CHAPTER 12. Finite-Volume (control-volume) Method-Introduction

Size: px
Start display at page:

Download "CHAPTER 12. Finite-Volume (control-volume) Method-Introduction"

Transcription

1 CHAPR 12 Finit-Volum (control-volum) Mthod-Introduction

2 12-1 Introduction (1) In dvloing ht hs bcom knon s th finit-volum mthod, th consrvtion rincils r lid to fixd rgion in sc knon s control volum, r somht intrchngbly in th litrtur.

3 12-1 Introduction(2) In th finit-volum roch, oint of vi is tkn tht is distinctly diffrnt from finit-diffrnc mthod(or ylr-sris mthod ). In th ylr-sris mthod, cctd th PD s th corrct nd rorit from of th consrvtion rincil(hysicl i i l l) govrning our roblm nd mrly turnd to mthmticl tools to dvlo lgbric roximtions to drivtivs. W nvr gin considrd th hysicl l rrsntd by th PD. In th finit-volum mthod, th consrvtion sttmnt is lid in form licbl to rgion in sc (control volum).

4 12-1 Introduction(3) his intgrl form of th consrvtion sttmnt is usully ll knon from th first rincils, or it cn in most css, b dvlod dfrom th PDform of fth consrvtion from.

5 12-1 Introduction(4) h ftur of th FV mthod is shrd in common ith th finit-lmnt lmnt mthods. h FV rocdur cn, in fct, b considrd d s vrint of th finit-lmnt it t mthod, lthough it is, from nothr oint of vi, just rticulr ty of finitdiffrnc mthod.

6 12-1 Introduction(5) As n xml, considr unstdy 2-D ht conduction in rctngulr-shd solid. h roblm domin is dividd u into control volum ith ihssocitd oints. W cn stblish blihth control volums first nd lc grid oints in th cntrs of th volums (cll-cntrd mthod) or stblish th grid first nd thn fix th boundris of th control volums (cll-vrtx mthod) d)by, for xml lcing th boundris hlfy btn grid oints.

7 φ 12-1 Introduction(6) h Gnrl Diffrntil qution h diffrntil qution obying th gnrlizd consrvtion rincil cn b rittn by th gnrl diffrntil qution s ( ρφ ) t v ( ρvφ ) ( Γ φ ) s (1) :dndnt vribl, such s vlocity comonnts (u,v,), h or, k, ε concntrtion, tc.

8 12-1 Introduction(7) Γ : diffusion cofficints S: sourc trm h four trms of q.(1) r th unstdy trm, th convction trm, th diffusion trm nd th sourc trm. *Not: h consrvtion form of th PD is lso rfrrd to s consrvtion l form or divrgnc form, i.., ll stil drivtivs r urly s divrgncs.

9 12-1 Introduction(8) Consrvtion form of th govrning qutions of fluid flo ρ Mss : ( ρ v ) 0 t v ( ρ ) vv Momtum : ρ vv μ v t ( ρh) v nrgy : ( ρvh ) ( k ) S t ( ρc) v Scis : ( ρvc) ( D C) SC tt ( ) ( ) S M

10 12-1 Introduction(9) On-y nd to-y coordints : 1. Dfinitions: to-y coordint is such tht th conditions t givn loction in tht coordint r influncd by chngs in conditions on ithr sid of tht loction. A on-y coordint is such tht th conditions t givn loction in tht coordint r influncd by chngs in th conditions on only on sid of tht loction.

11 12-1 Introduction(10) 2. xmls: on-dimnsionl stdy ht conduction in rod rovids on xml of to-y coordint. h tmrtur of ny givn oint in th rod cn b influncd by chnging th tmrtur of ithr nd. Normlly, sc coordints r to-y coordints. im, on th othr hnd, is lys on-y coordint. During th unstdy cooling of solid, th tmrtur t givn instnt cn b influncd by chnging only ths conditions tht t rvild bfor tht instnt.

12 12-1 Introduction(11) 3. Sc s on-y coordint: If thr is strong unidirctionl i flo in th coordint dirction, thn significnt influncs trvl only from ustrm. h conditions t givn oint r thn ffctd lrgly by th ustrm conditions, nd vry littl by th donstrm ons. It is tru tht convction is on-y rocss, but diffusion (hich is lys rsnt) hs to-y influncs. Hovr., thn th flo rt is lrg, condition ovrors diffusion nd thus mk th sc coordint nrly on-y y.

13 12-1 Introduction(12) 4. Prbolic, llitic, hyrbolic: ) h trm rbolic indicts on y bhvior, hil llitic signifis th to-y conct. b) It ould b mor mningful if situtions r dscribd d s bing rbolic or llitic in givn coordint. hus, th unstdy ht condition roblm, hich is normlly clld rbolic, is ctully rbolic in tim nd llitic in ll coordint. A to-dimnsion boundry lyr is rbolic in th strm is coordint nd llitic in th cross-strm coordint

14 12-1 Introduction(13) c) A hyrbolic roblm hs kind of on-y bhvior, hich is, hovr, not long coordint dirctions but long scil-lins clld chrctristics. d) A sitution is rbolic if thr xists t lst on on-y coordint: othris, it is llitic. ) A flo ith on on-y sc coordint is somtims clld boundry-lyr-ty flo, hil flo ith ll to-yy coordint is rfrrd to s rcirculting flo.

15 12-1 Introduction(14) 5. Comuttionl imlictions: h motivtion for th forgoing discussion bout h motivtion for th forgoing discussion bout on-y nd to-y coordints is tht, it on-y coordint cn b idntifid in givn sitution, substntil conomy of comutr storg nd comutr tim is ossibl.

16 12-2 An Illustrtiv xml(1) h FV mthod usd th intgrl form of th consrvtion qution(q.1) s th strting oint: CV r ( Γ φ ) dv s dv n ( Γ φ ) da s dv (2) CV ϕ A Lt us considr stdy on-dimnsionl ht conduction govrnd by d d k s dx dx 0 (3) CV ϕ

17 12-2 An Illustrtiv xml(2) 1. Prrtion: o driv th discrriztion qution, shll mloy th grid-oint clustr shon in Fig.1. W focus ttntion on th grid oint P, hich hs th grid oints nd W s its nighbors.( dnots th st sid, hil W stnds for th st sid). h dshd lins sho th fcs of th control volum. h lttrs nd dnot ths fcs.

18 12-2 An Illustrtiv xml(3) (δ x) (δ x) W P x Fig. 1 For on-dimnsionl roblm undr considrtion, shll ssum unit thicknss in th y nd z dirctions. hus, th volum of th cv shon is x 1 1. If intgrt q(3) ovr th cv, gt k x k x sdx 0 (4)

19 12-2 An Illustrtiv xml(4) 2. Profil ssumtion: o mk furthr furthr rogrss, nd rofil ssumtion or n introltion formul. Hr, linr introltion functions r usd btn th grid oints, s shon in Fig 2. Fig. 2 W δx δx x

20 12-2 An Illustrtiv xml(5) 3. h discrriztion qution: If vlut th drivtivs d/dx in q.(4) from th icis-linr rofil, th rsulting qution ill b k ( ( ) ( ) k ( δx) ( δx) sx 0 (5)

21 12-2 An Illustrtiv xml(6) hr s is th vrg vlu of s ovr th cv. It is usful to cst th discrtiztion q(5) into th folloing form : b (6) Whr k W W, k W ( δx ) ( δx ), P W, b sx

22 12-2 An Illustrtiv xml(7) 4. Commnts: ) In gnrl, it is convnint to xtnd q.(6) into multidimnsionl form s P P b nb nb (7) hr nb dnots nighbor, nd th summtion is to b tkn ovr ll th nighbors. b) In driving q(6), hv usd th simlst rofil ssumtion tht nbld us to vlut d/dx. Of cours, mny othr introltion functions ould hv bn ossibl.

23 12-2 An Illustrtiv xml(8) c) Furthr, it is imortnt to undrstnd tht nd not us th sm rofil for ll quntitis. d) vn for givn vribl, th sm rofil ssumtion nd not b usd for ll trms in th qution.

24 12-2 An Illustrtiv xml(9) 5. rtmnt of sourc trm: h discrtiztion qutions ill b solvd by th tchniqus for linr lgbric qutions. h rocdur for linrizing givns~ rltionshi is ncssry. Hr, it is sufficint to xrss th ovrg vlu S s S S C S P P

25 12-2 An Illustrtiv xml(10) Whr S c stnds for th constnt rt of S, hil S is th cofficint of With th hil S is th cofficint of. With th linrizd sourc xrssion, th di ti ti ti ill b discrtiztion qution ill bcom b ( ) x k hr b W W P P δ ( ) ( ) x k W δ x S b x s C W P

26 12-3 h Four Bsic Ruls(1) Rul 1:Consistncy t control-volum fc -Whn fc is common to to djcnt control volums, th flux cross it must b rrsntd by th sm xrssion in th discrtiztion qutions for th to control volums Rul 2:Positiv cofficints -All cofficints ( nd nighbor cofficints nb ) must lys b ositiv.

27 12-3 h Four Bsic Ruls(2) Rul 3:Ngtiv-slo linriztion of th sourc trm -Whn th sourc trm is linrizd s SS C S P P, C P P th cofficint S P must lys b lss thn or qul to zro. Rul 4:Sum of th nighbor cofficints -W rquir P nb

28 CHAPR 13 h Finit Volum Mthod for Diffusion Problms

29 13-1 Stdy On-dimnsionl Condition(1) h Bsic qution d dx k d dx S 0 (1) h Discrtiztion qution P P hr b (2) W k δx b W ( ) k δ x S C W ( ) x W S P x

30 13-1 Stdy On-dimnsionl Condition(2) h Grid Scing 1. For th grid oints shon in 8.4, it it not ncssry tht th distncs (δx) nd (δx) b qul. Indd, th us of non-uniform grid scing is oftn dsirbl, for it nbls us to dloy comuting or ffctivly. In gnrl, shll obtin n ccurt solution o only hn th grid is sufficintly fin, but thr is no nd to mloy fin grid in rgions hr th dndnt vribl chngs rthr sloly ith x. On th othr hnd, fin grid is rquird hr th ~x vrition is st.

31 13-1 Stdy On-dimnsionl Condition(3) 2. A misconction sms rvil tht non- uniform grid ld to lss ccurcy thn do uniform grids. hr is no sound bsis for such n ssrtion. Also thr r no univrsl ruls bout ht mximum (or minimum) rtio th djcnt grid intrvls should mintin.

32 13-1 Stdy On-dimnsionl Condition(4) 3. Sinc th ~x distribution is not knon bfor th roblm is solvd, ho cn dsign n rorit non-uniform grid? First: On normlly hs som qulittiv xcttions bout th solution, from hich som guidnc cn b obtind. scond: rliminry cors-grid solutions cn b usd to find th ttrn of th ~x vrition; thn suitbl nonuniform grid cn b constructd.

33 13-1 Stdy On-dimnsionl Condition(5) h Intrfc Conductivity 1. h most strightforrd rocdur for obtining th intrfc conductivity k is to ssum linr vrition of k btn oints P nd (δx) P (δx) - (δx) x

34 13-1 Stdy On-dimnsionl Condition(6) hn, k f k (1 f ) k (3) hr f ( δx) ( δx) (4) ( ) If th intrfc r midy btn grid oints, f ould b 0.5, nd k ould b h rithmtic mn of k nd k.

35 13-1 Stdy On-dimnsionl Condition(7) 2.W shll shortly sho tht this siml-mindd roch lds to rthr incorrct imlictions in som css nd cnnot ccurtly hndl th brut chngs of conductivity i tht my occur in comosit mtrils. Fortuntly, much bttr ltrntiv is vilbl. 3.Our min objctiv is to obtin good rrsnttion for th ht flux q t th intrfc vi

36 13-1 Stdy On-dimnsionl Condition(8) 3.Our min objctiv is to obtin good rrsnttion for th ht flux q t th intrfc vi k ( ) q (5) ( δx) For th comosit slb btn oints P nd, stdy on-dimnsionl nlysis (ithout sourcs) ld to q ( δx ) ( δx ) k P P k (6)

37 13-1 Stdy On-dimnsionl Condition(9) Combintion of qs.(4) (6) yilds k 1 f f k k 1 (7) Whn th intrfc is lcd midy btn nd, hv f 0.5; thn ( 1 1 k k k ) or 2 k k k k q. (9) sho tht k is th hrmonic mn of k nd k, rthr thn th rithmtic mn. k (9) (8)

38 13-1 Stdy On-dimnsionl Condition(10) 4. ( δx) ( δx) k k A similr xrssion cn b rittn for W. 1

39 13-1 Stdy On-dimnsionl Condition(11) 5. h rcommndd intrfc conductivity formul (7) is bsd on th stdy, no-sourc, on-dimnsionl sitution in hich th conductivity vris in stis fshion from on control volum to th nxt. vn in situtions ith nonzro sourcs or ith continuous vrition of conductivity, it rforms much bttr thn th rithmtic- mn formul.

40 13-1 Stdy On-dimnsionl Condition(12) Itrtion 1. Strt ith guss or stimt for th vlus of f t ll grid oints. 2. From ths gussd s, clcult tnttiv vlus of th cofficints in th discrtiztion qution. 3. Solv th nominlly st of lgbric qutions to gt n vlus of. 4. With ths s s bttr gusss, rturn to st 2 nd rt th rocss until furthr rtitions cs to roduc significnt chngs in th vlus of.

41 13-1 Stdy On-dimnsionl Condition(13) Sourc-rm Linriztion *: th guss vlu or th rvious-itrtionitrtion vlu of xml 1: Givn S5-4 -S c 5, S -4 rcommndd -S c 5-4 *S *, 0 not imrcticl -S c 57 *,S -11 str S~ rltionshi, ill slo don th convrgnc

42 13-1 Stdy On-dimnsionl Condition(14) xml 2: Givn S37 1. S c 3,S 7 this is not cctbl, s it mks S ositiv. h rsnc of ositiv S mny cus divrgnc. 2. S c 37 *, S 0 this is th rctic on should follo. 3. S c 39 *, S -2 this is n rtificil crtiv S. It ill, in gnrl, slo don th convrgnc.

43 13-1 Stdy On-dimnsionl Condition(15) xml 3: Givn S S c 4-5 * 3, S 0 this 0 is th lzy-rson roch. 2. S c 4, S -5 * 2 this givn S~ curv is str thn this imlis.

44 13-1 Stdy On-dimnsionl Condition(16) 3. Rcommndd mthod: S S * * ds d ( ) * ( ) * 3 * 2 * hus, S c * 3 15 * * 3, S 15 his linriztion rrsnts th tngnt to th S~ curv t * * 2

45 13-1 Stdy On-dimnsionl Condition(17) 4. S c 420 *, S -25 * 2 his givns str S~ curv, hich ould slo don convrgnc S (1) (2) (4) (3)

46 13-1 Stdy On-dimnsionl Condition(18) Boundry Conditions: 1. yiclly, thr kinds of boundry conditions r ncountrd in ht condition. hs r -Givn boundry tmrtur. t -Givn boundry ht flux -Boundry ht flux scifid vi ht trnsfr cofficint nd th tmrtur of th surrounding fluid.

47 13-1 Stdy On-dimnsionl Condition(19) 2. If th boundry tmrtur is givn, no rticulr difficulty riss, nd no dditionl qutions r rquird. Whn th boundry tmrtur is not givn, nd to construct n dditionl qution for B. his is don by intgrting th diffrntil qution ovr th hlf control volum shon djcnt to th boundry in th folloing Figur.

48 13-1 Stdy On-dimnsionl Condition(20) Hlf C.V. B I W P Fig 1 yicl C.V. (δx) i q B B x i Fig 2 I

49 13-1 Stdy On-dimnsionl Condition(21) 3. Aly th rincils of nrgy consrvtion x s dx d k dx d k dx s dx d k dx d B i i B B i Alying th rincils of nrgy consrvtion ovr C.V. of Fig.2 nd noting g g tht th ht flux q stnds for -k(d/dx), gt x S S q q B c i B 0 ) ( g ( ) ( ) ( ) b x S S dx k q B c i I B i B B c i B 0 ( ) x S q x S b x k hr b P I B B c i i I I I B B,, δ

50 13-1 Stdy On-dimnsionl Condition(22) 4. If q B is scifid in trms of ht trnsfr cofficint h nd surrounding-fluid tmrtur f such tht q B h( f - B ) hn, th qution for B bcoms B B II b ki hr I, b SCx hf, δx ( ) B I SP x i h

51 13-1 Stdy On-dimnsionl Condition(23) Solution of th Linr Algbr qution (DMA) 1. h discrtiztion qutions cn b rittn s i i b c d i i 1 i i1 i (1)

52 13-2 Unstdy On-Dimnsionl Condition(1) h gnrl Discrtiztion qution 1. Unstdy on-dimnsionl ht-conduction qution if ( ρc ) k t x x ρ,c r constnt, ρc t k x x (1) q.(1) bcoms (2)

53 13-2 Unstdy On-Dimnsionl Condition(2) 2. h discrtiztion qution W P ρc ρc tt t dtdx t tt t t dtdx ρc t tt t x x k x ( 0 ) P dxdt (3)

54 13-2 Unstdy On-Dimnsionl Condition(3) ( ) ( ) ( ) t t dt k k x c (4) 0 ρ ( ) ( ) ( ) [ ] t t t P t f f dt dt x x x c (5) ) (1 (4) 0 δ δ ρ hr f is ighting fctor btn 0 nd 1 from qs (4) nd (5) cn gt [ ] t t f f dt ) (5 ) (1 from qs.(4) nd (5), cn gt ( ) ( ) ( ) k k f x ( ) ( ) ( ) ( ) ( ) k k x x f t c δ δ ρ ( ) ( ) ( ) ( ) ( ) 1 (6) x k x k f δ δ

55 13-2 Unstdy On-Dimnsionl Condition(4) hr 0 0 [ f ( ) ] f W f W ( 1 f ) ( f ) ( 1 f ) k [ 0 ] 1 W ( ) δx ( x ) cx 0 f f δ ρ t [ ] 0 0 P 1 W P (6) k

56 13-2 Unstdy On-Dimnsionl Condition(5) 1. xml: Crnk-Nicolson, nd Fully Imlicit Schms f f f ( x) ρc 0 : x licit schm stbility critri : t < 2k 0.5 : Crnk Nicolson schm unconditionlly stbl 1: Fll Fully imlicit i schm 2

57 13-2 Unstdy On-Dimnsionl Condition(6) 2. Vrition of tmrtur ith tim for thr diffrnt schms 0 xlicit Fully imlicit it Crnk-Nicolson t tt t

58 13-2 Unstdy On-Dimnsionl Condition(7) 3. Why ould rfr th fully imlicit schm? ) For f0 (xlicit) schm ) 0 ( W P his mns tht P is not rltd to othr unknos such s or W W,, but is xlicitly obtinbl in trms of knon tmrtur P0, 0, W0.

59 13-2 Unstdy On-Dimnsionl Condition(8) b) For f0.5, th cofficint of P0 in q(6) bcoms P0 -( W )/2. For uniform conductivity nd uniform grid scing, this cofficint cn b sn to b ρc( x/ t)-k/ x. Whnvr th tim st is not sufficintly i smll, this cofficint i could bcom ngtiv, ith its otntil for hysiclly unrlistic rsults. c) For f1, th cofficint of P0 in q(6) must nvr bcom ngtiv. It is for this rson tht shll dot th fully imlicit schm in this book.

60 13-2 Unstdy On-Dimnsionl Condition(9) h Fully Imlicit Discrtittion qution 1 b 1. P P W W b Whr ( ) ( ) t x c x k x k P W W W 0,,, ρ δ δ x S b C x S P P W P 0 2. It cn b sn tht, s t, this qution rducs to our stdy-stt discrtiztion qution.

61 13-3 o-and hr- Dimnsionl Situtions(1) Discrtiztion qution for o Dimnsions ( ) c ρ ( ) s y k y x k x t c ρ ( ) ρ thn constnt, c, if ( ) s y k y x k x t c ρ

62 13-3 o-and hr- Dimnsionl Situtions(2) N x n W y s S y x

63 13-3 o-and hr- Dimnsionl Situtions(3) P P W W N N b h hr x k x k y k y k s W n N W W,,,, ( ) ( ) ( ) ( ) y x c y y x x P S W n N W W,,,, 0 ρ δ δ δ y x S b t C P, 0 0 y x S P P N S W P Discrtiztion qution for hr Dimnsions 0 b B B S S N N W W P P

64 13-4 Ovrrlxtion nd Undrrlxtion(1) Ovrrlxtion is oftn usd in conjunction ith th Guss-Sidl mthod, th rsulting schm bing knon s succssiv Ovr-Rlxtion (SOR). With th lin-by-lin mthod, th us of ovrrlxtion is lss common. Undrrlxtion is vry usful dvic for nonlinr roblm. It is oftn mloyd to void divrgnc in th itrtiv solution of strongly nonlinr qutions.

65 13-4 Ovrrltion nd Undrrlxtion(2) h gnrl discrtiztion qution of th form is P P * P or P P * P nb nb nb P nb b (1) b (2) is th vlu of P P α * P P α nb nb P P nb b * P (3) from th rvious itrtion. nbnb b * P (4) P P * nb b 1α P (4b α ( ) )

66 13-4 Ovrrltion nd Undrrlxtion(3) At first, it should b notd tht, hn th itrtions, tht is, P bcoms qul to P*. q. (4) imlis tht th convrgd vlus of do stisfy th originl q.(1). Any rlxtion schm, of cours must ossss this rorty; th finl convrgd solution, lthough obtind through th us of rbitrry rlxtion fctors or similr dvics, must still stisfy th originl discrtiztion qution.

67 13-4 Ovrrltion nd Undrrlxtion(4) hr r no gnrl ruls for choosing th bst vlu of α. h otimum vlu dnds uon numbr of fctors, such s th ntur of fth roblm, th numbr of grid oints, th grid scing, nd th itrtiv rocdur usd. Usully, suitbl vlu of α cn b found by xrinc.

68 CHAPR 14 Convction nd Diffusion

69 14-1 Convction-Diffusion rm h convction trm hs n insrbl connction ith th diffusion trm, nd thrfor, th to trms nd to b hndld s on unit. Govrning gqutions ρ t x j ( ρu ) ρu j 0 j ( ρφ ) ( ) φ ρ φ Γ S t x j u j x j x j

70 14-2 Stdy On-Dimnsionl Convction nd Diffusion(1) Govrning qutions d dx d dx ( ρu) 0 or ρu cons tn t d φ dx xx ( ρuφ ) Γ (1)

71 14-2 Stdy On-Dimnsionl Convction nd Diffusion(2) A Prliminry Drivtion 1. Intgrtion of q (1) ovr th C.V. shon in Fig.1 givs dφ dx dφ dx ( ρuφ ) ( ρuφ ) Γ Γ (2) C.V. W P (δx) (δx)

72 14-2 Stdy On-Dimnsionl Convction nd Diffusion(3) 2. Diffusion trm: h sm y of chtr Convction trm: 1 ( 1 φ φ ) nd φ ( φ φ ) φ P nd P φ 2 2 h fctor ½ riss from th ssumtion of th intrfcs bing midy. No, q (1) cn b rittn s 1 2 Γ 1 P 2 φ φp Γ φp φ δx δx ( ρ u) ( φ φ ) ( ρu) ( φ φ ) ( ) ( ) ( W ) ( ) P W W

73 14-2 Stdy On-Dimnsionl Convction nd Diffusion(4) 4. ) Γ F ρu, D δx b) Both hv th sm dimnsions; F indicts th strngth of th convction (or th flo), hil D is th diffusion conductnc. c) D lys rmins ositiv, F cn tk ithr ositiv or ngtiv vlus dnding on th dirction of th fluid flo.

74 14-2 Stdy On-Dimnsionl Convction nd Diffusion(5) 5. Discrtiztion qution: (3) F W W P P φ φ φ ) (3 2 F F D Whr ) (3 2 F F b F D W ( ) ) (3 2 2 c F F F D F D P ( ) ) 3 ( c F F W

75 14-2 Stdy On-Dimnsionl Convction nd Diffusion(6) 6. Discussion: ) Sinc by continuity FF, do gt th rorty P W b) q q( (3) is lso knon s th cntrl-diffrnc schm nd is th nturl outcom of ylorsris formultion.

76 14-2 Stdy On-Dimnsionl Convction nd Diffusion(7) c) xml: D D 1 nd F F 4 Considr to sts of vlus: i. If Φ 200 nd Φ W 100, thn Φ P 50! ii. If Φ 100 nd Φ W 200, thn Φ P250! Sinc, in rlity, cnnot fll outsid th rng of 100~200 stblishd by its nighbors, ths rsults r clrly unrlistic.

77 14-2 Stdy On-Dimnsionl Convction nd Diffusion(8) d) qs (3)-(3c) indict tht th cofficints could, t tims, bcom ngtiv. Whn F xcds 2D, thn, dnding on hthr F is ositiv or ngtiv, hr is ossibility of or W bcoming ngtiv. his ill b violtion of on of th bsic ruls.

78 14-2 Stdy On-Dimnsionl Convction nd Diffusion(9) h Uind Schm 1. h uind schm rcognizs tht th k oint in th rliminry formultion is th ssumtion tht th convctd rorty Φ t th intrfc is th vrg of Φ nd Φ P, nd it rooss bttr rscrition. h formultion of th diffusion trm is lft unchngd, but th convction trm is clcultd from th folloing ssumtion:

79 14-2 Stdy On-Dimnsionl Convction nd Diffusion(10) h vlu of Φ t n intrfc is qul to th vlu of Φ t th grid oint on th uind sid of th fc. thus, Φ Φ if F>0 (4) nd, Φ Φ if F<0 (4b) h vlu of Φ cn b dfind similrly. W P ρuφ ρuφ ( ) ( ) ( Fφ ) ( Fφ )

80 14-2 Stdy On-Dimnsionl Convction nd Diffusion(11) 2. W shll dfin A,B to dnot th grtr of A nd B. hn, th uind schm imlis F φ [ F, 0] φ [ F,0] (5) φ

81 14-2 Stdy On-Dimnsionl Convction nd Diffusion(12) 3. h discrtiztion qution bcoms φ hr φ φ W P D D D W W (6) [ F ],0 (6 ) [ F,0] (6b) [ F,0] D [ 1 F,0] W ( F F ) (6 c )

82 14-2 Stdy On-Dimnsionl Convction nd Diffusion(13) 4. Discussion: It is vidnt from qs.(6) tht no ngtiv cofficints ould ris, thus, th solutions ill lys b hysiclly rlistic.

83 14-2 Stdy On-Dimnsionl Convction nd Diffusion(14) h xct Solution x x φ x ( ρuφ ) Γ (1) cn b solvd xctly ifγγ is tkn to b constnt.(ρu is constnt)

84 14-2 Stdy On-Dimnsionl Convction nd Diffusion(15) If domin 0 x L is usd, ith th boundry conditions At At x 0 φ φ0 x L φ φ h solution of q(1) is x( ( ) φ φ P x 1 0 L φ φ x P 1 L 0 L ( ) (7) hr P is Pclt numbr dfind by ul ρ Γ It cn b sn tht P is th rtio of convction nd diffusion. th strngths of

85 14-2 Stdy On-Dimnsionl Convction nd Diffusion(16) 2. h ntur of th xct solution: ф L -P>>1 ф ф 0 P -1 P0 P1 P>>1 Fig.2 xct solution for th on-dimnsionl convctiondiffusion roblm 0 L x

86 14-2 Stdy On-Dimnsionl Convction nd Diffusion(17) ) In th limit of zro Pclt numbr, gt th ur-diffusion (or conduction) roblm, nd th ф~x vrition is linr. b) Whn th flo is in th ositiv x dirction (i.., for ositiv vlus of P), th vlus of ф in th domin sm to b mor influncd by th ustrm vlu ф 0. c) For lrg ositiv vlu of P, th vlu of ф rmins vry clos to th ustrm vlu ф 0 ovr much of th domin.

87 14-2 Stdy On-Dimnsionl Convction nd Diffusion(18) d) Whn th fluid flos in th ngtiv x dirction, Φ L bcoms th ustrm vlu, hich domints th vlus of Φ in th domin. ) Whn lrg ngtiv P, th vlu Φ of ovr most of th rgion is vry nrly qul to Φ L.

88 14-2 Stdy On-Dimnsionl Convction nd Diffusion(19) 3. Imlictions: ) It is sy to s hy our rliminry drivtion fild to giv stisfctory formultion. h Φ ~x rofil is fr from bing linr xct for smll vlus of P. b) Whr P is lrg, th vlu of Φ t xl/2 (th intrfc is nrly qul to th vlu of Φ t th uind boundry. his is rcisly th ssumtion md in th uind schm; but thr it is usd for ll vlus of P, not just for lrg vlu.

89 14-2 Stdy On-Dimnsionl Convction nd Diffusion(20) c) Whr P is lrg, dφ/dx is nrly zro t xl/2. hus th diffusion is lmost bsnt. h uind schm lys clcults th diffusion trm from linr Φ~x rofil nd thus ovrstimts diffusion i t lrg vlu of P.

90 14-2 Stdy On-Dimnsionl Convction nd Diffusion(21) h xonntil schm 1. It is usful to considr totl flux J tht is md of th convction flux ρuφ nd th diffusion flux -Γdφ /dx. hus, J dφ ρ u φ Γ (8) ) dx ith this dfinition q (1) bcoms dj dx 0 (9) hich, hn intgrtd ovr th C.V. shon in fig.1 givs J J 0 (10)

91 14-2 Stdy On-Dimnsionl Convction nd Diffusion(22) 2. h substitution of q. (9) into q. (8) ould giv th xrssion for J : φ φ J F φ ( ) (10) x 1 ( ρu) ( ) δx F hr Γ D

92 14-2 Stdy On-Dimnsionl Convction nd Diffusion(23) 3. Finlly, substitution of q. (11) nd similr xrssion for J into q. (10) lds to xrssion for J into q. (10) lds to (12) 0 F F W φ φ φ φ φ φ ( ) ( ) (13) (12) 0 1 x 1 x F F W W P P W φ φ φ φ φ ( ) ) (14 1 / x D F F hr ( ) ( ) ) (14 1 / x / x b D F D F F ( ) ) 14 ( c F F W

93 14-2 Stdy On-Dimnsionl Convction nd Diffusion(24) 4. Discussions: ) hs cofficints xrssions dfin th xonntil schm. Whn usd for th stdy on-dimnsionl roblm, this schm is gurntd to roduc th xct solution for ny vlu of th Pclt numbr nd for ny numbr of grid oints.

94 14-2 Stdy On-Dimnsionl Convction nd Diffusion(25) b) Dsit its highly dsirbl bhvior, it is not idly usd bcus i. xonntils r xnsiv to comut. ii. Sinc th schm is not for to- or thr-dimnsionl situtions, nonzro sourcs, tc., th xtr xns of comuting th xonntils dos not sm to b justifid.

95 14-2 Stdy On-Dimnsionl Convction nd Diffusion(26) h Hybrid schm 1. o rcit th connction btn th xonntil schm nd th hybrid schm, shll lot /D vs. s follos:

96 14-2 Stdy On-Dimnsionl Convction nd Diffusion(27) D 1 D 2 D From q(14), dduc tht D x( ) 1 xct Fig ( ) 1 D 0

97 14-2 Stdy On-Dimnsionl Convction nd Diffusion(28) 2. From Fig 3, cn gt ) For D b) For D c) At 0, th tngnt is 0 D 1 2

98 14-2 Stdy On-Dimnsionl Convction nd Diffusion(29) 3. h hybrid schm is md u of ths thr stright lins of Fig.3, so tht stright lins of Fig.3, so tht 2 ) < For ) 2 ) < For b D For 0 2 ) ) > For c D For b 0 2 ) > D For c

99 14-2 Stdy On-Dimnsionl Convction nd Diffusion(30) 4. hs xrssions cn b combind into comct form s follos: comct form s follos: 0 1 D 0 0, 2 1, F D F or D 0, 2, D F or

100 14-2 Stdy On-Dimnsionl Convction nd Diffusion(31) 5. h significnc of th hybrid schm cn b undrstood by obsrving tht ) It is idnticl ith th cntrl-diffrnc schm for 2 < < 2 b) Outsid this rng it rducs to th uind schm in hich th diffusion hs bn st qul to zro. c) h nm hybrid is indictiv of combintion of th cntrl-diffrnc nd uind schm, but it is bst to considr th hybrid schm s th thrlin roximtion to th xct curv, shon in Fig.3

101 14-2 Stdy On-Dimnsionl Convction nd Diffusion(32) 6. h convction-diffusion discrtiztion for th hybrid schm cn no b rittn s th hybrid schm cn no b rittn s W W P P φ φ φ F hr F F D F 0, 2, F D F 0, 2, ( ) W P F F

102 14-2 Stdy On-Dimnsionl Convction nd Diffusion(33) h Por-L schm 1. It cn b sn from Fig.3, tht th drtur of th hybrid schm from th xct curv is rthr lrg. A bttr roximtion to th xct curv is givn by th Por-l schm.

103 14-2 Stdy On-Dimnsionl Convction nd Diffusion(34) 2. h Por-l xrssions for cn b rittn s ) For < 10 D b ) For -10 (15 ) 5 < 0 ( ) (15 b ) c ) For 0 10 D D 5 ( ) (15 c )

104 14-2 Stdy On-Dimnsionl Convction nd Diffusion(35) A Gnrlizd Formultion 1. h gnrl convction-diffusion formultion cn b rittn s φ φ hr D D A φ ( ) [ F ],0 ( ) [ F,0 ] A ( F F )

105 14-2 Stdy On-Dimnsionl Convction nd Diffusion(36) 2. h function A( ) for diffrnt schms Cntrl diffrnc Uind Hybrid Por l xonntil( xct) [ 0,1 0.5 ] ( ) 5 [ ] 0, [ x( ) 1]

106 14-3 Discrtiztion qution for o Dimnsions(1) Discrtiztion qution of 2-D t J J x y ( ρφ ) s (1) x y hr J x nd J y r th totl (convction lus diffusion) fluxs dfind by J x J y ρuφ Γ ρvφ Γ φ x φ y ( 1) ( 1b)

107 14-3 Discrtiztion qution for o Dimnsions(2) h intgrtion of q(1) ovr th c.v. shon in Fig.1 ould giv N x n W J J s J n J s S Fig.2 J y y x

108 14-3 Discrtiztion qution for o Dimnsions(3) ( ) 0 0 y x φ ρ φ ρ ( ) J J J J t y x s n φ ρ φ ρ ( ) ) (2 y x S S c φ

109 14-3 Discrtiztion qution for o Dimnsions(4) In similr mnnr, cn intgrt th continuity q continuity q 0 F F y x ρ 0 y x t y x ρ ovr th c.v. nd obtin ovr th c.v. nd obtin ( ) F F F F y x ρ ρ (3) 0 0 u hr F F F F F t s n ρ (3) 0 ρ

110 14-3 Discrtiztion qution for o Dimnsions(5) (3) (2) 0 y x ρ φ ( ) ( ) ( ) ( ) ( ) ( ) ) (4 0 y x S S F J F J F J F J t y x φ φ φ φ φ ρ φ φ ( ) ( ) ( ) ) (4 y x S S F J F J c s s n n φ φ φ

111 14-3 Discrtiztion qution for o Dimnsions(6) h finl discrtiztion qution J J F φ F φ ( φ ) φ ( φ φ ) ( ) [ F ],0 ( ) [ F,0] hr D A W DW A h 2 - D discrtiz tion qution cn no b rittn s φ φ Wφ Nφ N SφS b

112 14-3 Discrtiztion qution for o Dimnsions(7) hr ( ) [ ] F A D 0, ( ) [ ] ( ) [ ] F A D F A D W 0,0 ( ) [ ] ( ) [ ] F A D F A D s s s S n n n N,0,0 t y x s s s S 0 0 ρ y x S b t C 0 0 y x S S N 0

113 14-4 On-Wy Sc Coordint(1) im is on-y coordint. h convction- diffusion formultion rvls tht sc coordint cn lso bcom on-y. Wht mks sc coordint On-Wy? Whn th Pclt numbr xcds10, th Por- l schm ill st th donstrm-nighbor ihb cofficint qul to zro. (th hybrid schm dos this for Pclt numbr grtr thn 2.)

114 14-4 On-Wy Sc Coordint(2) Suos tht, in th 2-D sitution shon in Fig.2, thr is high h flo rt in th ositiv x dirction. hn, for ll th grid oints long y-dirction lin, th cofficint ill b zro. In othr ords, φ ill b dndnt on φ W, φ N, nd φ S, but not on. hus th x coordint ill bcom on-y coordint sinc th φ vlu t ny oint ill b uninfluncd by ny of th donstrm vlus.

115 14-4 On-Wy Sc Coordint(3) N S Fig.2

116 14-4 On-Wy Sc Coordint(4) h outflo Boundry Conditions At th outflo boundry shon in Fig.3, for xml, on my not kno th tmrtur or th ht flux. Ho cn thn solv th roblm? h nsr is surrisingly siml: No boundrycondition informtion is ndd t n outflo boundry. For ll grid oints nxt to th outflo boundry, th cofficint ill b zro, nd hnc no boundry vlus ill b ndd. In othr ords, th rgion nr th outflo boundry xhibits, for lrg Pclt numbr, locl on-y bhvior.

117 14-4 On-Wy Sc Coordint(5) outflo boundry Inflo boundry Fig 3 W N P S

118 14-4 On-Wy Sc Coordint(6) A rticulrly bd choic of n outflo- boundry loction is th on in hich thr is n inflo ovr rt of it. An xml of fthis shon in Fig.4. For such bd choic of th boundry, no mningful solution cn b obtind.

119 14-4 On-Wy Sc Coordint(7) Bd Fig. 4 Good

120 CHAPR 15 Clcultion of h Flo Fild

121 15-1 Nd for Scil Procdur h rl difficulty in th clcultion of th vlocity fild lis in th unknon rssur fild. h rssur grdint forms rt of sourc trm for momntum qution.

122 15-2 Som Rltd Difficultis(1) Rrsnttion of th Prssur-Grdint rm 1. o intgrt d/dx ovr th control volum shon in Fig.1, cn gt -. W P x c.v. Fig. 1

123 15-2 Som Rltd Difficultis(2) 2. o xrss - in trms of th grid-oint rssur, my ssum icis-linr rofil for rssur. hrfor, cn gt W 2 2 W 2 his mns tht th momntum qution ill contin th rssur diffrnc btn to ltrnt grid oints, nd not btn djcnt ons.

124 15-2 Som Rltd Difficultis(3) 3. hr is nothr imliction tht is fr mor srious. It cn b sn from Fig.2, hr rssur fild is roosd in trms of th grid- oint vlus of rssur Fig. 2 such zig-zg fild cnnot b rgrdd s rlistic; but for ny grid oint, th corrsonding W - cn b sn to zro, sinc th ltrnt rssur vlus r vryhr qul.

125 15-2 Som Rltd Difficultis(4) Rrsnttion of th continuity qution If intgrt t th continuity it qution ovr th c.v. shon in Fig1, hv u -u 0

126 15-2 Som Rltd Difficultis(5) Onc gin, th us of icis-linr rofil for u nd of th midy loctions of th control-volum fcs lds to u u 2 u W u 2 0 or u u hus, th discrtizd continuity qution dmnds th qulity of vlocitis t ltrnt grid oints nd not t djcnt ons. W 0

127 15-3 A Rmdy : h stggrd Grid(1) h difficultis dscribd so fr cn b rsolvd by rcognizing tht do not hv to clcult ll th vribls for th sm grid oints. W cn, if ish, mloy diffrnt grid for ch dndnt vribl.

128 15-3 A Rmdy : h stggrd Grid(2) Stggrd grid: 1. h vlocity comonnts r clcultd for th oints tht li on th fc of th control volum, s shon in Fig Othr vribls r clcultd for th grid oints(smll circls). Fig.3 u i,, v i, othr vribls

129 15-3 A Rmdy : h stggrd Grid(3) 3. h imortnt dvntgs r tofold: ) For tyicl c.v. shon in Fig.3, it is sy to s tht th discrtizd continuity qution ould contin th diffrnc of djcnt vlocity comonnts, nd this ould rvnt vy vlocity fild. b) h scond imortnt dvntg of th stggrd grid is tht th rssur diffrnc btn to djcnt grid oints no bcoms th nturl driving forc for th vlocity comonnt loctd btn ths grid oints.

130 15-4 h Momntum qutions(1) h discrtiztion qution (2-D) cn b rittn s n u v n similrly nb nb t u v nb nb t b b ( P ) A ( 1) ( P N ) An (1b ) b ( ) A (1 c ) nb nb P t t

131 15-4 h Momntum qutions(2) n Fig.4 c.v. for u Fig.4b c.v. for v h rssur grdint is not includd in th sourc-trm S C nd S P.

132 15-4 h Momntum qutions(3) h momntum qution cn b solvd hn th rssur fild is givn or is somht stimtd. Unlss th corrct rssur fild is mloyd, th rsulting vlocity fild ill not stisfy th continuity i qution. Such n imrfct fild ldbsd on gussd rssur fild * ill b dnotd by u *,v *, *. his strrd vlocity fild ill rsult from th solution of th folloing qutions: n t u v * * n * t nb nb nb u v * nb * nb * nb b b b ( * * ) P A (2) ( * * ) P N A n (2 b ) ( * * ) A (2c) P t t

133 15-5 h Prssur nd Vlocity Corrctions(1) On im is to find y of imroving th gussd rssur * such tht th rsulting strrd vlocity fild ill rogrssivly gt closr to stisfying th continuity qution. Lt us roos tht th corrct rssur is obtind from * (3) hr ill b clld th rssur corrction.

134 15-5 h Prssur nd Vlocity Corrctions(2) Similrly, cn gt u u * u (4), v v * v (4 b ), u, v, * vlocity (4 c ), corrctions

135 15-5 h Prssur nd Vlocity Corrctions(3) If (1)-(2), hv ( ) A (5) u nbunb At this oint, shll boldly dcid to dro th trm nb u' nb from q.(5) nd th rsult is u hr ( ) or u d ( ) d A (6)

136 15-5 h Prssur nd Vlocity Corrctions(4) q.(b) ill b clld th vlocity-corrction formul, hich cn lso b rittn s * u d ( ) (7 ) u Similrly, v n t v * n * t d n d t ( ) n (7b) ( ) (7c) t

137 15-6 h Prssur-Corrction qution(1) h discrtiztion q. of continuity q: ( ) ( ) ( ) 0 z y v x u t ρ ρ ρ ρ ( ) ( ) ( ) [ ] 0 z y u u z y x z y x t ρ ρ ρ ρ ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ) 0 (8 y x x z v v y t b t s n ρ ρ ρ ρ ρ ρ

138 15-6 h Prssur-Corrction qution(2) Substituting qs(7) into q(8), cn obtin obtin,, (9) z y d z y d hr b W B B S S N N W W ρ ρ,,,, z y d z y d z y d z y d b b B t t s s S n n N ρ ρ ρ ρ ( ) ( ) ( ) [ ] * * 0 z y u u z y x b B S N W ρ ρ ρ ρ ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ) (8 0 * * * * y x x z v v y t t b n s ρ ρ ρ ρ ρ ρ

139 15-6 h Prssur-Corrction qution(3) If b is zro, it mns tht th stind vlocity, in conjunction ith th vilbl vlu of (ρ 0 - ρ ), do stisfy th continuity qution nd no rssur corrction is ndd. h trm b this rrsnts mss sourc, hich th rssur corrctions must b nnihilt.

140 15-7 h SIMPL Algorithm(1) SIMPL stnds for Smi-Imlicit Mthod for Prssur-Linkd qutions. Squnc of ortions: 1. Guss th rssur *. 2. Solv th momntum qs, such s (2)~(2c), to obtin u *,v *, *. 3. Solv ' q. 4. Clcult * ' 5. Clcult u,v, from (7)~(7c) 6. Solv othr Φ s. 7. rt th corrctd rssur s n gussd rssur *, rturn to st (2) nd rt th hol rocdur until convrgd solution is obtin.

141 15-7 h SIMPL Algorithm(2) Discussion of th Prssur-Corrction qution 1. If xrssions such s nb u' nb r rtind, thy ould ldhv to b xrssd din trms of th rssur corrctions nd th vlocity corrctions t th nighbors of u nb. h omission of th nb u' nb trm nbls us to cst th qution in th sm form s th gnrl Φ qution, nd to dot squntil, on-vribl-t--tim, solution rocdur.

142 15-7 h SIMPL Algorithm(3) 2. h ords smi-imlicit in th nm SMPL hv bn usd dto cknoldg th omission i of th trm nb u' nb. his trm rrsnts on indirct or imlicit influnc of th rssur corrction on vlocity. Prssur corrctions t nrby loctions cn ltr th nighboring vlocitis nd thus vlocity corrction t th oint undr considrtion. W do not includ this influnc nd thus ork ith schm tht is only rtilly, nd not totlly, imlicit.

143 15-7 h SIMPL Algorithm(4) 3. h omission of ny trm, ould of cours, b uncctbl if it mnt tht t th ultimt t solution ould not b tru solution of th discrtizd forms of th momntum nd continuity qution. It lso hns tht th convrgd solution givn by SIMPL dos not contin ny rror rsulting from th omission of nb u' nb

144 15-7 h SIMPL Algorithm(5) 4. h mss sourc b srvs s usful indictor of th convrgnc of th fluid-flo solution. h itrtions should b continud until th vlu of b vryhr bcoms sufficintly smll. 5. h rssur-corrction cn b sn to b mrly n intrmdit lgorithm tht lds us to th corrct rssur fild, but hs no dirct ffct on th finl solution.

145 15-7 h SIMPL Algorithm(6) 6. h rssur-corrction qution is ron to divrgnc unlss som undr-rlxtion is usd. A gnrlly succssful rctic cn b dscribd s follos: undr-rlx rlx u *,v *, * hil solving th momntum qutions (ith rlxtion fctor α0 0.5). Also, mloy * α, α 0.8 It is not imlid tht ths vlus r th otimum ons or ill vn roduc divrgnc for ll roblms. h otimum rlxtion fctor vlus r usully roblm-dndnt.

146 15-7 h SIMPL Algorithm(7) Boundry Conditions for th Prssur- Corrction qution 1. hr r to kinds of conditions t boundry. ithr th rssur t th boundry is givn (nd th vlocity is unknon) or th vlocity comonnt norml to th boundry is scifid. 2. Givn rssur t th boundry: If th gussd rssur fild * is rrngd such tht t boundry * givn, thn th vlu of ' t th boundry ill b zro.

147 15-7 h SIMPL Algorithm(8) 3. Givn norml vlocity t th boundry: As shon in Fig.1, th vlocity u is givn. It th drivtion of th ' qution for th c.v. shon, th flo rt cross th boundry fc should not xrssd in trms of u * nd corrction, but in *Not: trms of u itslf N * u u u, W W S S N N hn, ' ill not r or ill b zro in th ' qution. hus no informtion bout ' ill b ndd. b S Fig.1 u ( (givn)

148 15-7 h SIMPL Algorithm(9) h Rltiv Ntur of Prssur 1. Sinc no boundry rssur is scifid nd ll th boundry cofficints such s ill b zro, th ' qution is lft ithout ny mns of stblishing th bsolut vlu of '. h cofficints of th ' qution r such tht P nb ; this mns tht ' nd ' c (c is n rbitrry constnt) ould both stisfy th ' qution.

149 15-7 h SIMPL Algorithm(10) 2. Only diffrnc in th rssur r mningful (*'), nd ths r not ltrd by n rbitrry constnt to th ' fild. Prssur is thn rltiv vribl, not bsolut on.

150 15-7 h SIMPL Algorithm(11) 3. In mny roblms, th vlu of th bsolut rssur is much lrgr thn th locl ldiffrncs in rssur tht r ncountrd. If th bsolut vlus of rssur r for, round-off off rrors ould ris in clculting diffrncs lik -. It is, thrfor, bst to st 0 s rfrnc vlu t suitbl oint nd to clcult ll othr vlus of s rssurs rltion to strt from '0 s guss for ll oint, so tht th solution for ' dos not cquir lrg bsolut vlu.

151 15-8 A Rvisd Algorithm: SIMPLR(1) Motivtion 1. SIMPLR stnds for SIMPL Rvisd. 2. In most css, it is rsonbl to suos tht th rssur-corrction qution dos firly good job of corrcting th vlocitis, but rthr oor job of corrcting th rssur.

152 15-8 A Rvisd Algorithm: SIMPLR(2) h Prssur qution 1. h momntum qution is first rittn s u u b No, dfin nb nb d ( ) (1) sudovlocity û ˆ nbunb b u (2) u uˆ d ( ) (3 ) similrly, cn rit v n t vˆ n ˆ t d d first rittn s n t ( N ) (3b) ( ) (3c) substituting (3) ~ (3c) into continuity q., cn gt b W W N N S S B B (4)

153 15-8 A Rvisd Algorithm: SIMPLR(3) 2. Although th rssur q nd ' q r lmost idnticl, thr is on mjor diffrnc: No roximtions hv bn introducd in th drivtion of th rssur qution. hus, if corrct vlocity fild r usd to clcult th sudo-vlocitis, i th rssur qution ould t onc giv th corrct rssur.

154 15-8 A Rvisd Algorithm: SIMPLR(4) h SIMPLR Algorithm h rvisd lgorithm consists of solving th rssur qution to obtin th rssur fild nd solving th rssur-corrction qution only to corrct th vlocitis.

155 15-8 A Rvisd Algorithm: SIMPLR(5) h squnc of ortions cn b sttd s: 1. Strt ith gussd vlocity fild. 2. Clcult sudo-vlocity û,v,ŵ from qs (1),(2). 3. Solv rssur qution by q.(4) to obtin th rssur fild. 4. rt this rssur fild s *, solv momntum q to obtin u *,v *, * solv ' q. 5. Solv ' q 6. Corrct th vlocity fild (u u * d (' -' ),tc), but do not corrct th rssur. 7. Solv othr Φ s if ncssry. 8. Rturn to st 2 nd rt until convrgnc.

156 15-8 A Rvisd Algorithm: SIMPLR(6) Discussion 1. In gnrl, sinc th rssur-corrction qution roducs rsonbl vlocity filds, nd th rssur qution orks out th dirct consqunc of givn vlocity fild, convrgnc to th finl solution should b much fstr.

157 15-8 A Rvisd Algorithm: SIMPLR(7) 2. In SIMPL, gussd rssur fild lys n imortnt rol. On th othr hnd, SIMPLR dos not us gussd rssurs, but xtrcts rssur fild from givn vlocity fild. 3. Bcus of th clos similrity btn th rssur qution nd th rssur-corrction qution, th discussion in rvious sction bout boundry conditions for q. is lso rlvnt to th rssur qution.

158 15-8 A Rvisd Algorithm: SIMPLR(8) 4. Although SIMPLR hs bn found to giv fstr convrgnc thn SIMPL, it should b rcognizd tht on itrtions of SIMPLR involvs mor comuttionl ti ffort. Sinc SIMPLR rquirs fr itrtions for convrgnc, th dditionl ffort r itrtion is mor thn comnstd by th ovrll sving of ffort

159 15-9 h SIMPLC Algorithm SIMPLC stnds for SIMPL-Consistnt. It follos th sm sts s th SIMPL lgorithm. h u-vlocity corrction qution of SIMPLC is givn by d ( ) A d u, nb ( not : ( ) ) u nbunb A

160 15-10 Convrgnc Critrion Φ nb Φ nb b Rsidul R nb Φ nb b- Φ Obviously, hn th discrtiztion q is stisfid, R ill b zro. A suitbl convrgnc critrion is to rquir tht th lrgst vlu of R b lss thn crtin smll numbr.

Chapter 11 Calculation of

Chapter 11 Calculation of Chtr 11 Clcultion of th Flow Fild OUTLINE 11-1 Nd for Scil Procdur 11-2 Som Rltd Difficultis 11-3 A Rmdy : Th stggrd Grid 11-4 Th Momntum Equtions 11-5 Th Prssur nd Vlocity Corrctions 11-6 Th Prssur-Corrction

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton

The Angular Momenta Dipole Moments and Gyromagnetic Ratios of the Electron and the Proton Journl of Modrn hysics, 014, 5, 154-157 ublishd Onlin August 014 in SciRs. htt://www.scir.org/journl/jm htt://dx.doi.org/.436/jm.014.51415 Th Angulr Momnt Diol Momnts nd Gyromgntic Rtios of th Elctron

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium .65, MHD Thory of usion Systms Prof. ridrg Lctur 8: Effct of Vrticl ild on Tokmk Equilirium Toroidl orc lnc y Mns of Vrticl ild. Lt us riw why th rticl fild is imortnt. 3. or ry short tims, th cuum chmr

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

The Theory of Small Reflections

The Theory of Small Reflections Jim Stils Th Univ. of Knss Dt. of EECS 4//9 Th Thory of Smll Rflctions /9 Th Thory of Smll Rflctions Rcll tht w nlyzd qurtr-wv trnsformr usg th multil rflction viw ot. V ( z) = + β ( z + ) V ( z) = = R

More information

Lecture 4. Conic section

Lecture 4. Conic section Lctur 4 Conic sction Conic sctions r locus of points whr distncs from fixd point nd fixd lin r in constnt rtio. Conic sctions in D r curvs which r locus of points whor position vctor r stisfis r r. whr

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

ELASTOPLASTIC ANALYSIS OF PLATE WITH BOUNDARY ELEMENT METHOD

ELASTOPLASTIC ANALYSIS OF PLATE WITH BOUNDARY ELEMENT METHOD Intrntionl Journl of chnicl nginring nd Tchnology (IJT) olum 9, Issu 6, Jun 18,. 864 87, Articl ID: IJT_9_6_97 Avilbl onlin t htt://.im.com/ijmt/issus.s?jty=ijt&ty=9&ity=6 IN Print: 976-64 nd IN Onlin:

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

The first practical supersonic wind tunnel, built by A. Busemann in Germany in the mid-1930s.

The first practical supersonic wind tunnel, built by A. Busemann in Germany in the mid-1930s. Introduction Th first rcticl sursonic wind tunnl, built by. Busmnn in Grmny in th mid-93s. lrg hyrsonic wind tunnl t th U.S. ir Forc Wright ronuticl Lbortory, Dyton, Ohio. Comrssibl Chnnl Flow Qusi--D

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Nir-toks Introdction Mrch, 00 Introdction to oltion of Nir- toks qtion Lrr Crtto Mchnicl nginring 69 Compttionl Flid Dnmics Mrch, 00 Homork for Mrch Donlod th cl orkbook from th cors b sit for th smpl

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

4. THE SCALAR-TRANSPORT EQUATION SPRING 2018

4. THE SCALAR-TRANSPORT EQUATION SPRING 2018 . TH SCALAR-TRANSORT QUATION SRING 8. Control-volum nottion. Th stdy-stt -d dvction-diffusion qution.3 Discrtising diffusion. Discrtising th sourc trm.5 Th mtrix qution.6 Discrtising dvction (prt ).7 xtnsion

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 12 Quantum chromodynamics (QCD) WS2010/11: Introduction to Nuclear and Particle Physics Lctur Quntum chromodynmics (QCD) WS/: Introduction to Nuclr nd Prticl Physics QCD Quntum chromodynmics (QCD) is thory of th strong intrction - bsd on color forc, fundmntl forc dscribing th intrctions of

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

EXPLICIT SOLUTION TO GREEN AND AMPT INFILTRATION EQUATION

EXPLICIT SOLUTION TO GREEN AND AMPT INFILTRATION EQUATION EXPLICIT SOLUTION TO GREEN AND AMPT INFILTRATION EQUATION By Srgio E. Srrno ABSTRACT: An xlicit solution of th Grn nd Amt infiltrtion qution is rsntd by constructing dcomosition sris. Siml xrssions for

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic h Vsick modl h modl roosd by Vsick in 977 is yild-bsd on-fcor quilibrium modl givn by h dynmic dr = b r d + dw his modl ssums h h shor r is norml nd hs so-clld "mn rvring rocss" (undr Q. If w u r = b/,

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu

Economics 201b Spring 2010 Solutions to Problem Set 3 John Zhu Economics 20b Spring 200 Solutions to Problm St 3 John Zhu. Not in th 200 vrsion of Profssor Andrson s ctur 4 Nots, th charactrization of th firm in a Robinson Cruso conomy is that it maximizs profit ovr

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

1 Input-Output Stability

1 Input-Output Stability Inut-Outut Stability Inut-outut stability analysis allows us to analyz th stability of a givn syst without knowing th intrnal stat x of th syst. Bfor going forward, w hav to introduc so inut-outut athatical

More information

Miscellaneous open problems in the Regular Boundary Collocation approach

Miscellaneous open problems in the Regular Boundary Collocation approach Miscllnous opn problms in th Rgulr Boundry Colloction pproch A. P. Zilińsi Crcow Univrsity of chnology Institut of Mchin Dsign pz@mch.p.du.pl rfftz / MFS Confrnc ohsiung iwn 5-8 Mrch 0 Bsic formultions

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j) INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS T D BROWNING AND A HAYNES Abstract W invstigat th solubility of th congrunc xy (mod ), whr is a rim and x, y ar rstrictd to li

More information

Oppgavesett kap. 6 (1 av..)

Oppgavesett kap. 6 (1 av..) Oppgvstt kp. 6 (1 v..) hns.brnn@go.uio.no Problm 1 () Wht is homognous nucltion? Why dos Figur 6.2 in th book show tht w won't gt homognous nucltion in th tmosphr? ˆ Homognous nucltion crts cloud droplts

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Split-plot Experiments and Hierarchical Data

Split-plot Experiments and Hierarchical Data Split-plot Exprimnts nd Hirrchicl Dt Introduction Alx Stlzlni invstigtd th ffcts of fding rgim for bf nimls nd muscl typ on th tndrnss of mt. H ssignd ight nimls to ch of thr trtmnts. Th trtmnts wr th

More information

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1 Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

More information

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function

The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function. The Transfer Function A gnraliation of th frquncy rsons function Th convolution sum scrition of an LTI iscrt-tim systm with an imuls rsons h[n] is givn by h y [ n] [ ] x[ n ] Taing th -transforms of both sis w gt n n h n n

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

KOHN LUTTINGER SUPERCONDUCTIVITY IN GRAPHENE

KOHN LUTTINGER SUPERCONDUCTIVITY IN GRAPHENE KOHN LUTTINGER SUPERCONDUCTIITY IN GRAPHENE J. Gonzálz Instituto d Estructur d l Mtri, CSIC, Spin Is it possibl to hv suprconducting instbility in grphn (by suitbl doping)? Thr hv bn lrdy svrl proposls

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

A physical solution for solving the zero-flow singularity in static thermal-hydraulics

A physical solution for solving the zero-flow singularity in static thermal-hydraulics A ysicl solution for solving t zro-flow singulrity in sttic trml-ydrulics miing modls Dnil Bouskl Blig El Hfni EDF R&D 6, qui Wtir F-784 Ctou Cd, Frnc dnil.ouskl@df.fr lig.l-fni@df.fr Astrct For t D-D

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

I. The Connection between Spectroscopy and Quantum Mechanics

I. The Connection between Spectroscopy and Quantum Mechanics I. Th Connction twn Spctroscopy nd Quntum Mchnics On of th postults of quntum mchnics: Th stt of systm is fully dscrid y its wvfunction, Ψ( r1, r,..., t) whr r 1, r, tc. r th coordints of th constitunt

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

5.4 The Quarter-Wave Transformer

5.4 The Quarter-Wave Transformer 4//9 5_4 Th Qurtr Wv Trnsformr.doc / 5.4 Th Qurtr-Wv Trnsformr Rdg Assignmnt: pp. 73-76, 4-43 By now you v noticd tht qurtr-wv lngth of trnsmission l ( λ 4, β π ) pprs oftn microwv ngrg prolms. Anothr

More information