Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae

Size: px
Start display at page:

Download "Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae"

Transcription

1 1/15 Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Sylvie Coste-Marquis Daniel Le Berre Florian Letombe Pierre Marquis CRIL, CNRS FRE 2499 Lens, Université d Artois, France Monday, July 11, 2005

2 2/15 Introduction The qbf problem Canonical PSPACE-complete problem Can be used in many AI areas: planning, nonmonotonic reasoning, paraconsistent inference, abduction, etc High complexity, both in theory and in practice A possible solution: tractable classes Instances of those tractable classes hard for current qbf solvers (e.g. (renamable) Horn benchmarks)

3 3/15 Introduction Outline QBF Target fragments Negation normal form Other propositional fragments Complexity results Complexity landscape A glimpse at some proofs A polynomial case Conclusion and perspectives

4 4/15 QBF QBF: formal definition Definition (QBF) A QBF Π is an expression of the form Q 1 X 1... Q n X n Φ, (n 0) X 1... X n sets of propositional variables Φ a propositional formula on those variables Q i (0 i n) an existential or universal quantifier

5 5/15 QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ) Example x y 1, y 2 [(y 1 y 2 ) ( y 2 x) ( y 1 y 2 ) (y 2 x)]

6 5/15 QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ) Example x y 1, y 2 [(y 1 y 2 )( y /////////////// 2 x) ( y 1 y 2 ) (y 2 //////)] x x y 2 y 1

7 5/15 QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ) Example x y 1, y 2 [(y 1 y 2 ) ( y 2 ////) x ( y 1 y 2 )(y ///////////////] 2 x) x y 2 y 2 y 1 y 1

8 5/15 QBF Validity of a QBF Existence of a winning strategy in a game against nature ( ) Example x y 1, y 2 [(y 1 y 2 ) ( y 2 x) ( y 1 y 2 ) (y 2 x)] y 1 x y 2 [(y 1 y 2 ) ( y 2 x) ( y 1 y 2 ) (y 2 x)] x y 2 y 2 y 1 y 1 x y 1 y 2

9 6/15 Target fragments Negation normal form Definition (NNF [Darwiche 1999]) A formula in NNF PS is a rooted DAG where: each leaf node is labeled with true, false, x or x, x PS each internal node is labeled with or and can have arbitrarily many children Example a b b a c d d c

10 7/15 Target fragments Other propositional fragments Properties [Darwiche 1999] Decomposability Determinism Smoothness Decision Ordering

11 8/15 Target fragments Other propositional fragments Fragments of NNF PS : examples Example a b b a c d d c

12 8/15 Target fragments Other propositional fragments Fragments of NNF PS : examples Decomposability: if C 1,..., C n are the children of and-node C, then Var(C i ) Var(C j ) = for i j Example Decomposability a b b a c d d c

13 8/15 Target fragments Other propositional fragments Fragments of NNF PS : examples Determinism: if C 1,..., C n are the children of or-node C, then C i C j = false for i j Example Determinism a b b a c d d c

14 8/15 Target fragments Other propositional fragments Fragments of NNF PS : examples Smoothness: if C 1,..., C n are the children of or-node C, then Var(C i ) = Var(C j ) Example Smoothness a b b a c d d c

15 9/15 Target fragments Other propositional fragments Fragments of NNF PS : definitions Definition (Propositional fragments [Darwiche & Marquis 2001]) DNNF: NNF PS + decomposability. d-dnnf: NNF PS + decomposability and determinism. FBDD: NNF PS + decomposability and decision. OBDD < : NNF PS + decomposability, decision and ordering. MODS: DNF d-dnnf + smoothness.

16 10/15 Complexity results Complexity landscape Complexity results for qbf Fragment PROP PS (general case) CNF DNF d-dnnf DNNF FBDD OBDD < OBDD < (compatible prefix) PI IP MODS Complexity PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-c PSPACE-c P PSPACE-c PSPACE-c P

17 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

18 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

19 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

20 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

21 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

22 11/15 Complexity results A glimpse at some proofs Inclusion of fragments [Darwiche & Marquis 2001] NNF d-nnf s-nnf DNNF f-nnf BDD d-dnnf FBDD sd-dnnf DNF CNF OBDD OBDD < MODS IP PI

23 12/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Prefix compatible: < extension of the variable ordering induced by the prefix of the QBF Eliminating quantifiers from the innermost to the outermost Eliminating existential quantifiers Eliminating universal quantifiers ( x x ) Reduce the OBDD< at each elimination step Remark: Negation in constant time in OBDD <

24 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z

25 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z x φ = y z

26 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z x z φ = y

27 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z x z φ = y

28 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z y z φ = x

29 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case y }{{} z φ = y Σ = x y z φ φ (x y) z x

30 13/15 Complexity results A polynomial case OBDD < with compatible prefix: a polynomial case Σ = x y z φ φ (x y) z x y z φ = Σ is valid

31 14/15 Conclusion and perspectives Conclusion Presentation of propositional fragments Numerous intractable fragments Some tractability results (under very restrictive conditions) Perspectives Study of other (polynomial) complete or incomplete fragments Integrate specialized algorithms into our solver A sharper analysis of the prefix in order to improve our solver

32 15/15 That s all folks! Any questions?

Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae

Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Propositional Fragments for Knowledge Compilation and Quantified Boolean Formulae Sylvie Coste-Marquis and Daniel Le Berre and Florian Letombe and Pierre Marquis CRIL/CNRS, Université d Artois, F-62307

More information

Complexity results for Quantified Boolean Formulae based on complete propositional languages

Complexity results for Quantified Boolean Formulae based on complete propositional languages Journal on Satisfiability, Boolean Modeling and Computation 1 (2006) 61 88 Complexity results for Quantified Boolean Formulae based on complete propositional languages Sylvie Coste-Marquis Daniel Le Berre

More information

A Knowledge Compilation Map

A Knowledge Compilation Map Journal of Artificial Intelligence Research 17 (2002) 229-264 Submitted 12/01; published 9/02 A Knowledge Compilation Map Adnan Darwiche Computer Science Department University of California, Los Angeles

More information

Representing Policies for Quantified Boolean Formulas

Representing Policies for Quantified Boolean Formulas Representing Policies for Quantified Boolean Formulas Sylvie Coste-Marquis CRIL Univ. d Artois, Lens, France Hélène Fargier and Jérôme Lang IRIT Univ. Paul Sabatier, Toulouse, France Daniel Le Berre and

More information

Representing Policies for Quantified Boolean Formulae

Representing Policies for Quantified Boolean Formulae Representing Policies for Quantified Boolean Formulae Sylvie Coste-Marquis CRIL Univ. d Artois, Lens, France Hélène Fargier and Jérôme Lang IRIT Univ. Paul Sabatier, Toulouse, France Daniel Le Berre and

More information

This is an author-deposited version published in : Eprints ID : 16897

This is an author-deposited version published in :   Eprints ID : 16897 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

On Unit-Refutation Complete Formulae with Existentially Quantified Variables

On Unit-Refutation Complete Formulae with Existentially Quantified Variables On Unit-Refutation Complete Formulae with Existentially Quantified Variables Lucas Bordeaux 1 Mikoláš Janota 2 Joao Marques-Silva 3 Pierre Marquis 4 1 Microsoft Research, Cambridge 2 INESC-ID, Lisboa 3

More information

Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach

Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach Yong Lai, Dayou Liu, Shengsheng Wang College of Computer Science and Technology Jilin University, Changchun

More information

On Valued Negation Normal Form Formulas

On Valued Negation Normal Form Formulas On Valued Negation Normal Form Formulas Hélène Fargier IRIT-CNRS, Toulouse email: fargier@irit.fr Pierre Marquis CRIL-CNRS, Université d Artois, Lens email: marquis@cril.univ-artois.fr Abstract Subsets

More information

Knowledge Compilation in the Modal Logic S5

Knowledge Compilation in the Modal Logic S5 Knowledge Compilation in the Modal Logic S5 Meghyn Bienvenu Universität Bremen Bremen, Germany meghyn@informatik.uni-bremen.de Hélène Fargier IRIT-CNRS, Université Paul Sabatier, Toulouse, France fargier@irit.fr

More information

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms Assaf Kfoury 5 February 2017 Assaf Kfoury, CS 512, Spring

More information

Quantified Boolean Formulas: Complexity and Expressiveness

Quantified Boolean Formulas: Complexity and Expressiveness Dagstuhl SAT Interactions 2012 Quantified Boolean Formulas: Complexity and Expressiveness Uwe Bubeck University of Paderborn 20.11.2012 Outline Introduction Free Variables and Equivalence Complexity Expressiveness

More information

Compiling Knowledge into Decomposable Negation Normal Form

Compiling Knowledge into Decomposable Negation Normal Form Compiling Knowledge into Decomposable Negation Normal Form Adnan Darwiche Cognitive Systems Laboratory Department of Computer Science University of California Los Angeles, CA 90024 darwiche@cs. ucla. edu

More information

On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic Policies

On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic Policies Salem Benferhat CRIL-CNRS, Université d Artois rue Jean Souvraz 62307 Lens Cedex. France. benferhat@cril.univ-artois.fr On the Compilation of Stratified Belief Bases under Linear and Possibilistic Logic

More information

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic

Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic Salem Benferhat CRIL-CNRS, Université d Artois rue Jean Souvraz 62307 Lens Cedex France benferhat@criluniv-artoisfr

More information

Solving PP PP -Complete Problems Using Knowledge Compilation

Solving PP PP -Complete Problems Using Knowledge Compilation Solving PP PP -Complete Problems Using Knowledge Compilation Umut Oztok and Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles {umut,aychoi,darwiche}@cs.ucla.edu

More information

Algebraic Model Counting

Algebraic Model Counting Algebraic Model Counting Angelika Kimmig a,, Guy Van den Broeck b, Luc De Raedt a a Department of Computer Science, KU Leuven, Celestijnenlaan 200a box 2402, 3001 Heverlee, Belgium. b UCLA Computer Science

More information

Knowledge Compilation for Model Counting: Affine Decision Trees

Knowledge Compilation for Model Counting: Affine Decision Trees Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Knowledge Compilation for Model Counting: Affine Decision Trees Frédéric Koriche 1, Jean-Marie Lagniez 2, Pierre

More information

Towards Deterministic Decomposable Circuits for Safe Queries

Towards Deterministic Decomposable Circuits for Safe Queries Towards Deterministic Decomposable Circuits for Safe Queries Mikaël Monet 1 and Dan Olteanu 2 1 LTCI, Télécom ParisTech, Université Paris-Saclay, France, Inria Paris; Paris, France mikael.monet@telecom-paristech.fr

More information

On propositional definability

On propositional definability Artificial Intelligence 172 (2008) 991 1017 www.elsevier.com/locate/artint On propositional definability Jérôme Lang a, Pierre Marquis b, a IRIT, CNRS / Université Paul Sabatier, 118 route de Narbonne,

More information

Reasoning with Quantified Boolean Formulas

Reasoning with Quantified Boolean Formulas Reasoning with Quantified Boolean Formulas Martina Seidl Institute for Formal Models and Verification Johannes Kepler University Linz 1 What are QBF? Quantified Boolean formulas (QBF) are formulas of propositional

More information

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas Journal of Artificial Intelligence Research 1 (1993) 1-15 Submitted 6/91; published 9/91 Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas Enrico Giunchiglia Massimo

More information

Extending DPLL-Based QBF Solvers to Handle Free Variables

Extending DPLL-Based QBF Solvers to Handle Free Variables Extending DPLL-Based QBF Solvers to Handle Free Variables Will Klieber, Mikoláš Janota, Joao Marques-Silva, Edmund Clarke July 9, 2013 1 Open QBF Closed QBF: All variables quantified; answer is True or

More information

Compiling Stratified Belief Bases

Compiling Stratified Belief Bases Compiling Stratified Belief Bases Sylvie Coste-Marquis 1 and Pierre Marquis 2 Abstract. Many coherence-based approaches to inconsistency handling within propositional belief bases have been proposed so

More information

Decision Procedures for Satisfiability and Validity in Propositional Logic

Decision Procedures for Satisfiability and Validity in Propositional Logic Decision Procedures for Satisfiability and Validity in Propositional Logic Meghdad Ghari Institute for Research in Fundamental Sciences (IPM) School of Mathematics-Isfahan Branch Logic Group http://math.ipm.ac.ir/isfahan/logic-group.htm

More information

Binary Decision Diagrams

Binary Decision Diagrams Binar Decision Diagrams Ma 3, 2004 1 Overview Boolean functions Possible representations Binar decision trees Binar decision diagrams Ordered binar decision diagrams Reduced ordered binar decision diagrams

More information

Duality in Knowledge Compilation Techniques

Duality in Knowledge Compilation Techniques Duality in Knowledge Compilation Techniques Neil V. Murray 1 and Erik Rosenthal 2 1 Department of Computer Science, State University of New York, Albany, NY 12222, USA, nvm@cs.albany.edu 2 Department of

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

CV-width: A New Complexity Parameter for CNFs

CV-width: A New Complexity Parameter for CNFs CV-width: A New Complexity Parameter for CNFs Umut Oztok and Adnan Darwiche 1 Abstract. We present new complexity results on the compilation of CNFs into DNNFs and OBDDs. In particular, we introduce a

More information

Bounded-width QBF is PSPACE-complete

Bounded-width QBF is PSPACE-complete Bounded-width QBF is PSPACE-complete Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain atserias@lsi.upc.edu Sergi Oliva Universitat Politècnica de Catalunya Barcelona, Spain oliva@lsi.upc.edu

More information

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel Propositional Logic Methods & Tools for Software Engineering (MTSE) Fall 2017 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation

Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation Neil V. Murray 1 and Erik Rosenthal 2 1 Department of Computer Science, State University of New York, Albany,

More information

Knowledge Compilation Meets Database Theory : Compiling Queries to Decision Diagrams

Knowledge Compilation Meets Database Theory : Compiling Queries to Decision Diagrams Knowledge Compilation Meets Database Theory : Compiling Queries to Decision Diagrams Abhay Jha Computer Science and Engineering University of Washington, WA, USA abhaykj@cs.washington.edu Dan Suciu Computer

More information

Solving QBF with Free Variables

Solving QBF with Free Variables Solving QBF with Free Variables William Klieber 1, Mikoláš Janota 2, Joao Marques-Silva 2,3, and Edmund Clarke 1 1 Carnegie Mellon University, Pittsburgh, PA, USA 2 IST/INESC-ID, Lisbon, Portugal 3 University

More information

Logical Compilation of Bayesian Networks

Logical Compilation of Bayesian Networks Logical Compilation of Bayesian Networks Michael Wachter & Rolf Haenni iam-06-006 August 2006 Logical Compilation of Bayesian Networks Michael Wachter & Rolf Haenni University of Bern Institute of Computer

More information

Compiling propositional weighted bases

Compiling propositional weighted bases Artificial Intelligence 157 (2004) 81 113 www.elsevier.com/locate/artint Compiling propositional weighted bases Adnan Darwiche a, Pierre Marquis b, a Computer Science Department, University of California,

More information

Proof Complexity of Intuitionistic Propositional Logic

Proof Complexity of Intuitionistic Propositional Logic Proof Complexity of Intuitionistic Propositional Logic Alexander Hertel & Alasdair Urquhart November 29, 2006 Abstract We explore the proof complexity of intuitionistic propositional logic (IP L) The problem

More information

Non-Deterministic Time

Non-Deterministic Time Non-Deterministic Time Master Informatique 2016 1 Non-Deterministic Time Complexity Classes Reminder on DTM vs NDTM [Turing 1936] (q 0, x 0 ) (q 1, x 1 ) Deterministic (q n, x n ) Non-Deterministic (q

More information

Basing Decisions on Sentences in Decision Diagrams

Basing Decisions on Sentences in Decision Diagrams Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence Basing Decisions on Sentences in Decision Diagrams Yexiang Xue Department of Computer Science Cornell University yexiang@cs.cornell.edu

More information

Boolean decision diagrams and SAT-based representations

Boolean decision diagrams and SAT-based representations Boolean decision diagrams and SAT-based representations 4th July 200 So far we have seen Kripke Structures 2 Temporal logics (and their semantics over Kripke structures) 3 Model checking of these structures

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

Validating QBF Invalidity in HOL4

Validating QBF Invalidity in HOL4 Interactive Theorem Proving (ITP) 14 July, 2010 Quantified Boolean Formulae Quantified Boolean Formulae Motivation System Overview Related Work QBF = propositional logic + quantifiers over Boolean variables

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

Compilation of Propositional Weighted Bases

Compilation of Propositional Weighted Bases Compilation of Propositional Weighted Bases Adnan Darwiche Computer Science Department University of Califnia, Los Angeles CA 90095, USA e-mail: darwiche@cs.ucla.edu Pierre Marquis CRIL-CNRS Université

More information

Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases

Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases Paul Beame Jerry Li Sudeepa Roy Dan Suciu Computer Science and Engineering University of Washington Seattle, WA 98195 {beame,

More information

Constraint-based Optimal Testing Using DNNF Graphs

Constraint-based Optimal Testing Using DNNF Graphs Constraint-based Optimal Testing Using DNNF Graphs Anika Schumann 1, Martin Sachenbacher 2, and Jinbo Huang 3 1 Cork Constraint Computation Centre, University College Cork, Ireland 2 Institut für Informatik,

More information

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011 Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber 15-414 Aug 31, 2011 Why study SAT solvers? Many problems reduce to SAT. Formal verification CAD, VLSI Optimization AI, planning, automated

More information

Introduction to Advanced Results

Introduction to Advanced Results Introduction to Advanced Results Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Advanced Results 1/26 Outline Boolean Hierarchy Probabilistic Complexity Parameterized

More information

A Unit Resolution-Based Approach to Tractable and Paraconsistent Reasoning

A Unit Resolution-Based Approach to Tractable and Paraconsistent Reasoning A Unit Resolution-Based Approach to Tractable and Paraconsistent Reasoning ylvie Coste-Marquis and Pierre Marquis 1 Abstract. A family of unit resolution-based paraconsistent inference relations Σ for

More information

On the Role of Canonicity in Bottom-up Knowledge Compilation

On the Role of Canonicity in Bottom-up Knowledge Compilation On the Role of Canonicity in Bottom-up Knowledge Compilation Guy Van den Broeck and Adnan Darwiche Computer Science Department University of California, Los Angeles {guyvdb,darwiche}@cs.ucla.edu Abstract

More information

Worst-Case Upper Bound for (1, 2)-QSAT

Worst-Case Upper Bound for (1, 2)-QSAT Worst-Case Upper Bound for (1, 2)-QSAT Minghao Yin Department of Computer, Northeast Normal University, Changchun, China, 130117 ymh@nenu.edu.cn Abstract. The rigorous theoretical analysis of the algorithm

More information

Quantified Boolean Formulas Part 1

Quantified Boolean Formulas Part 1 Quantified Boolean Formulas Part 1 Uwe Egly Knowledge-Based Systems Group Institute of Information Systems Vienna University of Technology Results of the SAT 2009 application benchmarks for leading solvers

More information

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26

Space Complexity. Master Informatique. Université Paris 5 René Descartes. Master Info. Complexity Space 1/26 Space Complexity Master Informatique Université Paris 5 René Descartes 2016 Master Info. Complexity Space 1/26 Outline Basics on Space Complexity Main Space Complexity Classes Deterministic and Non-Deterministic

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

arxiv: v1 [cs.ai] 24 Oct 2014

arxiv: v1 [cs.ai] 24 Oct 2014 On the Complexity of Optimization Problems based on Compiled NNF Representations Daniel Le Berre and Emmanuel Lonca and Pierre Marquis CRIL-CNRS, Université d Artois, France lastname@cril.fr arxiv:1410.6690v1

More information

KU Leuven Department of Computer Science

KU Leuven Department of Computer Science Implementation and Performance of Probabilistic Inference Pipelines: Data and Results Dimitar Shterionov Gerda Janssens Report CW 679, March 2015 KU Leuven Department of Computer Science Celestijnenlaan

More information

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation Lecture 20: PSPACE November 15, 2016 CS 1010 Theory of Computation Recall that PSPACE = k=1 SPACE(nk ). We will see that a relationship between time and space complexity is given by: P NP PSPACE = NPSPACE

More information

arxiv:cs/ v1 [cs.ai] 11 Jul 2002

arxiv:cs/ v1 [cs.ai] 11 Jul 2002 Compilation of Propositional Weighted Bases arxiv:cs/0207045v1 [cs.ai] 11 Jul 2002 Adnan Darwiche Computer Science Department University of Califnia, Los Angeles CA 90095, USA e-mail: darwiche@cs.ucla.edu

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams An Introduction and Some Applications Manas Thakur PACE Lab, IIT Madras Manas Thakur (IIT Madras) BDDs 1 / 25 Motivating Example Binary decision tree for a truth table Manas Thakur

More information

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Outline Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Part 5: Completeness of Lifted Inference Part 6: Query Compilation Part 7:

More information

Preprocessing QBF: Failed Literals and Quantified Blocked Clause Elimination

Preprocessing QBF: Failed Literals and Quantified Blocked Clause Elimination Preprocessing QBF: Failed Literals and Quantified Blocked Clause Elimination Florian Lonsing (joint work with Armin Biere and Martina Seidl) Institute for Formal Models and Verification (FMV) Johannes

More information

A Resolution Method for Modal Logic S5

A Resolution Method for Modal Logic S5 EPiC Series in Computer Science Volume 36, 2015, Pages 252 262 GCAI 2015. Global Conference on Artificial Intelligence A Resolution Method for Modal Logic S5 Yakoub Salhi and Michael Sioutis Université

More information

Symmetry Breaking in Quantified Boolean Formulae

Symmetry Breaking in Quantified Boolean Formulae Symmetry Breaking in Quantified Boolean Formulae Gilles Audemard and Saïd Jabbour and Lakhdar Saïs CRIL - CNRS, FRE 2499 Université d Artois - Lens, France {audemard,jabbour,sais}@cril.univ-artois.fr Abstract

More information

A Method for Generating All the Prime Implicants of Binary CNF Formulas

A Method for Generating All the Prime Implicants of Binary CNF Formulas A Method for Generating All the Prime Implicants of Binary CNF Formulas Yakoub Salhi CRIL-CNRS, Université d Artois, F-62307 Lens Cedex, France salhi@cril.fr Abstract In this paper, we propose a method

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

A New 3-CNF Transformation by Parallel-Serial Graphs 1

A New 3-CNF Transformation by Parallel-Serial Graphs 1 A New 3-CNF Transformation by Parallel-Serial Graphs 1 Uwe Bubeck, Hans Kleine Büning University of Paderborn, Computer Science Institute, 33098 Paderborn, Germany Abstract For propositional formulas we

More information

Proof Complexity of Quantified Boolean Formulas

Proof Complexity of Quantified Boolean Formulas Proof Complexity of Quantified Boolean Formulas Olaf Beyersdorff School of Computing, University of Leeds Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 1 / 39 Proof complexity (in one

More information

Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy

Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy Electronic Colloquium on Computational Complexity, Report No. 143 (2014) Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy Ronald de Haan, Stefan Szeider Institute of Information

More information

Reduced Ordered Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams Reduced Ordered Binary Decision Diagrams Lecture #12 of Advanced Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling & Verification E-mail: katoen@cs.rwth-aachen.de December 13, 2016 c JPK

More information

Model Counting of Query Expressions: Limitations of Propositional Methods

Model Counting of Query Expressions: Limitations of Propositional Methods Model Counting of Query Expressions: Limitations of Propositional Methods Paul Beame University of Washington beame@cs.washington.edu Jerry Li MIT jerryzli@csail.mit.edu Dan Suciu University of Washington

More information

arxiv: v3 [cs.cc] 19 Feb 2015

arxiv: v3 [cs.cc] 19 Feb 2015 A Strongly Exponential Separation of DNNFs from CNF Formulas Simone Bova Florent Capelli Stefan Mengel Friedrich Slivovsky arxiv:1411.1995v3 [cs.cc] 19 Feb 2015 Abstract Decomposable Negation Normal Forms

More information

Algorithms and exploitation of the compiled forms BR4CP

Algorithms and exploitation of the compiled forms BR4CP Algorithms and exploitation of the compiled forms Projet ANR-11-BS02-008 BR4CP Rapport technique CRIL 2014 003 Rédacteur : Sylvie Coste-Marquis December 11, 2014 Contents 1 Introduction 2 A Just-in-Time

More information

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ}

Lecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ} 6.841 Advanced Complexity Theory February 28, 2005 Lecture 8 Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya 1 A New Theme In the past few lectures, we have concentrated on non-uniform types of computation

More information

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning.

CS1021. Why logic? Logic about inference or argument. Start from assumptions or axioms. Make deductions according to rules of reasoning. 3: Logic Why logic? Logic about inference or argument Start from assumptions or axioms Make deductions according to rules of reasoning Logic 3-1 Why logic? (continued) If I don t buy a lottery ticket on

More information

PSPACE COMPLETENESS TBQF. THURSDAY April 17

PSPACE COMPLETENESS TBQF. THURSDAY April 17 PSPACE COMPLETENESS TBQF THURSDAY April 17 Definition: Language B is PSPACE-complete if: 1. B PSPACE 2. Every A in PSPACE is poly-time reducible to B (i.e. B is PSPACE-hard) QUANTIFIED BOOLEAN FORMULAS

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join

On the Relative Efficiency of DPLL and OBDDs with Axiom and Join On the Relative Efficiency of DPLL and OBDDs with Axiom and Join Matti Järvisalo University of Helsinki, Finland September 16, 2011 @ CP M. Järvisalo (U. Helsinki) DPLL and OBDDs September 16, 2011 @ CP

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0 Motivation: Systems like this: v v 2 v 3 v 4 = v v 2 v 3 v 4 = 0 v 2 v 4 = 0 are very difficult for CNF SAT solvers although they can be solved using simple algebraic manipulations Let c 0, c,...,c 2 n

More information

Knowledge Compilation and Theory Approximation. Henry Kautz and Bart Selman Presented by Kelvin Ku

Knowledge Compilation and Theory Approximation. Henry Kautz and Bart Selman Presented by Kelvin Ku Knowledge Compilation and Theory Approximation Henry Kautz and Bart Selman Presented by Kelvin Ku kelvin@cs.toronto.edu 1 Overview Problem Approach Horn Theory and Approximation Computing Horn Approximations

More information

02 Propositional Logic

02 Propositional Logic SE 2F03 Fall 2005 02 Propositional Logic Instructor: W. M. Farmer Revised: 25 September 2005 1 What is Propositional Logic? Propositional logic is the study of the truth or falsehood of propositions or

More information

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 9 PSPACE: A Class of Problems Beyond NP Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Geography Game Geography. Alice names capital city c of country she

More information

On First-Order Knowledge Compilation. Guy Van den Broeck

On First-Order Knowledge Compilation. Guy Van den Broeck On First-Order Knowledge Compilation Guy Van den Broeck Beyond NP Workshop Feb 12, 2016 Overview 1. Why first-order model counting? 2. Why first-order model counters? 3. What first-order circuit languages?

More information

Binary Decision Diagrams Boolean Functions

Binary Decision Diagrams Boolean Functions Binary Decision Diagrams Representation of Boolean Functions BDDs, OBDDs, ROBDDs Operations Model-Checking over BDDs 72 Boolean functions:b = {0,1}, f :B B B Boolean Functions Boolean expressions: t ::=

More information

Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting

Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting Leveraging Belief Propagation, Backtrack Search, and Statistics for Model Counting Lukas Kroc, Ashish Sabharwal, Bart Selman Cornell University May 23, 2008 CPAIOR-08 Conference, Paris Talk Outline Model

More information

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Geography game Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable

More information

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete 9. PSPACE PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Lintao Zhang Announcement Project proposals due

More information

Linear Arithmetic Satisfiability via Strategy Improvement

Linear Arithmetic Satisfiability via Strategy Improvement Linear Arithmetic Satisfiability via Strategy Improvement Azadeh Farzan 1 Zachary Kincaid 1,2 1 University of Toronto 2 Princeton University July 13, 2016 The problem: satisfiability modulo the theory

More information

Fixed-parameter tractable reductions to SAT. Vienna University of Technology

Fixed-parameter tractable reductions to SAT. Vienna University of Technology Fixed-parameter tractable reductions to SAT Ronald de Haan Stefan Szeider Vienna University of Technology Reductions to SAT Problems in NP can be encoded into SAT in poly-time. Problems at the second level

More information

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Outline Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Part 5: Completeness of Lifted Inference Part 6: Query Compilation Part 7:

More information

The NP-hardness of finding a directed acyclic graph for regular resolution

The NP-hardness of finding a directed acyclic graph for regular resolution The NP-hardness of finding a directed acyclic graph for regular resolution Samuel R. Buss Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112, USA sbuss@math.ucsd.edu

More information

Encoding Deductive Argumentation in Quantified Boolean Formulae

Encoding Deductive Argumentation in Quantified Boolean Formulae Encoding Deductive Argumentation in Quantified Boolean Formulae Philippe Besnard IRIT-CNRS, Universitè Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse, France Anthony Hunter Department of Computer Science,

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 16 IP = PSPACE 3 Goal and Plan Goal IP = PSPACE Plan 1. PSPACE IP by showing QBF

More information

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics

Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics Valentin Goranko a,b Steen Vester a 1 a Department of Applied Mathematics and Computer Science Technical

More information

CSP Properties for Quantified Constraints: Definitions and Complexity

CSP Properties for Quantified Constraints: Definitions and Complexity CSP Properties for Quantified Constraints: Definitions and Complexity Lucas Bordeaux Microsoft Research J J Thomson Avenue Cambridge CB3 0FB, UK lucasb@microsoft.com Marco Cadoli and Toni Mancini DIS,

More information

A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams

A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams Hélène Fargier 1 and Pierre Marquis 2 and Alexandre Niveau 3 and Nicolas Schmidt 1,2 1 IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France

More information