1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave

Size: px
Start display at page:

Download "1-Dimensional Advection-Diffusion Finite Difference Model Due to a Flow under Propagating Solitary Wave"

Transcription

1 014 4th Internatonal Conference on Future nvronment and nergy IPCB vol.61 (014) (014) IACSIT Press, Sngapore I: /IPCB V mensonal Advecton-ffuson Fnte fference Model ue to a Flow under Propagatng Soltary Wave Muhammad A. Fauz 1 and Fauz A. Zaky 1 epartment of ceanography, Faculty of arth Scence and Technology, Bandung Insttute of Technology, Indonesa epartment of ceagneerng, Faculty of Cvl and nvronmental ngneerng, Bandung Insttute of Technology, Indonesa Abstract. Advecton dffuson phenomena has been commonly observed n coastal areas. ur am s to nvestgate the soltary wave effect to advecton dffuson of a substance n a near shore shallow water wth an open channel. Consderng that the model s an open channel, one dmensonal approach s appled. The model soluton s obtaned by combnng Korteweg e Vres (KdV) equaton wth advecton dffuson equaton. The KdV equaton s numercally solved usng sem-mplct Crank-Ncolson scheme whle the advecton dffuson equaton s numercally solved by usng an upwnd Forward Tme Central Space (FTCS) scheme. The results show that there s a rapd dsperson of the substance when the soltary wave comes nto contact wth the source Keywords: advecton-dffuson, soltary wave, fnte dfference method. 1. Introducton Transport and dsperson phenomena whch are descrbed by advecton-dffuson equaton have been common problems and observed n a wde range of ndustral and engneerng applcatons [1]. Somehow, t s mportant to nvestgate the advecton-dffuson process of a contamnant especally near shore. Many contamnants from ndustral actvty end up at the coastal zone. Ths advecton-dffuson phenomena also plays an mportant role n keepng the balance of the coastal envronment such as n heat exchange and salnty transport phenomena. P N Flow recto Land and Coastal Area P N C A Sourc Land and Coastal Area C A Fg. 1: Sketch of the open channel In ths paper, our am s to nvestgate advecton-dffuson process of a substance near shore due to a flow under a propagatng soltary wave. We consder a smple case of advecton-dffuson phenomena n 1 dmensonal doman such as n an open channel where the soltary wave enters from the open ocean. 5

2 The model s obtaned by solvng 1 dmensonal Korteweg e-vres (KdV) and 1 dmensonal advecton-dffuson equaton wth the help of fnte dfference method. In ths study, the soltary wave s used because t s been proven by Munk [] that a soltary wave theory gves a better approxmaton for near shore wave than lnear wave theory. ne dmensonal KdV equaton for an even bottom read as [] C 0 (1) C 1 Ch where C gh, and wth h s the water depth, g s the gravtatonal acceleraton h 6 and s the surface elevaton. ne dmensonal advecton-dffuson equaton can be expressed as F F F u A () where F descrbes the concentraton of a substance, u u, t represents velocty of a flud flow as a functon of space and tme and A s the dffusvty constant. quaton (1) and () wll be solved by usng fnte dfference to produce 1 dmensonal advectondffuson numercal model.. Numercal Method.1. Soltary Wave model From KdV quaton The KdV equaton (1) wll be solved by usng Crank-Ncolson scheme. By followng [4], the fnal form of equaton (1) after the dscretzaton s read as b b1 a0 a1 a d () where the left sde coeffcents are n 6 a0 C n 4 a1 1 C 1 n 4 b1 1 C 1 a b and the rght sde coeffcent s descrbed as C n n 4 6 d 4 quaton () s then solved by Gaussan lmnaton method consderng that the model doman s small enough so t doesn t need much computatonal tme. Intal condton for (1) s a,0 asec h k x0, where k 4h wth x 0 s the ntal peak poston and a s the wave ampltude where the wave propagates from left to rght. For the rght boundary condton, an extrapolaton boundary s appled to make the wave travels wthout reflecton at the boundary... Soltary Wave Test For the soltary wave test, consder a wave flume wth 90 m length and wth a constant depth 1 m. We choose wave ampltude 0. m, m and s wth wave peak poston ( x 0 ) at m from left boundary wth smulaton tme 5 s. The comparson betweeumercal and analytcal s provded n Fg. (a) where both of them are almost perfectly concded along ts propagaton. 6

3 (a) (b) Fg. : Comparson betweeumercal model (sold lne) and analytcal soluton (dashed lne) for varous t (a) and relatve ampltude as the wave travels (b) It can be seen from Fg. (b) that there s almost no ncrease or decrease n the ampltude as the wave propagates. Wth a 0. 0 m where a s the numercal ampltude whch s fluctuatng along the propagaton. The sgnfcant error occurs only at t = 5 s, see Fg. (a) when the wave reaches the rght boundary. But overall, the numercal model s n good agreement wth the analytcal soluton and the rght sde extrapolaton boundary gves a good result wthout any reflecton... Coupled KdV and Advecton-ffuson Model An upwnd dscretzaton for the advecton term accordng to [5] and FTCS dscretzaton for the dffusve term n equaton () s where u u n F F 0.5 F F F F F n F F 0.5 and (4) A wth u s obtaned from the soltary wave model by usng the lnear wave theory relaton whch s wrtten as u, t, t g / h. Fg. : Plot of concentraton aganst tme at pont x = 9.85 for explct upwnd, mplct upwnd, FTCS, and CTCS method We also compare the method above wth another method such as mplct upwnd, FTCS, and CTCS for a pure advecton process wth unform velocty 0.1 m/s whch starts at t = 0 (Fg. ). The result shows that the mplct and explct upwnd gves a better approxmaton than the FTCS and CTCS method. It s seen that both FTCS and CTCS methods resultng a negatve concentraton whch s mpossble to happen. A tme 7

4 lag s also exsts n FTCS and CTCS scheme at early smulaton tme where the concentraton s stll mg/l although the flow s already exst (the flow s already exst at t = 0 as mentoned before). Although the mplct upwnd method s really stable [5], we choose the explct upwnd method rather than mplct upwnd method because the explct method produces a shorter computatonal tme. As long as the model parameter satsfy the stablty crteron, the result wll be almost perfectly concded wth the mplct method (see Fg. ). The coupled model uses the same wave set up as the frst soltary wave test wth same space and tme resoluton ( x, t ) but wth length of channel 75 m and smulaton tme 1 s. There are two scenaros smulated by ths coupled model. The frst scenaro consders only the advecton process and the second scenaro consders both of advecton and dffuson process wth A 10 m / s (we take a small dffuson constant to keep the advecton process vsble). Both scenaro use an ntal condton F 0 mg/l at x wth nsulated boundary condtons at both sdes. We assume that there s no dsperson to the open ocean at the boundary.. Results For the tme seres plot, we show only the source pont tme seres at x = 9.85 m. From the frst scenaro, t can be seen from Fg. 4 (a) that a rapd decrease happens at a tme nterval between 5 s 8 s. It s confrmed by the tme seres plot (see Fg. 4 (b)) that the rapd decrease begns at around t = 5 s to t = 8 s when the flow reaches the source pont. Ths rapd decrease at the source pont s also ndcatng that a rapd dsperson occurs (because the concentraton s conserved). It can also be seen that before the flow reaches the source pont (before t = 5 s), there s no decrease n concentraton at ths pont. After t = 8 s, the concentraton doesn t decrease anymore although the flow stll exsts at the source pont (Fg. 4 b). It happens because the concentraton has already dspersed rapdly to the rght sde at nterval 5 s to 8 s. It makes the concentraton at the source pont s almost 0 mg/l at t = 8 s. It can be seen from Fg. 4 (a) that the peak poston has moved nto a pont between 0 m 0.5 m wth the concentraton at the source poston s almost 0 mg/l at t = 8 s (black sold lne). Fg. 4: Plot of concentraton (a) aganst length of channel for varous t (a) and plot of concentraton (b) (upper) and velocty (lower) aganst tme at pont x = 9.85 (b) for the 1 st scenaro For the second scenaro, t can be seen from Fg. 5 (a) that before t = 7 s the dffuson s more domnant than the advecton. Although f we see carefully at t = 7 s, a small advecton process has already begun. It s ndcated by the wdenng of the sold red lne curve to the rght at ts lower regon. It s also confrmed by Fg. 5 (b) where the flow begns to reach the source pont at around t = 6 s. It means the advecton process s startng to occur at t > 6 s. But at those nterval, the flow velocty s stll small enough so the dffuson phenomena s stll domnatng. After t > 6.5 s, the advecton process domnates the dsperson whch almost has the same trend as the frst scenaro, see Fg. 5 (b) and Fg. 4 (b). And we can also see that after t = 8 s the concentraton decrement s approachng zero although the flow stll exsts. It s caused by the smlar reason as the frst scenaro that at t > 8 s, the concentraton at x = 9.85 m s almost 0 mg/l whch s ndcated by sold black lne n Fg. 5 (a). 8

5 We have to nvolve the water partcle movement to explan ths rapd dsperson. Unlke the lnear shallow water theory, the water partcle movement under a propagatng soltary wave doesn t make a horzontal oscllatng translatonal movement, see [6]. It makes a moton that followng the drecton of the wave propagaton. So t makes the contamnated water partcles always move followng the drecton of the wave propagaton and dssemnate the partcle of the substance to the rght contnuously. 4. Conclusons ne mensonal advecton-dffuson model s used to smulate how fast a substance s dspersed nto ts envronment n an open channel caused by a flow under soltary wave. Wth a small dffuson coeffcent, t can be seen from the model that the advecton holds a bg role n dspersng the substance rapdly. The water partcle movements under a propagatng soltary wave s a key n explanng the rapd dsperson of a substance. 5. Acknowledgements We would lke to thank to L. H. Wryanto for a very valuable dscussons about KdV model and also to Mutara R. Putr for gvng oceanographc modellng lectures. 6. References (a) Fg. 5: Plot of concentraton aganst length of channel for varous t (a) and plot of concentraton (upper) and velocty (lower) aganst tme at pont x = 9.85 (b) for the nd scenaro [1] Sngh, KM, Tanakan M. n exponental varable transformaton based boundary element formulaton for advecton-dffuson problems, ng. Anal Bound lem, 000; 4:5-5 [] Munk, W. H. A Soltary Wave Theory and Its Applcaton for Surf Problems. Annals of the New York Academy of Scences, 1949, 51, cean Surface Waves. [] ngemans, M.W. Water Wave Propagaton over Uneven Bottoms. World Scentfc, Publshng Co. Pte. Ltd. [4] Wryanto, L.H., Warsoma johan. Metoda Beda Hngga pada Persamaan KdV Gelombang Interface, Jurnal Matematka, Vol. 9, [5] Kowalk, Z., T.S. Murty. Numercal Modelng of cean ynamcs, World Scentfc Publshng Co. Pte. Ltd [6] Borluk, H, Henrk Kalsch. Partcle dynamcs n the KdV approxmaton, Wave Moton 49 (01) (b) 9

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Numerical Solution of Boussinesq Equations as a Model of Interfacial-wave Propagation

Numerical Solution of Boussinesq Equations as a Model of Interfacial-wave Propagation BULLETIN of the Malaysan Mathematcal Scences Socety http://math.usm.my/bulletn Bull. Malays. Math. Sc. Soc. (2) 28(2) (2005), 163 172 Numercal Soluton of Boussnesq Equatons as a Model of Interfacal-wave

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

NUMERICAL MODELLING OF TSUNAMI WAVE EQUATIONS MASTER OF SCIENCE IN MATHEMATICS

NUMERICAL MODELLING OF TSUNAMI WAVE EQUATIONS MASTER OF SCIENCE IN MATHEMATICS NUMERICAL MODELLING OF TSUNAMI WAVE EQUATIONS A thess submtted n partal fulfllment of the requrements for the award of the degree of MASTER OF SCIENCE IN MATHEMATICS submtted by HARI SHANKAR SHAW Roll

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Numerical Simulation of Wave Propagation Using the Shallow Water Equations

Numerical Simulation of Wave Propagation Using the Shallow Water Equations umercal Smulaton of Wave Propagaton Usng the Shallow Water Equatons Junbo Par Harve udd College 6th Aprl 007 Abstract The shallow water equatons SWE were used to model water wave propagaton n one dmenson

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm J Comput Electron (213) 12:752 756 DOI 1.17/s1825-13-479-2 A constant recursve convoluton technque for frequency dependent scalar wave equaton bed FDTD algorthm M. Burak Özakın Serkan Aksoy Publshed onlne:

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R.

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

A NUMERICAL COMPARISON OF LANGRANGE AND KANE S METHODS OF AN ARM SEGMENT

A NUMERICAL COMPARISON OF LANGRANGE AND KANE S METHODS OF AN ARM SEGMENT Internatonal Conference Mathematcal and Computatonal ology 0 Internatonal Journal of Modern Physcs: Conference Seres Vol. 9 0 68 75 World Scentfc Publshng Company DOI: 0.4/S009450059 A NUMERICAL COMPARISON

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Optimal Control of Temperature in Fluid Flow

Optimal Control of Temperature in Fluid Flow Kawahara Lab. 5 March. 27 Optmal Control of Temperature n Flud Flow Dasuke YAMAZAKI Department of Cvl Engneerng, Chuo Unversty Kasuga -3-27, Bunkyou-ku, Tokyo 2-855, Japan E-mal : d33422@educ.kc.chuo-u.ac.jp

More information

ANALYSIS OF ELECTROMAGNETIC FIELD USING THE CONSTRAINED INTERPOLATION PROFILE METHOD PHÂN TÍCH TRƯỜNG ĐIỆN TỪ SỬ DỤNG PHƯƠNG PHÁP CIP

ANALYSIS OF ELECTROMAGNETIC FIELD USING THE CONSTRAINED INTERPOLATION PROFILE METHOD PHÂN TÍCH TRƯỜNG ĐIỆN TỪ SỬ DỤNG PHƯƠNG PHÁP CIP ANALYSIS OF ELECTROMAGNETIC FIELD USING THE CONSTRAINED INTERPOLATION PROFILE METHOD PHÂN TÍCH TRƯỜNG ĐIỆN TỪ SỬ DỤNG PHƯƠNG PHÁP CIP LÊ VŨ HƯNG Cao đẳng kỹ thuật quốc ga Kushro, Nhật Bản Kushro Natonal

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Effect of loading frequency on the settlement of granular layer

Effect of loading frequency on the settlement of granular layer Effect of loadng frequency on the settlement of granular layer Akko KONO Ralway Techncal Research Insttute, Japan Takash Matsushma Tsukuba Unversty, Japan ABSTRACT: Cyclc loadng tests were performed both

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations Appled Mathematcs Volume 22, Artcle ID 4587, 8 pages do:.55/22/4587 Research Artcle Cubc B-Splne Collocaton Method for One-Dmensonal Heat and Advecton-Dffuson Equatons Joan Goh, Ahmad Abd. Majd, and Ahmad

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Grid Generation around a Cylinder by Complex Potential Functions

Grid Generation around a Cylinder by Complex Potential Functions Research Journal of Appled Scences, Engneerng and Technolog 4(): 53-535, 0 ISSN: 040-7467 Mawell Scentfc Organzaton, 0 Submtted: December 0, 0 Accepted: Januar, 0 Publshed: June 0, 0 Grd Generaton around

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W] Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIX, 013, f.1 DOI: 10.478/v10157-01-00-y ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION BY ION

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method

Research Article A Multilevel Finite Difference Scheme for One-Dimensional Burgers Equation Derived from the Lattice Boltzmann Method Appled Mathematcs Volume 01, Artcle ID 9590, 13 pages do:10.1155/01/9590 Research Artcle A Multlevel Fnte Dfference Scheme for One-Dmensonal Burgers Equaton Derved from the Lattce Boltzmann Method Qaoe

More information

APPROXIMATE ANALYSIS OF RIGID PLATE LOADING ON ELASTIC MULTI-LAYERED SYSTEMS

APPROXIMATE ANALYSIS OF RIGID PLATE LOADING ON ELASTIC MULTI-LAYERED SYSTEMS 6th ICPT, Sapporo, Japan, July 008 APPROXIMATE ANALYSIS OF RIGID PLATE LOADING ON ELASTIC MULTI-LAYERED SYSTEMS James MAINA Prncpal Researcher, Transport and Infrastructure Engneerng, CSIR Bult Envronment

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

A Particle Dispersion Model For Analysis Of Two- Dimensional Mixing In Open Channels

A Particle Dispersion Model For Analysis Of Two- Dimensional Mixing In Open Channels Cty Unversty of New Yor (CUNY) CUNY Academc Wors Internatonal Conference on Hydronformatcs 8-1-2014 A Partcle Dsperson Model For Analyss Of Two- Dmensonal Mxng In Open Channels Il Won Seo In Hwan Par Follow

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component Study on Non-Lnear Dynamc Characterstc of Vehcle Suspenson Rubber Component Zhan Wenzhang Ln Y Sh GuobaoJln Unversty of TechnologyChangchun, Chna Wang Lgong (MDI, Chna [Abstract] The dynamc characterstc

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES. Kei Yamashita 1 and Taro Kakinuma 2

PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES. Kei Yamashita 1 and Taro Kakinuma 2 PROPERTIES OF SURFACE AND INTERNAL SOLITARY WAVES Ke Yamashta and Taro Kaknuma Numercal solutons o surace and nternal soltary waves are obtaned through a new method where advecton equatons on physcal quanttes

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems:

Normally, in one phase reservoir simulation we would deal with one of the following fluid systems: TPG4160 Reservor Smulaton 2017 page 1 of 9 ONE-DIMENSIONAL, ONE-PHASE RESERVOIR SIMULATION Flud systems The term sngle phase apples to any system wth only one phase present n the reservor In some cases

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Maejo Int. J. Sc. Technol. () - Full Paper Maejo Internatonal Journal of Scence and Technology ISSN - Avalable onlne at www.mjst.mju.ac.th Fourth-order method for sngularly perturbed sngular boundary value

More information

The Discretization Process

The Discretization Process FMIA F Moukalled L Mangan M Darwsh An Advanced Introducton wth OpenFOAM and Matlab Ths textbook explores both the theoretcal foundaton of the Fnte Volume Method (FVM) and ts applcatons n Computatonal Flud

More information

Flow Induced Vibration

Flow Induced Vibration Flow Induced Vbraton Project Progress Report Date: 16 th November, 2005 Submtted by Subhrajt Bhattacharya Roll no.: 02ME101 Done under the gudance of Prof. Anrvan Dasgupta Department of Mechancal Engneerng,

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products

modeling of equilibrium and dynamic multi-component adsorption in a two-layered fixed bed for purification of hydrogen from methane reforming products modelng of equlbrum and dynamc mult-component adsorpton n a two-layered fxed bed for purfcaton of hydrogen from methane reformng products Mohammad A. Ebrahm, Mahmood R. G. Arsalan, Shohreh Fatem * Laboratory

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION STATIC ANALYSIS OF TWO-LERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION Ákos József Lengyel István Ecsed Assstant Lecturer Emertus Professor Insttute of Appled Mechancs Unversty of Mskolc Mskolc-Egyetemváros

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method Appled Mathematcs, 6, 7, 5-4 Publshed Onlne Jul 6 n ScRes. http://www.scrp.org/journal/am http://.do.org/.436/am.6.77 umercal Solutons of a Generalzed th Order Boundar Value Problems Usng Power Seres Approxmaton

More information

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM

SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM The 5th Internatonal Symposum on Computatonal Scences (ISCS) 28 May 2012, Yogyakarta, Indonesa SMOOTHED PARTICLE HYDRODYNAMICS METHOD FOR TWO-DIMENSIONAL STEFAN PROBLEM Dede Tarwd 1,2 1 Graduate School

More information

Optimal Control of Dissolved Oxygen in Shallow Water Flow

Optimal Control of Dissolved Oxygen in Shallow Water Flow Kawahara Lab. 21 Mar. 2009 Optmal Control of Dssolved Oxygen n Shallow Water Flow Toshk SEKINE Department of Cvl Engneerng, Chuo Unversty, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan E-mal : d34115@educ.kc.chuo-u.ac.jp

More information

Mathematics Intersection of Lines

Mathematics Intersection of Lines a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH

Computational Fluid Dynamics. Smoothed Particle Hydrodynamics. Simulations. Smoothing Kernels and Basis of SPH Computatonal Flud Dynamcs If you want to learn a bt more of the math behnd flud dynamcs, read my prevous post about the Naver- Stokes equatons and Newtonan fluds. The equatons derved n the post are the

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline IOSR Journal of Matematcs (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 14, Issue 6 Ver. I (Nov - Dec 018), PP 6-30 www.osrournals.org Numercal Smulaton of One-Dmensonal Wave Equaton by Non-Polynomal

More information