smulatons

More information

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA Analyss of Unsteady Aerodynamcs of a Car Model wth Radator n Dynamc Ptchng Moton usng LS-DYNA Yusuke Nakae 1, Jro Takamtsu 1, Hrosh Tanaka 1, Tsuyosh Yasuk 1 1 Toyota Motor Corporaton 1 Introducton Recently,

More information

Survey of applications of discrete vortex method in civil engineering

Survey of applications of discrete vortex method in civil engineering Budownctwo Archtektura 5 (2009) 29-38 Survey of applcatons of dscrete vortex method n cvl engneerng Tomasz Nowck Lubln Unversty of Technology, Faculty of Cvl Engneerng and Archtecture, Department of Structural

More information

A numerical study on the shell-side turbulent heat transfer enhancement of shell-and-tube heat exchanger with trefoilhole

A numerical study on the shell-side turbulent heat transfer enhancement of shell-and-tube heat exchanger with trefoilhole Avalable onlne at www.scencedrect.com ScenceDrect Energy Proceda 75 (2015 ) 3174 3179 The 7 th Internatonal Conference on Appled Energy ICAE2015 A numercal study on the shell-sde turbulent heat transfer

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD

SIMULATION OF WAVE PROPAGATION IN AN HETEROGENEOUS ELASTIC ROD SIMUATION OF WAVE POPAGATION IN AN HETEOGENEOUS EASTIC OD ogéro M Saldanha da Gama Unversdade do Estado do o de Janero ua Sào Francsco Xaver 54, sala 5 A 559-9, o de Janero, Brasl e-mal: rsgama@domancombr

More information

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model Study of transonc separated flows wth zonal-des based on weakly non-lnear turbulence model Xao Z.X, Fu S., Chen H.X, Zhang Y.F and Huang J.B. Department of Engneerng Mechancs, Tsnghua Unversty, Bejng,

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability: . Why turbulence occur? Hydrodynamc Instablty Hydrodynamc Instablty T Centrfugal Instablty: Ω Raylegh-Benard Instablty: Drvng force: centrfugal force Drvng force: buoyancy flud Dampng force: vscous dsspaton

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Turbulent Heat Transfer Modelling in a Vessel Stirred by a Pitched Blade Turbine Impeller

Turbulent Heat Transfer Modelling in a Vessel Stirred by a Pitched Blade Turbine Impeller Turbulent Heat Transfer Modellng n a Vessel Strred by a Ptched Blade Turbne Impeller BARBARA ZAKRZEWSKA, ZDZISŁAW JAWORSKI Chemcal Engneerng Faculty Szczecn Unversty of Technology Al. Pastó 42, 70-065

More information

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES Manuel J. C. Mnhoto Polytechnc Insttute of Bragança, Bragança, Portugal E-mal: mnhoto@pb.pt Paulo A. A. Perera and Jorge

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

COMPUTATIONAL STUDY OF SUPERSONIC FLOW THROUGH A CONVERGING DIVERGING NOZZLE

COMPUTATIONAL STUDY OF SUPERSONIC FLOW THROUGH A CONVERGING DIVERGING NOZZLE Engneerng e-transacton (ISSN 183-6379) Vol. 6, No. 1, June 011, pp 37-4 Onlne at http://eum.fsktm.um.edu.my Receved 5 October, 010; Accepted 30 December, 010 COMPUTATIONAL STUDY OF SUPERSONIC FLOW THROUGH

More information

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST Appled Computer Scence, vol. 13, no. 4, pp. 56 64 do: 10.23743/acs-2017-29 Submtted: 2017-10-30 Revsed: 2017-11-15 Accepted: 2017-12-06 Abaqus Fnte Elements, Plane Stress, Orthotropc Materal Bartosz KAWECKI

More information

Note 10. Modeling and Simulation of Dynamic Systems

Note 10. Modeling and Simulation of Dynamic Systems Lecture Notes of ME 475: Introducton to Mechatroncs Note 0 Modelng and Smulaton of Dynamc Systems Department of Mechancal Engneerng, Unversty Of Saskatchewan, 57 Campus Drve, Saskatoon, SK S7N 5A9, Canada

More information

Pressure Measurements Laboratory

Pressure Measurements Laboratory Lab # Pressure Measurements Laboratory Objectves:. To get hands-on experences on how to make pressure (surface pressure, statc pressure and total pressure nsde flow) measurements usng conventonal pressuremeasurng

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

En Route Traffic Optimization to Reduce Environmental Impact

En Route Traffic Optimization to Reduce Environmental Impact En Route Traffc Optmzaton to Reduce Envronmental Impact John-Paul Clarke Assocate Professor of Aerospace Engneerng Drector of the Ar Transportaton Laboratory Georga Insttute of Technology Outlne 1. Introducton

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface

Lattice Boltzmann simulation of nucleate boiling in micro-pillar structured surface Proceedngs of the Asan Conference on Thermal Scences 017, 1st ACTS March 6-30, 017, Jeju Island, Korea ACTS-P00545 Lattce Boltzmann smulaton of nucleate bolng n mcro-pllar structured surface Png Zhou,

More information

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features Analyss of the Magnetomotve Force of a Three-Phase Wndng wth Concentrated Cols and Dfferent Symmetry Features Deter Gerlng Unversty of Federal Defense Munch, Neubberg, 85579, Germany Emal: Deter.Gerlng@unbw.de

More information

Numerical Investigation of Electroosmotic Flow. in Convergent/Divergent Micronozzle

Numerical Investigation of Electroosmotic Flow. in Convergent/Divergent Micronozzle Appled Mathematcal Scences, Vol. 5, 2011, no. 27, 1317-1323 Numercal Investgaton of Electroosmotc Flow n Convergent/Dvergent Mcronozzle V. Gnanaraj, V. Mohan, B. Vellakannan Thagarajar College of Engneerng

More information

Design optimization of a high specific speed Francis turbine runner

Design optimization of a high specific speed Francis turbine runner IOP Conference Seres: Earth and Envronmental Scence Desgn optmzaton of a hgh specfc speed Francs turbne runner To cte ths artcle: Y Enomoto et al 2012 IOP Conf. Ser.: Earth Envron. Sc. 15 032010 Vew the

More information

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon Computatonal nvestgaton of the external exctaton frequency effect on lqud sloshng phenomenon Abdallah Bouabd *, Zed Drss, Laboratory of Electro-Mechanc Systems (LASEM) Natonal School of Engneers of Sfax

More information

Heat Transfer and Turbulent Nanofluid Flow over a Double Forward- Facing Step

Heat Transfer and Turbulent Nanofluid Flow over a Double Forward- Facing Step Amercan Internatonal Journal of Research n Scence, Technology, Engneerng & Mathematcs Avalable onlne at http://www.asr.net ISSN (Prnt): 2328-3491, ISSN (Onlne): 2328-358, ISSN (CD-ROM): 2328-3629 AIJRSTEM

More information

Operating conditions of a mine fan under conditions of variable resistance

Operating conditions of a mine fan under conditions of variable resistance Paper No. 11 ISMS 216 Operatng condtons of a mne fan under condtons of varable resstance Zhang Ynghua a, Chen L a, b, Huang Zhan a, *, Gao Yukun a a State Key Laboratory of Hgh-Effcent Mnng and Safety

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov. Turbulence Lecture 1 Non-lnear Dynamcs Strong non-lnearty s a key feature of turbulence. 1. Unstable, chaotc behavor.. Strongly vortcal (vortex stretchng) 3 s & 4 s Taylor s work on homogeneous turbulence

More information

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1955-1962 1955 NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD Introducton by Tomok IZUMI a* and

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

A Comparative Study of Numerical Schemes and Turbulence Models for Wind Turbine Aerodynamics Modelling

A Comparative Study of Numerical Schemes and Turbulence Models for Wind Turbine Aerodynamics Modelling WIND ENGINEERING VOLUME 8, NO., 4 PP 75 9 75 A Comparatve Study of Numercal Schemes and Turbulence Models for Wnd Turbne Aerodynamcs Modellng Catherne A. Baxevanou and Ncolas S. Vlachos Department of Mechancal

More information

Power law and dimension of the maximum value for belief distribution with the max Deng entropy

Power law and dimension of the maximum value for belief distribution with the max Deng entropy Power law and dmenson of the maxmum value for belef dstrbuton wth the max Deng entropy Bngy Kang a, a College of Informaton Engneerng, Northwest A&F Unversty, Yanglng, Shaanx, 712100, Chna. Abstract Deng

More information

Numerical Study of Propane-Air Mixture Combustion in a Burner Element

Numerical Study of Propane-Air Mixture Combustion in a Burner Element Defect and Dffuson Forum Vols. 73-76 (8 pp 144-149 onlne at http://www.scentfc.net (8 Trans Tech Publcatons, Swtzerland Onlne avalable snce 8/Feb/11 Numercal Study of Propane-Ar Mxture Combuston n a Burner

More information

NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE

NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE Mohammed Abdulwahhab Abdulwahd Research Scholar, Department of Marne Engneerng, Andhra Unversty,

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numercal models for unsteady flow n ppe dvdng systems R. Klasnc," H. Knoblauch," R. Mader* ^ Department of Hydraulc Structures and Water Resources Management, Graz Unversty of Technology, A-8010, Graz,

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump Proceedngs of the rd Internatonal Conference on Vortex Flows and Vortex Models (ICVFM005) Yokohama, JAPAN, November 1 -, 005 Wall Pressure Fluctuatons and Flow Induced Nose n a Turbulent Boundary Layer

More information

3-D Numerical computations of turbulence in a partially vegetated shallow channel

3-D Numerical computations of turbulence in a partially vegetated shallow channel Rver Flow 010 - Dttrch, Koll, Aberle & Gesenhaner (eds) - 010 Bundesanstalt für Wasserbau ISBN 978-3-93930-00-7 3-D Numercal computatons of turbulence n a partally vegetated shallow channel D. Soulots

More information

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE PROCEEDINGS, Thrty-Ffth Workshop on Geothermal Reservor Engneerng Stanford Unversty, Stanford, Calforna, February 1-3, 010 SGP-TR-188 GeoSteamNet:. STEAM FLOW SIMULATION IN A PIPELINE Mahendra P. Verma

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information