Introduction to Advanced Results

Size: px
Start display at page:

Download "Introduction to Advanced Results"

Transcription

1 Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26

2 Outline Boolean Hierarchy Probabilistic Complexity Parameterized Complexity Basics on Parameterized Complexity Backdoors in SAT Master Info. Complexity Advanced Results 2/26

3 Boolean Hierarchy The Boolean Hierarchy is the set of decision problems defined inductively BH 1 = NP BH 2i = {L = L 1 L 2 L 1 BH 2i 1, L 2 conp} = BH 2i 1 conp BH 2i+1 = {L = L 1 L 2 L 1 BH 2i, L 2 NP} = BH 2i NP BH = i N\{0} BH i P 2 The Boolean Hierarchy is useful to discriminate problems which are NP-hard (or conp-hard), but not in NP (or in conp) Master Info. Complexity Advanced Results 3/26

4 Inclusion of Boolean Hierarchy Classes i, BH i BH i+1 Intuition: For i 1 (mod 2), L BHi, L = L L All, where L All is the language which contains all possible instances. L All conp, so L = L L All BH i+1 For i 0 (mod 2), L BH i, L = L L, where L is the language which contains no instance at all. L NP, so L = L L BH i+1 Master Info. Complexity Advanced Results 4/26

5 A Specific Class from BH: DP DP = BH 2 = {L 1 L 2 L 1 NP and L 2 conp} for Difference Polynomial Time DP has been identified before the definition of the Boolean hierarchy [Papadimitirou and Y. 1984] DP = {L1 \ L 2 L 1 NP and L 2 NP} NP DP, conp DP Master Info. Complexity Advanced Results 5/26

6 A Specific Problem from DP (1) Exact Clique Given a graph G and an integer k, is it true that the maximal clique in G has size exactly k? Complexity of Exact Clique Exact Clique is DP-complete [Papadimitirou and Y. 1984] Master Info. Complexity Advanced Results 6/26

7 A Specific Problem from DP (2) SAT-UNSAT Given two propositional formulas φ, ψ, is φ satisfiable and ψ unsatisfiable? Complexity of SAT-UNSAT SAT-UNSAT is DP-complete [Papadimitirou and Y. 1984] Master Info. Complexity Advanced Results 7/26

8 A Specific Problem from DP (3) Unique SAT Given a propositional formula φ, is φ satisfiable with exactly one model? Complexity of Unique SAT Unique SAT is in DP [Papadimitirou and Y. 1984] Master Info. Complexity Advanced Results 8/26

9 References G. Wechsung, On the Boolean closure of NP. Proc. of the International Conference on Fundamentals of Computation Theory, p , C. H. Papadimitriou and M. Yannakakis, The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences 28, p , Master Info. Complexity Advanced Results 9/26

10 Outline Boolean Hierarchy Probabilistic Complexity Parameterized Complexity Basics on Parameterized Complexity Backdoors in SAT Master Info. Complexity Advanced Results 10/26

11 Deterministic Quick Sort Algorithm 1 DetQuickSort Input: L if L has 0 or 1 element then return L else L 1 = [x j x j < x 1 ] L 2 = [x j x j > x 1 ] return DetQuickSort(L 1 ) [x 1 ] DetQuickSort(L 2 ) end if Master Info. Complexity Advanced Results 11/26

12 Deterministic Quick Sort Algorithm 2 DetQuickSort Input: L if L has 0 or 1 element then return L else L 1 = [x j x j < x 1 ] L 2 = [x j x j > x 1 ] return DetQuickSort(L 1 ) [x 1 ] DetQuickSort(L 2 ) end if Problem: for some instances, this algorithm needs O(n 2 ) steps Master Info. Complexity Advanced Results 11/26

13 Probabilistic Quick Sort Algorithm 3 ProbQuickSort Input: L if L has 0 or 1 element then return L else Chose randomly i {1,..., n} L 1 = [x j x j < x i ] L 2 = [x j x j > x i ] return ProbQuickSort(L 1 ) [x i ] ProbQuickSort(L 2 ) end if Master Info. Complexity Advanced Results 12/26

14 Probabilistic Quick Sort Algorithm 4 ProbQuickSort Input: L if L has 0 or 1 element then return L else Chose randomly i {1,..., n} L 1 = [x j x j < x i ] L 2 = [x j x j > x i ] return ProbQuickSort(L 1 ) [x i ] ProbQuickSort(L 2 ) end if On each instance, the average number of steps is O(n log(n)) Master Info. Complexity Advanced Results 12/26

15 Probabilistic Turing Machine Definition A Probabilistic Turing Machine M is a TM such that for each configuration (q, x), the transition function δ has two possible results. When executing M on the input i, at each step one of the possible transitions is chosen, independently of the previous steps. We say that M works in time t(n) if for any input i such that i = n, M stops in less than t(n) steps whatever the probabilistic choices. Master Info. Complexity Advanced Results 13/26

16 Probabilistic Turing Machine Definition A Probabilistic Turing Machine M is a TM such that for each configuration (q, x), the transition function δ has two possible results. When executing M on the input i, at each step one of the possible transitions is chosen, independently of the previous steps. We say that M works in time t(n) if for any input i such that i = n, M stops in less than t(n) steps whatever the probabilistic choices. Intuition: a Probabilistic Turing Machine is able to chose randomly a number. We consider that it just needs to chose a bit 0/1. Integers can be chosen bit by bit For each configuration, the two possible transitions correspond to the choice of a 0 or a 1 Master Info. Complexity Advanced Results 13/26

17 Handling Errors Depending on the sequence of probabilistic choices (i.e. the random number chosen by the machine), a PTM can sometimes reject a positive instance or accept a negative instance To define probabilistic complexity classes, we need to identify PTM which minimize the error rate Master Info. Complexity Advanced Results 14/26

18 Bounded Error BPP [Gill 1977] BPP (Bounded error Probabilistic Polynomial time) is the set of decision problems P s.t. there is a PTM M s.t. for any instance i of P, if i is a positive instance, then M accepts i for at least 2 3 of the executions if i is a negative instance, then M rejects i for at least 2 3 of the executions Master Info. Complexity Advanced Results 15/26

19 Bounded Error BPP [Gill 1977] BPP (Bounded error Probabilistic Polynomial time) is the set of decision problems P s.t. there is a PTM M s.t. for any instance i of P, if i is a positive instance, then M accepts i for at least 2 3 of the executions if i is a negative instance, then M rejects i for at least 2 3 of the executions Intuitively: a PTM decides a language if the error rate is less than 1 3 Master Info. Complexity Advanced Results 15/26

20 Randomized Polynomial Time RP [Gill 1977] RP (Randomized Polynomial time) is the set of decision problems P s.t. there is a PTM M s.t. for any instance i of P, if i is a positive instance, then M accepts i for at least 2 3 of the executions if i is a negative instance, then M rejects i for all possible executions Master Info. Complexity Advanced Results 16/26

21 Randomized Polynomial Time RP [Gill 1977] RP (Randomized Polynomial time) is the set of decision problems P s.t. there is a PTM M s.t. for any instance i of P, if i is a positive instance, then M accepts i for at least 2 3 of the executions if i is a negative instance, then M rejects i for all possible executions Intuitively: a PTM decides a language if the error rate is less than 1 3 for positive instances, and null for negative instances Master Info. Complexity Advanced Results 16/26

22 Relations with Classical Classes P RP BPP PSPACE RP NP corp conp corp BPP Master Info. Complexity Advanced Results 17/26

23 Relations with Classical Classes P RP BPP PSPACE RP NP corp conp corp BPP Probabilistic complexity can be used to distinguish between the complexity of problems which are in PSPACE Master Info. Complexity Advanced Results 17/26

24 References J. T. Gill, Computational Complexity of Probabilistic Turing Machines. SIAM J. Comput. 6(4): , Master Info. Complexity Advanced Results 18/26

25 Outline Boolean Hierarchy Probabilistic Complexity Parameterized Complexity Basics on Parameterized Complexity Backdoors in SAT Master Info. Complexity Advanced Results 19/26

26 Intuition of Parameterized Complexity When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem. If, for an instance i, we are sure that the hard part is not too big, then maybe the instance i is not so hard Master Info. Complexity Advanced Results 20/26

27 Intuition of Parameterized Complexity When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem. If, for an instance i, we are sure that the hard part is not too big, then maybe the instance i is not so hard Intuitive Example: SAT If φ is a DNF formula, it is easy to give all its models Master Info. Complexity Advanced Results 20/26

28 Intuition of Parameterized Complexity When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem. If, for an instance i, we are sure that the hard part is not too big, then maybe the instance i is not so hard Intuitive Example: SAT If φ is a DNF formula, it is easy to give all its models φ (x 1 x 2 x 3 ) is not a DNF, so it is not (directly) easy to know if it is satisfiable Master Info. Complexity Advanced Results 20/26

29 Intuition of Parameterized Complexity When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem. If, for an instance i, we are sure that the hard part is not too big, then maybe the instance i is not so hard Intuitive Example: SAT If φ is a DNF formula, it is easy to give all its models φ (x 1 x 2 x 3 ) is not a DNF, so it is not (directly) easy to know if it is satisfiable But since we know all the models of φ, it is easy to know if one of them satisfies x 1 x 2 x 3 Master Info. Complexity Advanced Results 20/26

30 Intuition of Parameterized Complexity When considering a hard problem, sometimes the difficulty to solve it comes from a specific part of the problem. If, for an instance i, we are sure that the hard part is not too big, then maybe the instance i is not so hard Intuitive Example: SAT If φ is a DNF formula, it is easy to give all its models φ (x 1 x 2 x 3 ) is not a DNF, so it is not (directly) easy to know if it is satisfiable But since we know all the models of φ, it is easy to know if one of them satisfies x 1 x 2 x 3 More generally, for φ ψ, with φ a DNF, the size of ψ is a parameter of the difficulty: the smaller ψ, the easier it is to solve SAT for φ ψ Master Info. Complexity Advanced Results 20/26

31 Parameters of a Problem Instead of measuring the complexity of a problem with just the size of the problem, we consider several parameters Each parameter correspond to a different source of difficulty to solve the problem If some parameters are fixed (or bounded), then the problem becomes simpler than in the general case Master Info. Complexity Advanced Results 21/26

32 Parameterized Language [Downey and Fellows 1995] Definition Given an alphabet Σ, a parameterized language L is a subset of Σ Σ. For (x, y) L, we call x the main part and y the parameter. Master Info. Complexity Advanced Results 22/26

33 Parameterized Language [Downey and Fellows 1995] Definition Given an alphabet Σ, a parameterized language L is a subset of Σ Σ. For (x, y) L, we call x the main part and y the parameter. Definition A parameterized language L is fixed-parameter tractable if it can be decided in O(f(k)q(n)), for (x, k) L, with n = x, q(n) a polynomial, and f(k) any function. The class of fixed-parameter tractable problems is called FPT Master Info. Complexity Advanced Results 22/26

34 Examples of Natural Parameters The size of a database query The number of variables in a logical formula The number of moves in a game [Abrahamson et al. 1995] Master Info. Complexity Advanced Results 23/26

35 Examples of Natural Parameters The size of a database query The number of variables in a logical formula The number of moves in a game [Abrahamson et al. 1995] The number of Boolean variables to be assigned to move a formula in a tractable class Master Info. Complexity Advanced Results 23/26

36 Backdoors in SAT Target Class Given C a class of propositional formulas, C is a target class if C can be recognized in polynomial time satisfiability of formulas in C can be checked in polynomial time C is closed under isomorphism (i.e. is two formulas are identical except for the names of the variables, then either both or none belong to C) Definition A strong-c-backdoor of a CNF formula φ is a set of variables B such that for all interpretations τ 2 B, φ τ C If we know a strong-c-backdoor of φ of size k, then the satisfiability of φ is reduced to the satisfiability of 2 k formulas φ 1,..., φ 2 k C. So SAT becomes fixed-parameter tractable in k Master Info. Complexity Advanced Results 24/26

37 Examples of Base Classes Horn Formulas A Horn formula is a CNF with only Horn clauses, i.e. clauses with at most one positive literal 2CNF Formulas A 2CNF formula is a CNF with only unary and binary clauses This means that if a formula has a backdoor of size k to Horn or 2CNF, then it is FPT in parameter k More details in [Gaspers and Szeider 2012] Master Info. Complexity Advanced Results 25/26

38 References R. G. Downey and M. R. Fellows, Fixed-Parameter Tractability and Completeness I: Basic Results. SIAM J. Comput. 24(4): , K. R. Abrahamson, R. G. Downey and M. R. Fellows, Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues. Ann. Pure Appl. Logic 73(3): , S. Gaspers and S. Szeider, Backdoors to Satisfaction. The Multivariate Algorithmic Revolution and Beyond, , Master Info. Complexity Advanced Results 26/26

Detecting Backdoor Sets with Respect to Horn and Binary Clauses

Detecting Backdoor Sets with Respect to Horn and Binary Clauses Detecting Backdoor Sets with Respect to Horn and Binary Clauses Naomi Nishimura 1,, Prabhakar Ragde 1,, and Stefan Szeider 2, 1 School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L

More information

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26 Space Complexity Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Space 1/26 Outline Basics on Space Complexity Main Space Complexity Classes Deterministic and Non-Deterministic

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Non-Deterministic Time

Non-Deterministic Time Non-Deterministic Time Master Informatique 2016 1 Non-Deterministic Time Complexity Classes Reminder on DTM vs NDTM [Turing 1936] (q 0, x 0 ) (q 1, x 1 ) Deterministic (q n, x n ) Non-Deterministic (q

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Fixed-parameter tractable reductions to SAT. Vienna University of Technology

Fixed-parameter tractable reductions to SAT. Vienna University of Technology Fixed-parameter tractable reductions to SAT Ronald de Haan Stefan Szeider Vienna University of Technology Reductions to SAT Problems in NP can be encoded into SAT in poly-time. Problems at the second level

More information

A Collection of Problems in Propositional Logic

A Collection of Problems in Propositional Logic A Collection of Problems in Propositional Logic Hans Kleine Büning SS 2016 Problem 1: SAT (respectively SAT) Instance: A propositional formula α (for SAT in CNF). Question: Is α satisfiable? The problems

More information

Complexity Classes V. More PCPs. Eric Rachlin

Complexity Classes V. More PCPs. Eric Rachlin Complexity Classes V More PCPs Eric Rachlin 1 Recall from last time Nondeterminism is equivalent to having access to a certificate. If a valid certificate exists, the machine accepts. We see that problems

More information

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION

Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky SOLUTION Complexity Theory Final Exam Please note : If not stated

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

Complexity of DNF and Isomorphism of Monotone Formulas

Complexity of DNF and Isomorphism of Monotone Formulas Complexity of DNF and Isomorphism of Monotone Formulas Judy Goldsmith 1, Matthias Hagen 2, Martin Mundhenk 2 1 University of Kentucky, Dept. of Computer Science, Lexington, KY 40506 0046, goldsmit@cs.uky.edu

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

An introduction to Parameterized Complexity Theory

An introduction to Parameterized Complexity Theory An introduction to Parameterized Complexity Theory May 15, 2012 A motivation to parametrize Definitions Standard Complexity Theory does not distinguish between the distinct parts of the input. It categorizes

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

NP-Completeness and Boolean Satisfiability

NP-Completeness and Boolean Satisfiability NP-Completeness and Boolean Satisfiability Mridul Aanjaneya Stanford University August 14, 2012 Mridul Aanjaneya Automata Theory 1/ 49 Time-Bounded Turing Machines A Turing Machine that, given an input

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information

Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy

Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy Electronic Colloquium on Computational Complexity, Report No. 143 (2014) Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy Ronald de Haan, Stefan Szeider Institute of Information

More information

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions Polynomial time reduction and NP-completeness Exploring some time complexity limits of polynomial time algorithmic solutions 1 Polynomial time reduction Definition: A language L is said to be polynomial

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

Complexity Theory Final Exam

Complexity Theory Final Exam Technische Universität München Summer term 2010 Theoretische Informatik August 2, 2010 Dr. J. Kreiker / Dr. M. Luttenberger, J. Kretinsky Complexity Theory Final Exam Please note : If not stated otherwise,

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

The Complexity of Optimization Problems

The Complexity of Optimization Problems The Complexity of Optimization Problems Summary Lecture 1 - Complexity of algorithms and problems - Complexity classes: P and NP - Reducibility - Karp reducibility - Turing reducibility Uniform and logarithmic

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

Non-Approximability Results (2 nd part) 1/19

Non-Approximability Results (2 nd part) 1/19 Non-Approximability Results (2 nd part) 1/19 Summary - The PCP theorem - Application: Non-approximability of MAXIMUM 3-SAT 2/19 Non deterministic TM - A TM where it is possible to associate more than one

More information

Computational Complexity Theory

Computational Complexity Theory Computational Complexity Theory Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Assumed Background Preliminaries Turing Machine (TM) Deterministic Turing Machine (DTM) NonDeterministic

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

A.Antonopoulos 18/1/2010

A.Antonopoulos 18/1/2010 Class DP Basic orems 18/1/2010 Class DP Basic orems 1 Class DP 2 Basic orems Class DP Basic orems TSP Versions 1 TSP (D) 2 EXACT TSP 3 TSP COST 4 TSP (1) P (2) P (3) P (4) DP Class Class DP Basic orems

More information

6.045 Final Exam Solutions

6.045 Final Exam Solutions 6.045J/18.400J: Automata, Computability and Complexity Prof. Nancy Lynch, Nati Srebro 6.045 Final Exam Solutions May 18, 2004 Susan Hohenberger Name: Please write your name on each page. This exam is open

More information

Computational Complexity

Computational Complexity p. 1/24 Computational Complexity The most sharp distinction in the theory of computation is between computable and noncomputable functions; that is, between possible and impossible. From the example of

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Interactive Proofs John E. Savage Brown University April 20, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity April 20, 2009

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization Department of Computer Science Series of Publications C Report C-2004-2 The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University

More information

CSE 555 HW 5 SAMPLE SOLUTION. Question 1.

CSE 555 HW 5 SAMPLE SOLUTION. Question 1. CSE 555 HW 5 SAMPLE SOLUTION Question 1. Show that if L is PSPACE-complete, then L is NP-hard. Show that the converse is not true. If L is PSPACE-complete, then for all A PSPACE, A P L. We know SAT PSPACE

More information

Finish K-Complexity, Start Time Complexity

Finish K-Complexity, Start Time Complexity 6.045 Finish K-Complexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts

More information

Computer Sciences Department

Computer Sciences Department Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Computer Sciences Department 3 ADVANCED TOPICS IN C O M P U T A B I L I T Y

More information

Advanced Topics in Theoretical Computer Science

Advanced Topics in Theoretical Computer Science Advanced Topics in Theoretical Computer Science Part 5: Complexity (Part II) 30.01.2014 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Contents Recall: Turing

More information

Parameterized model-checking problems

Parameterized model-checking problems Parameterized model-checking problems Stéphane Demri Laboratoire Spécification et Vérification (LSV) CNRS UMR 8643 & ENS de Cachan Parameterized model-checking problems p. 1 Plan of the talk 1. State explosion

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

Computational Complexity of Bayesian Networks

Computational Complexity of Bayesian Networks Computational Complexity of Bayesian Networks UAI, 2015 Complexity theory Many computations on Bayesian networks are NP-hard Meaning (no more, no less) that we cannot hope for poly time algorithms that

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Lecture 7: Polynomial time hierarchy

Lecture 7: Polynomial time hierarchy Computational Complexity Theory, Fall 2010 September 15 Lecture 7: Polynomial time hierarchy Lecturer: Kristoffer Arnsfelt Hansen Scribe: Mads Chr. Olesen Recall that adding the power of alternation gives

More information

Backdoor Sets for DLL Subsolvers

Backdoor Sets for DLL Subsolvers Backdoor Sets for DLL Subsolvers Stefan Szeider Department of Computer Science Durham University DH1 3LE Durham, England, UK Abstract We study the parameterized complexity of detecting small backdoor sets

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

Time and space classes

Time and space classes Time and space classes Little Oh (o,

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information

Review of Complexity Theory

Review of Complexity Theory Review of Complexity Theory Breno de Medeiros Department of Computer Science Florida State University Review of Complexity Theory p.1 Turing Machines A traditional way to model a computer mathematically

More information

Show that the following problems are NP-complete

Show that the following problems are NP-complete Show that the following problems are NP-complete April 7, 2018 Below is a list of 30 exercises in which you are asked to prove that some problem is NP-complete. The goal is to better understand the theory

More information

Advanced Algorithms (XIII) Yijia Chen Fudan University

Advanced Algorithms (XIII) Yijia Chen Fudan University Advanced Algorithms (XIII) Yijia Chen Fudan University The PCP Theorem Theorem NP = PCP(log n, 1). Motivation Approximate solutions Definition (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the

More information

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2.

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. De Morgan s a Laws De Morgan s laws say that (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. Here is a proof for the first law: φ 1 φ 2 (φ 1 φ 2 ) φ 1 φ 2 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 a Augustus DeMorgan

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Lecture 2 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 2 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science February 29, 2016 Lecturer: Ola Svensson Lecture 2 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Theory of Computation Time Complexity

Theory of Computation Time Complexity Theory of Computation Time Complexity Bow-Yaw Wang Academia Sinica Spring 2012 Bow-Yaw Wang (Academia Sinica) Time Complexity Spring 2012 1 / 59 Time for Deciding a Language Let us consider A = {0 n 1

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Chapter 5 : Randomized computation

Chapter 5 : Randomized computation Dr. Abhijit Das, Chapter 5 : Randomized computation Probabilistic or randomized computation often provides practical methods to solve certain computational problems. In order to define probabilistic complexity

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

6.840 Language Membership

6.840 Language Membership 6.840 Language Membership Michael Bernstein 1 Undecidable INP Practice final Use for A T M. Build a machine that asks EQ REX and then runs M on w. Query INP. If it s in P, accept. Note that the language

More information

2 P vs. NP and Diagonalization

2 P vs. NP and Diagonalization 2 P vs NP and Diagonalization CS 6810 Theory of Computing, Fall 2012 Instructor: David Steurer (sc2392) Date: 08/28/2012 In this lecture, we cover the following topics: 1 3SAT is NP hard; 2 Time hierarchies;

More information

Complexity Classes IV

Complexity Classes IV Complexity Classes IV NP Optimization Problems and Probabilistically Checkable Proofs Eric Rachlin 1 Decision vs. Optimization Most complexity classes are defined in terms of Yes/No questions. In the case

More information

Lecture 15: A Brief Look at PCP

Lecture 15: A Brief Look at PCP IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 15: A Brief Look at PCP David Mix Barrington and Alexis Maciel August 4, 2000 1. Overview

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam.

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam. 6.045J/18.400J: Automata, Computability and Complexity May 20, 2005 6.045 Final Exam Prof. Nancy Lynch Name: Please write your name on each page. This exam is open book, open notes. There are two sheets

More information

Enumeration: logical and algebraic approach

Enumeration: logical and algebraic approach Enumeration: logical and algebraic approach Yann Strozecki Université Paris Sud - Paris 11 Novembre 2011, séminaire ALGO/LIX Introduction to Enumeration Enumeration and logic Enumeration and polynomials

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x).

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x). CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 4 February 3, 2010 Scribe: Jonathan Pines 1 Agenda P-/NP- Completeness NP-intermediate problems NP vs. co-np L, NL 2 Recap Last time, we

More information

Notes on Complexity Theory Last updated: October, Lecture 6

Notes on Complexity Theory Last updated: October, Lecture 6 Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACE-Completeness As in our previous study of N P, it is useful to identify

More information

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning Principles of Knowledge Representation and Reasoning Complexity Theory Bernhard Nebel, Malte Helmert and Stefan Wölfl Albert-Ludwigs-Universität Freiburg April 29, 2008 Nebel, Helmert, Wölfl (Uni Freiburg)

More information

A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine

A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine Samuel C. Hsieh Computer Science Department, Ball State University July 3, 2014 Abstract We establish a lower

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

Week 3: Reductions and Completeness

Week 3: Reductions and Completeness Computational Complexity Theory Summer HSSP 2018 Week 3: Reductions and Completeness Dylan Hendrickson MIT Educational Studies Program 3.1 Reductions Suppose I know how to solve some problem quickly. How

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 17 Nancy Lynch Today Probabilistic Turing Machines and Probabilistic Time Complexity Classes Now add a new capability to standard TMs: random

More information

CS154, Lecture 18: 1

CS154, Lecture 18: 1 CS154, Lecture 18: 1 CS 154 Final Exam Wednesday December 12, 12:15-3:15 pm STLC 111 You re allowed one double-sided sheet of notes Exam is comprehensive (but will emphasize post-midterm topics) Look for

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

Polynomial-time reductions. We have seen several reductions:

Polynomial-time reductions. We have seen several reductions: Polynomial-time reductions We have seen several reductions: Polynomial-time reductions Informal explanation of reductions: We have two problems, X and Y. Suppose we have a black-box solving problem X in

More information

LTCC Course: Graph Theory 2017/18 3: Complexity and Algorithms

LTCC Course: Graph Theory 2017/18 3: Complexity and Algorithms LTCC Course: Graph Theory 2017/18 3: Complexity and Algorithms Peter Allen 5 March 2018 The graph theory textbooks do little or no algorithms, so for this lecture we have to go somewhere else. The default

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

Computability and Complexity Theory

Computability and Complexity Theory Discrete Math for Bioinformatics WS 09/10:, by A Bockmayr/K Reinert, January 27, 2010, 18:39 9001 Computability and Complexity Theory Computability and complexity Computability theory What problems can

More information

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006

Introduction to Complexity Theory. Bernhard Häupler. May 2, 2006 Introduction to Complexity Theory Bernhard Häupler May 2, 2006 Abstract This paper is a short repetition of the basic topics in complexity theory. It is not intended to be a complete step by step introduction

More information

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs

Probabilistically Checkable Proofs. 1 Introduction to Probabilistically Checkable Proofs Course Proofs and Computers, JASS 06 Probabilistically Checkable Proofs Lukas Bulwahn May 21, 2006 1 Introduction to Probabilistically Checkable Proofs 1.1 History of Inapproximability Results Before introducing

More information

Feasibility and Unfeasibility of Off-line Processing

Feasibility and Unfeasibility of Off-line Processing Feasibility and Unfeasibility of Off-line Processing Marco Cadoli and Francesco M. Donini and Paolo Liberatore and Marco Schaerf Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza,

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Complexity Professor Daniel Leeds dleeds@fordham.edu JMH 332 Computability Are we guaranteed to get an answer? Complexity How long do we have to wait for an answer? (Ch7)

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement

Lecture 7: The Polynomial-Time Hierarchy. 1 Nondeterministic Space is Closed under Complement CS 710: Complexity Theory 9/29/2011 Lecture 7: The Polynomial-Time Hierarchy Instructor: Dieter van Melkebeek Scribe: Xi Wu In this lecture we first finish the discussion of space-bounded nondeterminism

More information