A Pigeon-Hole Based Encoding of Cardinality Constraints 1

Size: px
Start display at page:

Download "A Pigeon-Hole Based Encoding of Cardinality Constraints 1"

Transcription

1 A Pigeon-Hole Based Encoding of Cardinality Constraints 1 Saïd Jabbour Lakhdar Saïs Yakoub Salhi January 7, 2014 CRIL - CNRS, Université Lille Nord de France, Lens, France 1 Funded by ANR DEFIS 2009 Program, DAG Project Declarative Approaches for Enumerating Interesting Patterns 1 / 13

2 Motivation CP/SAT based data mining (Frequency constraint) Cardinality constraints appears in many other application domains Cross-fertilization between 0/1 linear programming and SAT Goal : Find the most efficient and compact CNF encoding (Efficient) Maintain generalized arc consistency via unit propagation (Compact) Encoding of smallest size? (w.r.t. number of variables and clauses) 2 / 13

3 CNF encodings of the cardinality constraint n x i λ, x i {0, 1} i=1 Several polynomial CNF encodings have been proposed: Joost P. Warners [1996] [Wrong formulation in page 12] BDD encoding [Bailleux at al. 2003]... Cardinality networks [Asín et al. 2011] 3 / 13

4 Joost P. Warners [1996] - page 12 4 / 13

5 Polynomial Encoding of n i=1 x i λ to CNF λ ( p ki x i ), i = 1,..., n (1) k=1 1 k<k λ n p ki, k = 1,..., λ (2) i=1 ( p ki p k i), i = 1,..., n (3) (2) and (3) encode the Pigeon Hole problem PHP λ n p ki expresses that pigeon k is in hole i x i is true if the hole i contains one of the pigeons k for k = 1,..., λ Complexity number of additional variables: λ n number of clauses: O(n λ 2 ). 5 / 13

6 Symmetry Breaking on P λ n Let Sym(Pn λ ) be the set of symmetries of Pn λ : σ(i, j) = (p i1, p j1 ), (p i2, p j2 ),..., (p in, p jn ) (4) 1 i<j λ p 11 [p 1λ p 1n ] [p 2(λ 1) p 2(n 1) ] (5) [p λ1 p λ(n λ+1) ] p λn 6 / 13

7 Symmetry Breaking on P λ n (cont.) Let σ(i, j) = (p i1, p j1 ), (p i2, p j2 ),..., (p in, p jn ), sbp σ(i,j) = (p i1 p j1 ) (p i1 = p j1 ) (p i2 p j2 )... Property (p i1 = p j1 )... (p i(n 1) = p j(n 1) ) (p in p jn ) P λ n is satisfiable iff P λ n sbp(sym(p λ n )) is satisfiable 1 i < j λ Instead of adding SBP to the formula, we apply resolution between clauses from P λ n and sbp(sym(p λ n )) 7 / 13

8 Symmetry Breaking on P λ n (cont.) Eliminating the upper-left corner triangle P λ n sbp σ(1,2) = p 11 : σ = (p 11, p 21 ) σ(1, 2) sbp σ = (p 12 p 22 ) = (1)( p 11 p 21 ) c = ( p 11 p 21 ) P λ n η[p 21, (1), c] = p 11. P b n sbp(sym(p b n )) = p 21 p 31,..., p (λ 1)1 Use similar reasoning All the binary clauses from (3) involving p 11, p 21,..., p (λ 1)1 are eliminated... 8 / 13

9 Symmetry Breaking on P λ n (cont.) Eliminating the lower-right corner triangle P λ n sbp(sym(pλ n )) = p 2n p 3n,..., p λn P λ n sbp(sym(p λ n )) = p 2n : η[p 1n, (p 1λ,..., p 1(n 1) p 1n), ( p 1n p 2n)] = r 1 = (p 1λ,..., p 1(n 1) p 2n). η[p 2n, r 1, (p 2(λ 1),..., p 2(n 1) p 2n)] = r 2 = (p 1λ,..., p 1(n 2) p 1(n 1) p 2(λ 1),..., p 2(n 1)). To eliminate the first n 1 literals from r 2, we exploit sbp σ(1,i) with 2 i λ. Let s 1 = (p 2(λ 1) p 1λ p 2λ..., p 1(n 2) p 2(n 2) p 1(n 1) p 2(n 1) ) sbp σ(1,2). η[p 1(n 1), r 2, s 1] = r 3 = (p 1λ,..., p 1(n 2) p 2(λ 1),..., p 2(n 1) ). Now, p 1(n 2) can be eliminated from r 3. Let s 2 = (p 2(λ 1) p 1λ p 2λ..., p 1(n 3) p 2(n 3) p 1(n 2) p 2(n 1) ) sbp σ(1,2). We obtain η[p 1(n 2), r 3, s 2] = r 4 = (p 1λ,..., p 1(n 3) p 2(λ 1),..., p 2(n 1) ). Similarly, we eliminate {p 1λ,..., p 1(n 3) } from r / 13

10 php λ n encoding of the cardinality constraint p (λ k+1)(i+k 1) x (i+k 1), 1 i n λ + 1, 1 k λ (6) n λ+1 i=1 p (λ k+1)(i+k 1), 1 k λ (7) p (λ k+1)k p (λ k+1)(i+k) p (λ k)(i+k+1), 0 i n λ 1, 1 k λ 1 (8) 10 / 13

11 Soundness and Unit Propagation Property If ρ is a model of php λ n then ρ is a model of n i=1 x i λ. Property If ρ is a model of n i=1 x i λ, then there exists a model ρ of php λ n such that for all i {1,..., n}, ρ(x i ) = ρ (x i ). Property (Unit propagation) Let ρ be a model of php λ n assigning 0 to the elements of a set S = {x i1,..., x in λ } of n λ propositional variables included in X = {x 1,..., x n }. Unit propagation is sufficient to deduce that for all variable x X \S, ρ(x) = / 13

12 Theoretical Comparison with other encodings Encoding #Clauses # Variables Decided Sequential unary counter [Sinz05] O(λ n) O(λ n) UP Parallel binary counter [Sinz05] 7n 3log(n) 6 2n 2 Search Totalizer [Bailleux03] O(n 2 ) O(n log 2 (n)) UP Buttner & Rintanen [Buttner05] O(λ 2 n) O(n log 2 (n)) UP Sorting Network [EenS06] O(n log2 2(n)) O(n log 2 2 (n)) UP Cardinality Network [AsinNOR11] O(n log2 2(λ)) O(n log 2 2 (λ)) UP Warners [Warners96] 8n 2n Search php λ n O(λ (n λ)) O(λ (n λ)) UP Table : Comparison of CNF encodings of n i=1 x i λ 12 / 13

13 Conclusion Conclusion & future works Pigeon Hole Based formulation of the cardinality constraint Competitive with most of the previous encoding Erratum to Joost P. Warners formulation [1996 paper] A nice methodology: reduction of the encoding modulo symmetry, redundant constraints, resolution... Future works CNF encoding of n i=1 α ix i λ for both x i {0, 1} and x i {1..., n i } (done - Best encoding) Use of the same methodology to encode global constraints to CNF (e.g. alldifferent constraint) 13 / 13

A Pigeon-Hole Based Encoding of Cardinality Constraints

A Pigeon-Hole Based Encoding of Cardinality Constraints TPLP 13 (4-5): Online Supplement, July 2013. c 2013 [SAID JABBOUR, LAKHDAR SAIS and YAKOUB SALHI] 1 A Pigeon-Hole Based Encoding of Cardinality Constraints Said Jabbour and Lakhdar Sais and Yakoub Salhi

More information

Efficient SAT-Based Encodings of Conditional Cardinality Constraints

Efficient SAT-Based Encodings of Conditional Cardinality Constraints EPiC Series in Computing Volume 57, 2018, Pages 181 195 LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning Efficient SAT-Based Encodings of Conditional

More information

Cardinality Networks: a Theoretical and Empirical Study

Cardinality Networks: a Theoretical and Empirical Study Constraints manuscript No. (will be inserted by the editor) Cardinality Networks: a Theoretical and Empirical Study Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell Received:

More information

SATisfiability Solving: How to solve problems with SAT?

SATisfiability Solving: How to solve problems with SAT? SATisfiability Solving: How to solve problems with SAT? Ruben Martins University of Oxford February 13, 2014 How to encode a problem into SAT? c famous problem (in CNF) p cnf 6 9 1 4 0 2 5 0 3 6 0-1 -2

More information

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT

1 Algebraic Methods. 1.1 Gröbner Bases Applied to SAT 1 Algebraic Methods In an algebraic system Boolean constraints are expressed as a system of algebraic equations or inequalities which has a solution if and only if the constraints are satisfiable. Equations

More information

Using Graph-Based Representation to Derive Hard SAT instances

Using Graph-Based Representation to Derive Hard SAT instances Using Graph-Based Representation to Derive Hard SAT instances Gilles Audemard, Saïd Jabbour, and Lakhdar Saïs CRIL - Université d Artois - Lens, France {audemard,jabbour,sais}@cril.fr Abstract. In this

More information

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join On the Relative Efficiency of DPLL and OBDDs with Axiom and Join Matti Järvisalo University of Helsinki, Finland September 16, 2011 @ CP M. Järvisalo (U. Helsinki) DPLL and OBDDs September 16, 2011 @ CP

More information

Symmetry Breaking for Relational Weighted Model Finding

Symmetry Breaking for Relational Weighted Model Finding Symmetry Breaking for Relational Weighted Model Finding Tim Kopp Parag Singla Henry Kautz WL4AI July 27, 2015 Outline Weighted logics. Symmetry-breaking in SAT. Symmetry-breaking for weighted logics. Weighted

More information

A Method for Generating All the Prime Implicants of Binary CNF Formulas

A Method for Generating All the Prime Implicants of Binary CNF Formulas A Method for Generating All the Prime Implicants of Binary CNF Formulas Yakoub Salhi CRIL-CNRS, Université d Artois, F-62307 Lens Cedex, France salhi@cril.fr Abstract In this paper, we propose a method

More information

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0 Motivation: Systems like this: v v 2 v 3 v 4 = v v 2 v 3 v 4 = 0 v 2 v 4 = 0 are very difficult for CNF SAT solvers although they can be solved using simple algebraic manipulations Let c 0, c,...,c 2 n

More information

Interleaved Alldifferent Constraints: CSP vs. SAT Approaches

Interleaved Alldifferent Constraints: CSP vs. SAT Approaches Interleaved Alldifferent Constraints: CSP vs. SAT Approaches Frédéric Lardeux 3, Eric Monfroy 1,2, and Frédéric Saubion 3 1 Universidad Técnica Federico Santa María, Valparaíso, Chile 2 LINA, Université

More information

Symmetry Breaking in Quantified Boolean Formulae

Symmetry Breaking in Quantified Boolean Formulae Symmetry Breaking in Quantified Boolean Formulae Gilles Audemard and Saïd Jabbour and Lakhdar Saïs CRIL - CNRS, FRE 2499 Université d Artois - Lens, France {audemard,jabbour,sais}@cril.univ-artois.fr Abstract

More information

Efficient Haplotype Inference with Boolean Satisfiability

Efficient Haplotype Inference with Boolean Satisfiability Efficient Haplotype Inference with Boolean Satisfiability Joao Marques-Silva 1 and Ines Lynce 2 1 School of Electronics and Computer Science University of Southampton 2 INESC-ID/IST Technical University

More information

A Resolution Method for Modal Logic S5

A Resolution Method for Modal Logic S5 EPiC Series in Computer Science Volume 36, 2015, Pages 252 262 GCAI 2015. Global Conference on Artificial Intelligence A Resolution Method for Modal Logic S5 Yakoub Salhi and Michael Sioutis Université

More information

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel Propositional Logic Methods & Tools for Software Engineering (MTSE) Fall 2017 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Towards an Optimal CNF Encoding of Boolean Cardinality Constraints

Towards an Optimal CNF Encoding of Boolean Cardinality Constraints Towards an Optimal CNF Encoding of Boolean Cardinality Constraints (Technical Report) Carsten Sinz Symbolic Computation Group, WSI for Computer Science University of Tübingen, 72076 Tübingen, Germany sinz@informatik.uni-tuebingen.de

More information

A Constraint Programming Approach for Enumerating Motifs in a Sequence

A Constraint Programming Approach for Enumerating Motifs in a Sequence A Constraint Programming Approach for Enumerating Motifs in a Sequence Emmanuel Coquery 1 1 Université Claude Bernard Lyon 1 LIRIS - CNRS UMR 5205 F-69622 Villeurbanne Cedex, France Email: emmanuel.coquery@liris.cnrs.fr

More information

Solving SAT Modulo Theories

Solving SAT Modulo Theories Solving SAT Modulo Theories R. Nieuwenhuis, A. Oliveras, and C.Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Mooly Sagiv Motivation

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Decision Procedures for Satisfiability and Validity in Propositional Logic

Decision Procedures for Satisfiability and Validity in Propositional Logic Decision Procedures for Satisfiability and Validity in Propositional Logic Meghdad Ghari Institute for Research in Fundamental Sciences (IPM) School of Mathematics-Isfahan Branch Logic Group http://math.ipm.ac.ir/isfahan/logic-group.htm

More information

Algorithms for Satisfiability beyond Resolution.

Algorithms for Satisfiability beyond Resolution. Algorithms for Satisfiability beyond Resolution. Maria Luisa Bonet UPC, Barcelona, Spain Oaxaca, August, 2018 Co-Authors: Sam Buss, Alexey Ignatiev, Joao Marques-Silva, Antonio Morgado. Motivation. Satisfiability

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity NP-Complete Languages John E. Savage Brown University February 2, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February

More information

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel Propositional Logic Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

Automata Theory CS Complexity Theory I: Polynomial Time

Automata Theory CS Complexity Theory I: Polynomial Time Automata Theory CS411-2015-17 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 17-0: Tractable vs. Intractable If a problem is recursive, then

More information

On Unit-Refutation Complete Formulae with Existentially Quantified Variables

On Unit-Refutation Complete Formulae with Existentially Quantified Variables On Unit-Refutation Complete Formulae with Existentially Quantified Variables Lucas Bordeaux 1 Mikoláš Janota 2 Joao Marques-Silva 3 Pierre Marquis 4 1 Microsoft Research, Cambridge 2 INESC-ID, Lisboa 3

More information

Introduction. In this talk

Introduction. In this talk Introduction Scarab Constraint Model Advanced Solving System Architecture and Implementation of a Prototyping Tool for SAT-based Constraint Programming Systems Takehide Soh 1, Naoyuki Tamura 1, Mutsunori

More information

Formal Modeling with Propositional Logic

Formal Modeling with Propositional Logic Formal Modeling with Propositional Logic Assaf Kfoury February 6, 2017 (last modified: September 3, 2018) Contents 1 The Pigeon Hole Principle 2 2 Graph Problems 3 2.1 Paths in Directed Graphs..................................

More information

arxiv: v1 [cs.ai] 8 Jun 2015

arxiv: v1 [cs.ai] 8 Jun 2015 On SAT Models Enumeration in Itemset Mining Said Jabbour and Lakhdar Sais and Yakoub Salhi CRIL-CNRS Univ. Artois F-6237, Lens France {jabbour, sais, salhi}@univ-orleans.fr arxiv:156.2561v1 [cs.ai] 8 Jun

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

arxiv: v1 [cs.ai] 17 Jun 2011

arxiv: v1 [cs.ai] 17 Jun 2011 On the expressive power of unit resolution Olivier Bailleux November 7, 2013 arxiv:1106.3498v1 [cs.ai] 17 Jun 2011 Abstract This preliminary report addresses the expressive power of unit resolution regarding

More information

Heuristics for Efficient SAT Solving. As implemented in GRASP, Chaff and GSAT.

Heuristics for Efficient SAT Solving. As implemented in GRASP, Chaff and GSAT. Heuristics for Efficient SAT Solving As implemented in GRASP, Chaff and GSAT. Formulation of famous problems as SAT: k-coloring (1/2) The K-Coloring problem: Given an undirected graph G(V,E) and a natural

More information

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Salem Benferhat CRIL-CNRS, Université d Artois rue Jean Souvraz 62307 Lens Cedex France benferhat@criluniv-artoisfr

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity

Organization. Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity 15-16/08/2009 Nicola Galesi 1 Organization Informal introduction and Overview Informal introductions to P,NP,co-NP and themes from and relationships with Proof complexity First Steps in Proof Complexity

More information

Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae

Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae 1/15 Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Sylvie Coste-Marquis Daniel Le Berre Florian Letombe Pierre Marquis CRIL, CNRS FRE 2499 Lens, Université d Artois,

More information

SAT translations. Matthew Gwynne 1 Oliver Kullmann 2. Proof Complexity Banff, October 4, Computer Science, Swansea University, UK

SAT translations. Matthew Gwynne 1 Oliver Kullmann 2. Proof Complexity Banff, October 4, Computer Science, Swansea University, UK (From to Matthew Gwynne 1 2 Computer Science, Swansea University, UK 1 http://cs.swan.ac.uk/~csmg (From to s 2 http://cs.swan.ac.uk/~csoliver Proof Complexity Banff, October 4, 2011 : case studies and

More information

Making Bound Consistency as Effective as Arc Consistency

Making Bound Consistency as Effective as Arc Consistency Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09) Making Bound Consistency as Effective as Arc Consistency Christian Bessiere LIRMM-CNRS U. Montpellier,

More information

Artificial Intelligence Chapter 7: Logical Agents

Artificial Intelligence Chapter 7: Logical Agents Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent State University February 20, 2006 AI: Chapter 7: Logical Agents 1 Contents Knowledge Based Agents

More information

PCP Theorem and Hardness of Approximation

PCP Theorem and Hardness of Approximation PCP Theorem and Hardness of Approximation An Introduction Lee Carraher and Ryan McGovern Department of Computer Science University of Cincinnati October 27, 2003 Introduction Assuming NP P, there are many

More information

Logic and Inferences

Logic and Inferences Artificial Intelligence Logic and Inferences Readings: Chapter 7 of Russell & Norvig. Artificial Intelligence p.1/34 Components of Propositional Logic Logic constants: True (1), and False (0) Propositional

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Malte Helmert and Gabriele Röger University of Basel April 24, 2017 Propositional Logic: Overview Chapter overview: propositional

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

2.5.2 Basic CNF/DNF Transformation

2.5.2 Basic CNF/DNF Transformation 2.5. NORMAL FORMS 39 On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is conp-complete. For any propositional formula φ there is an equivalent formula in

More information

Proofs with monotone cuts

Proofs with monotone cuts Proofs with monotone cuts Emil Jeřábek jerabek@math.cas.cz http://math.cas.cz/ jerabek/ Institute of Mathematics of the Academy of Sciences, Prague Logic Colloquium 2010, Paris Propositional proof complexity

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006.

More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. More Completeness, conp, FNP,etc. CS254 Chris Pollett Oct 30, 2006. Outline A last complete problem for NP conp, conp NP Function problems MAX-CUT A cut in a graph G=(V,E) is a set of nodes S used to partition

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Consistency algorithms

Consistency algorithms Consistency algorithms Chapter SQ 00 rc-consistency X, Y, Z, T X Y Y = Z T Z X T X,, Y,,,,,, T = Z SQ 00 rc-consistency X, Y, Z, T X Y Y = Z T Z X T X T Y Z = SQ 00 rc-consistency Sound < < Incomplete

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 32. Propositional Logic: Local Search and Outlook Martin Wehrle Universität Basel April 29, 2016 Propositional Logic: Overview Chapter overview: propositional logic

More information

Space complexity of cutting planes refutations

Space complexity of cutting planes refutations Space complexity of cutting planes refutations Nicola Galesi, Pavel Pudlák, Neil Thapen Nicola Galesi Sapienza - University of Rome June 19, 2015 () June 19, 2015 1 / 32 Cutting planes proofs A refutational

More information

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 9: Search 8 Victor R. Lesser CMPSCI 683 Fall 2010 ANNOUNCEMENTS REMEMBER LECTURE ON TUESDAY! EXAM ON OCTOBER 18 OPEN BOOK ALL MATERIAL COVERED IN LECTURES REQUIRED READINGS WILL MOST PROBABLY NOT

More information

The core of solving constraint problems using Constraint Programming (CP), with emphasis on:

The core of solving constraint problems using Constraint Programming (CP), with emphasis on: What is it about? l Theory The core of solving constraint problems using Constraint Programming (CP), with emphasis on: l Modeling l Solving: Local consistency and propagation; Backtracking search + heuristics.

More information

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof

NP-COMPLETE PROBLEMS. 1. Characterizing NP. Proof T-79.5103 / Autumn 2006 NP-complete problems 1 NP-COMPLETE PROBLEMS Characterizing NP Variants of satisfiability Graph-theoretic problems Coloring problems Sets and numbers Pseudopolynomial algorithms

More information

AI Programming CS S-09 Knowledge Representation

AI Programming CS S-09 Knowledge Representation AI Programming CS662-2013S-09 Knowledge Representation David Galles Department of Computer Science University of San Francisco 09-0: Overview So far, we ve talked about search, which is a means of considering

More information

A New Look at BDDs for Pseudo-Boolean Constraints

A New Look at BDDs for Pseudo-Boolean Constraints Journal of Artificial Intelligence Research 45 (22) 443-48 Submitted 3/2; published /2 A New Look at BDDs for Pseudo-Boolean Constraints Ignasi Abío Robert Nieuwenhuis Albert Oliveras Enric Rodríguez-Carbonell

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 3: Practical SAT Solving

Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 3: Practical SAT Solving Automated Program Verification and Testing 15414/15614 Fall 2016 Lecture 3: Practical SAT Solving Matt Fredrikson mfredrik@cs.cmu.edu October 17, 2016 Matt Fredrikson SAT Solving 1 / 36 Review: Propositional

More information

Generalized Micro-Structures for Non-Binary CSP

Generalized Micro-Structures for Non-Binary CSP Generalized Micro-Structures for Non-Binary CSP Achref El Mouelhi LSIS - UMR CNRS 7296 Aix-Marseille Université Avenue Escadrille Normandie-Niemen 13397 Marseille Cedex 20 (France) achref.elmouelhi@lsis.org

More information

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming A Little Logic International Center for Computational Logic Technische Universität Dresden Germany Propositional Logic Satisfiability Problems Solving Sudokus First Order Logic Logic Programming A Little

More information

Random Resolution Refutations

Random Resolution Refutations [1] Random Resolution Refutations Pavel Pudlák and Neil Thapen 1 Mathematical Institute, Academy of Sciences, Prague Riga, 6.7.17 1 the authors are supported by the ERC grant FEALORA [2] History and Motivation

More information

Satisfiability and SAT Solvers. CS 270 Math Foundations of CS Jeremy Johnson

Satisfiability and SAT Solvers. CS 270 Math Foundations of CS Jeremy Johnson Satisfiability and SAT Solvers CS 270 Math Foundations of CS Jeremy Johnson Conjunctive Normal Form Conjunctive normal form (products of sums) Conjunction of clauses (disjunction of literals) For each

More information

I skärningspunkten mellan beviskomplexitet och SAT-lösning

I skärningspunkten mellan beviskomplexitet och SAT-lösning I skärningspunkten mellan beviskomplexitet och SAT-lösning Jakob Nordström Teorigruppen KTH Datavetenskap och kommunikation Docentföreläsning 6 november 2015 Jakob Nordström (KTH CSC) Beviskomplexitet

More information

Introduction to Solving Combinatorial Problems with SAT

Introduction to Solving Combinatorial Problems with SAT Introduction to Solving Combinatorial Problems with SAT Javier Larrosa December 19, 2014 Overview of the session Review of Propositional Logic The Conjunctive Normal Form (CNF) Modeling and solving combinatorial

More information

Integer vs. constraint programming. IP vs. CP: Language

Integer vs. constraint programming. IP vs. CP: Language Discrete Math for Bioinformatics WS 0/, by A. Bockmayr/K. Reinert,. Januar 0, 0:6 00 Integer vs. constraint programming Practical Problem Solving Model building: Language Model solving: Algorithms IP vs.

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 14, 2014 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Mathematics for Economists

Mathematics for Economists Mathematics for Economists Victor Filipe Sao Paulo School of Economics FGV Metric Spaces: Basic Definitions Victor Filipe (EESP/FGV) Mathematics for Economists Jan.-Feb. 2017 1 / 34 Definitions and Examples

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

The Complexity of Optimization Problems

The Complexity of Optimization Problems The Complexity of Optimization Problems Summary Lecture 1 - Complexity of algorithms and problems - Complexity classes: P and NP - Reducibility - Karp reducibility - Turing reducibility Uniform and logarithmic

More information

More NP-Complete Problems

More NP-Complete Problems CS 473: Algorithms, Spring 2018 More NP-Complete Problems Lecture 23 April 17, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Recap NP: languages/problems that have

More information

arxiv: v1 [cs.ai] 1 Jun 2014

arxiv: v1 [cs.ai] 1 Jun 2014 On the Measure of the Conflicts: A MUS-Decomposition Based Framework Said Jabbour 1, Yue Ma 2, Badran Raddaoui 1, Lakhdar Saïs 1, Yakoub Salhi 1 1 CRIL - CNRS, Université d Artois, France {jabbour, raddaoui,

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

An instance of SAT is defined as (X, S)

An instance of SAT is defined as (X, S) SAT: Propositional Satisfiability 22c:45 Artificial Intelligence Russell & Norvig, Ch. 7.6 Validity vs. Satisfiability Validity: A sentence is valid if it is true in every interpretation (every interpretation

More information

A Collection of Problems in Propositional Logic

A Collection of Problems in Propositional Logic A Collection of Problems in Propositional Logic Hans Kleine Büning SS 2016 Problem 1: SAT (respectively SAT) Instance: A propositional formula α (for SAT in CNF). Question: Is α satisfiable? The problems

More information

Reordering Rule Makes OBDD Proof Systems Stronger

Reordering Rule Makes OBDD Proof Systems Stronger Reordering Rule Makes OBDD Proof Systems Stronger Sam Buss University of California, San Diego, La Jolla, CA, USA sbuss@ucsd.edu Dmitry Itsykson St. Petersburg Department of V.A. Steklov Institute of Mathematics

More information

NP-Completeness and Boolean Satisfiability

NP-Completeness and Boolean Satisfiability NP-Completeness and Boolean Satisfiability Mridul Aanjaneya Stanford University August 14, 2012 Mridul Aanjaneya Automata Theory 1/ 49 Time-Bounded Turing Machines A Turing Machine that, given an input

More information

Classical Propositional Logic

Classical Propositional Logic Classical Propositional Logic Peter Baumgartner http://users.cecs.anu.edu.au/~baumgart/ Ph: 02 6218 3717 Data61/CSIRO and ANU July 2017 1 / 71 Classical Logic and Reasoning Problems A 1 : Socrates is a

More information

Lecture 13, Fall 04/05

Lecture 13, Fall 04/05 Lecture 13, Fall 04/05 Short review of last class NP hardness conp and conp completeness Additional reductions and NP complete problems Decision, search, and optimization problems Coping with NP completeness

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT The Wumpus Game Stench Stench Gold Stench Start 1 The Wumpus Game Stench in the square containing the wumpus and in the directly adjacent squares in the squares directly adjacent to a pit Glitter in the

More information

Practical SAT Solving

Practical SAT Solving Practical SAT Solving Lecture 10 Carsten Sinz, Tomáš Balyo June 27, 2016 INSTITUTE FOR THEORETICAL COMPUTER SCIENCE KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms P Formula Simplification, Essential Laws, Normal Forms Lila Kari University of Waterloo P Formula Simplification, Essential Laws, Normal CS245, Forms Logic and Computation 1 / 26 Propositional calculus

More information

Symmetry Breaking Ordering Constraints

Symmetry Breaking Ordering Constraints Symmetry Breaking Ordering Constraints PhD dissertation Uppsala University, Sweden, March 2004 Zeynep KIZILTAN Università di Bologna, Italy URL: http://lia.deis.unibo.it/~zk/ Overview Brief Background

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

NP-completeness of small conflict set generation for congruence closure

NP-completeness of small conflict set generation for congruence closure NP-completeness of small conflict set generation for congruence closure Andreas Fellner 1,2, Pascal Fontaine 3, Georg Hofferek 4 and Bruno Woltzenlogel Paleo 2,5 1 IST-Austria, Klosterneuburg (Austria)

More information

Introduction to Advanced Results

Introduction to Advanced Results Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26 Outline Boolean Hierarchy Probabilistic Complexity Parameterized

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic Policies

On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic Policies Salem Benferhat CRIL-CNRS, Université d Artois rue Jean Souvraz 62307 Lens Cedex. France. benferhat@cril.univ-artois.fr On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic

More information

Lecture 2 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 2 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science February 29, 2016 Lecturer: Ola Svensson Lecture 2 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Eventual Linear Ranking Functions

Eventual Linear Ranking Functions Eventual Linear Ranking Functions Roberto BAGNARA 1 Fred MESNARD 2 1 BUGSENG & Dipartimento di Matematica e Informatica, Università di Parma, Italy 2 LIM, université de la Réunion, France PPDP 2013 Bagnara,

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

Graph structure in polynomial systems: chordal networks

Graph structure in polynomial systems: chordal networks Graph structure in polynomial systems: chordal networks Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information