Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments

Size: px
Start display at page:

Download "Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments"

Transcription

1 Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments by Gordon K. Smyth (as interpreted by Aaron J. Baraff) STAT 572 Intro Talk April 10, 2014

2 Microarray Data G1 G2 G3 G4 G5 G6 G7 G8 G9 G17 G10 G18 G11 G19 G12 G20 G13 G21 G14 G22 G15 G23 G16 G24 Measure expression level across large numbers of genes simultaneously G25 G33 G26 G34 G27 G35 G28 G36 G29 G37 G30 G38 G31 G39 G32 G40 Genes express by producing mrna translated into proteins G41 G49 G42 G50 G43 G51 G44 G52 G45 G53 G46 G54 G47 G55 G48 G56 20,000 protein-coding genes in humans G57 G58 G59 G60 G61 G62 G63 G64 Microarray chip contains cdna for a different gene at each spot Sample cdna hybridizes with cdna on chip

3 Microarray Data Two-color: cdna from two samples dyed red and green Response is log-ratio of intensity y g = log 2 R g G g Relative expressions only (fold changes) Single-channel: cdna from a single dyed sample Absolute expressions

4 Microarray Data Issues: Expensive! - sample sizes are low, number of genes is high n << p Multiple comparisons control for false discovery rate (FDR), e.g. Benjamini and Hochberg (1995, 2000) often assumes independence between genes For two-color microarrays, experimental design is more complicated

5 Microarray Data Design: A B A B A B A B C C Matrix: X = ( 1 ) ( 1 X = 1 ) X = X = Coefficients: α = ( B A ) α = ( B A ) α = ( A C B A ) ( B A α = C B )

6 Assumptions Sample of n microarrays: Response vector y g = (y g1,..., y gn ) T for each gene g Assume E(y g ) = X α g, and Var(y g ) = W g σ 2 g for known design matrix X and weight matrix W g Usually interested in contrasts of coefficients for known contrast matrix C β g = C T α g

7 Assumptions Fitting the model gives: Coefficient estimators ˆα g for α g Contrast estimators ˆβ g = C T ˆα g for β g Variance estimators sg 2 for σg 2 (Note: no assumption that y g is normal or model is fit by OLS)

8 Assumptions Assume: covariance matrices distributions Var( ˆα g ) = V g σ 2 g and Var(ˆβ g ) = C T V g Cσ 2 g ˆβ gi β gj, σ 2 g N(β gj, v gj σ 2 g ) and s 2 g σ 2 g σ2 g d g χ 2 d g all independent, where v gj is the jth diagonal element of C T V g C

9 Differential Expression The problem: Would like to test H 0 : β gj = 0 vs H 1 : β gj 0 Too many genes! - multiple comparison methods assume independence across genes Instead, think of p-values as statistics used to rank genes

10 Differential Expression Previous methods for ranking genes: Fold changes - use ˆβ gj directly t-statistics t gj = ˆβ gj s g vgj Problem: s g small t gj large Offset t-statistics - inflate s g Tusher et al (2001) - minimize coefficient of variation Efron et al (2001) - percentile of sample variances Odds ratios - Lönnstedt and Speed (2002) - empirical Bayes methods to estimate odds of differential expression - replicated experiments only Other methods dependent on specific designs

11 Differential Expression Goal: Extend empirical Bayes method from Lönnstedt and Speed (2002) to more general experiments Priors: Variance Differential expression 1 σ 2 g 1 d 0 s 2 0 χ 2 d 0 P(β gj 0) = p j Fold change β gj σ 2 g, β gj 0 N(0, v 0j σ 2 g )

12 Differential Expression After a bunch of calculgebra that I haven t done yet, we get posterior mean s 2 g = and moderated t-statistic t gj = 1 E(σ 2 g s 2 g ) = d 0s d g s 2 g d 0 + d g, ˆβ gj s g vgj t d0 +d g, under H 0. Since this is an empirical Bayes method, estimate hyperparameters s 2 0 and d 0 from the data.

13 Results Simulation study: All parameters and hyperparameters held constant except d 0 = 1, 10, 1000 Moderated t has fewer false positives than other methods Rigging the game? Swirl data: Mutation in known gene in zebrafish Degrees of freedom for t increases from 4 to 7.17 Ranking more sensible than other methods

14 Discussion Modern relevance: Method included in R package limma as part of Bioconductor Later papers extended the idea of sharing variance - Cui et al (2005) uses a James-Stein-type shrinkage estimator Applications to other -omics data with similar high-dimensional problems Digital gene expression (DGE) starting to overtake microarrays observed as count data modeled with overdispersed Poisson empirical Bayes used to share data about overdispersion parameter across genes

15 Discussion What next? Do the mathy stuff calculation of posterior and marginal distributions estimation of hyperparameters Data normalization Perform simulations Develop critique paper makes a lot of unrealistic assumptions about distribution and independence of σ 2 g imperfect method for imperfect data?

16 The End Any questions?

Linear Models and Empirical Bayes Methods for Microarrays

Linear Models and Empirical Bayes Methods for Microarrays Methods for Microarrays by Gordon Smyth Alex Sánchez and Carme Ruíz de Villa Department d Estadística Universitat de Barcelona 16-12-2004 Outline 1 An introductory example Paper overview 2 3 Lönnsted and

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Lesson 11. Functional Genomics I: Microarray Analysis

Lesson 11. Functional Genomics I: Microarray Analysis Lesson 11 Functional Genomics I: Microarray Analysis Transcription of DNA and translation of RNA vary with biological conditions 3 kinds of microarray platforms Spotted Array - 2 color - Pat Brown (Stanford)

More information

Statistical analysis of microarray data: a Bayesian approach

Statistical analysis of microarray data: a Bayesian approach Biostatistics (003), 4, 4,pp. 597 60 Printed in Great Britain Statistical analysis of microarray data: a Bayesian approach RAPHAEL GTTARD University of Washington, Department of Statistics, Box 3543, Seattle,

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis

Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis Statistics Preprints Statistics 4-2007 Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis J.T. Gene Hwang Cornell University Peng Liu Iowa State University, pliu@iastate.edu

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data

A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data A Sequential Bayesian Approach with Applications to Circadian Rhythm Microarray Gene Expression Data Faming Liang, Chuanhai Liu, and Naisyin Wang Texas A&M University Multiple Hypothesis Testing Introduction

More information

Limma = linear models for microarray data. Linear models and Limma. Expression measures. Questions of Interest. y ga = log 2 (R/G) y ga =

Limma = linear models for microarray data. Linear models and Limma. Expression measures. Questions of Interest. y ga = log 2 (R/G) y ga = Linear models and Limma Københavns Universitet, 19 August 2009 Mark D. Robinson Bioinformatics, Walter+Eliza Hall Institute Epigenetics Laboratory, Garvan Institute (with many slides taken from Gordon

More information

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University Tweedie s Formula and Selection Bias Bradley Efron Stanford University Selection Bias Observe z i N(µ i, 1) for i = 1, 2,..., N Select the m biggest ones: z (1) > z (2) > z (3) > > z (m) Question: µ values?

More information

Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis

Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis Statistics Preprints Statistics 11-2006 Quick Calculation for Sample Size while Controlling False Discovery Rate with Application to Microarray Analysis Peng Liu Iowa State University, pliu@iastate.edu

More information

Improved Statistical Tests for Differential Gene Expression by Shrinking Variance Components Estimates

Improved Statistical Tests for Differential Gene Expression by Shrinking Variance Components Estimates Improved Statistical Tests for Differential Gene Expression by Shrinking Variance Components Estimates September 4, 2003 Xiangqin Cui, J. T. Gene Hwang, Jing Qiu, Natalie J. Blades, and Gary A. Churchill

More information

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Likun Wang Zhixing Feng i Wang iaowo Wang * and uegong Zhang * MOE Key Laboratory of Bioinformatics and Bioinformatics

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 4, Issue 1 2005 Article 30 Weighted Analysis of Paired Microarray Experiments Erik Kristiansson Anders Sjögren Mats Rudemo Olle Nerman

More information

Exam: high-dimensional data analysis January 20, 2014

Exam: high-dimensional data analysis January 20, 2014 Exam: high-dimensional data analysis January 20, 204 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question not the subquestions on a separate piece of paper. - Finish

More information

g A n(a, g) n(a, ḡ) = n(a) n(a, g) n(a) B n(b, g) n(a, ḡ) = n(b) n(b, g) n(b) g A,B A, B 2 RNA-seq (D) RNA mrna [3] RNA 2. 2 NGS 2 A, B NGS n(

g A n(a, g) n(a, ḡ) = n(a) n(a, g) n(a) B n(b, g) n(a, ḡ) = n(b) n(b, g) n(b) g A,B A, B 2 RNA-seq (D) RNA mrna [3] RNA 2. 2 NGS 2 A, B NGS n( ,a) RNA-seq RNA-seq Cuffdiff, edger, DESeq Sese Jun,a) Abstract: Frequently used biological experiment technique for observing comprehensive gene expression has been changed from microarray using cdna

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Cross-Sectional Regression after Factor Analysis: Two Applications

Cross-Sectional Regression after Factor Analysis: Two Applications al Regression after Factor Analysis: Two Applications Joint work with Jingshu, Trevor, Art; Yang Song (GSB) May 7, 2016 Overview 1 2 3 4 1 / 27 Outline 1 2 3 4 2 / 27 Data matrix Y R n p Panel data. Transposable

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

Statistics for Differential Expression in Sequencing Studies. Naomi Altman

Statistics for Differential Expression in Sequencing Studies. Naomi Altman Statistics for Differential Expression in Sequencing Studies Naomi Altman naomi@stat.psu.edu Outline Preliminaries what you need to do before the DE analysis Stat Background what you need to know to understand

More information

Stat 206: Estimation and testing for a mean vector,

Stat 206: Estimation and testing for a mean vector, Stat 206: Estimation and testing for a mean vector, Part II James Johndrow 2016-12-03 Comparing components of the mean vector In the last part, we talked about testing the hypothesis H 0 : µ 1 = µ 2 where

More information

Confounder Adjustment in Multiple Hypothesis Testing

Confounder Adjustment in Multiple Hypothesis Testing in Multiple Hypothesis Testing Department of Statistics, Stanford University January 28, 2016 Slides are available at http://web.stanford.edu/~qyzhao/. Collaborators Jingshu Wang Trevor Hastie Art Owen

More information

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Holger Schwender, Andreas Krause, and Katja Ickstadt Abstract Microarrays enable to measure the expression levels of tens

More information

Multidimensional local false discovery rate for microarray studies

Multidimensional local false discovery rate for microarray studies Bioinformatics Advance Access published December 20, 2005 The Author (2005). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

More information

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data Juliane Schäfer Department of Statistics, University of Munich Workshop: Practical Analysis of Gene Expression Data

More information

REPLICATED MICROARRAY DATA

REPLICATED MICROARRAY DATA Statistica Sinica 1(), 31-46 REPLICATED MICROARRAY DATA Ingrid Lönnstedt and Terry Speed Uppsala University, University of California, Berkeley and Walter and Eliza Hall Institute Abstract: cdna microarrays

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING THE FALSE DISCOVERY RATE FOR MICROARRAY DATA

DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING THE FALSE DISCOVERY RATE FOR MICROARRAY DATA University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Statistics Statistics, Department of 2009 DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING

More information

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University Correlation, z-values, and the Accuracy of Large-Scale Estimators Bradley Efron Stanford University Correlation and Accuracy Modern Scientific Studies N cases (genes, SNPs, pixels,... ) each with its own

More information

Statistical methods for estimation, testing, and clustering with gene expression data

Statistical methods for estimation, testing, and clustering with gene expression data Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2017 Statistical methods for estimation, testing, and clustering with gene expression data Andrew Lithio Iowa

More information

MIXTURE MODELS FOR DETECTING DIFFERENTIALLY EXPRESSED GENES IN MICROARRAYS

MIXTURE MODELS FOR DETECTING DIFFERENTIALLY EXPRESSED GENES IN MICROARRAYS International Journal of Neural Systems, Vol. 16, No. 5 (2006) 353 362 c World Scientific Publishing Company MIXTURE MOLS FOR TECTING DIFFERENTIALLY EXPRESSED GENES IN MICROARRAYS LIAT BEN-TOVIM JONES

More information

Gene Expression an Overview of Problems & Solutions: 3&4. Utah State University Bioinformatics: Problems and Solutions Summer 2006

Gene Expression an Overview of Problems & Solutions: 3&4. Utah State University Bioinformatics: Problems and Solutions Summer 2006 Gene Expression an Overview of Problems & Solutions: 3&4 Utah State University Bioinformatics: Problems and Solutions Summer 006 Review Considering several problems & solutions with gene expression data

More information

SPH 247 Statistical Analysis of Laboratory Data. April 28, 2015 SPH 247 Statistics for Laboratory Data 1

SPH 247 Statistical Analysis of Laboratory Data. April 28, 2015 SPH 247 Statistics for Laboratory Data 1 SPH 247 Statistical Analysis of Laboratory Data April 28, 2015 SPH 247 Statistics for Laboratory Data 1 Outline RNA-Seq for differential expression analysis Statistical methods for RNA-Seq: Structure and

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information

Statistical tests for differential expression in count data (1)

Statistical tests for differential expression in count data (1) Statistical tests for differential expression in count data (1) NBIC Advanced RNA-seq course 25-26 August 2011 Academic Medical Center, Amsterdam The analysis of a microarray experiment Pre-process image

More information

Hierarchical Mixture Models for Expression Profiles

Hierarchical Mixture Models for Expression Profiles 2 Hierarchical Mixture Models for Expression Profiles MICHAEL A. NEWTON, PING WANG, AND CHRISTINA KENDZIORSKI University of Wisconsin at Madison Abstract A class of probability models for inference about

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE

SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE SIGNAL RANKING-BASED COMPARISON OF AUTOMATIC DETECTION METHODS IN PHARMACOVIGILANCE A HYPOTHESIS TEST APPROACH Ismaïl Ahmed 1,2, Françoise Haramburu 3,4, Annie Fourrier-Réglat 3,4,5, Frantz Thiessard 4,5,6,

More information

Large-Scale Hypothesis Testing

Large-Scale Hypothesis Testing Chapter 2 Large-Scale Hypothesis Testing Progress in statistics is usually at the mercy of our scientific colleagues, whose data is the nature from which we work. Agricultural experimentation in the early

More information

what is Bayes theorem? posterior = likelihood * prior / C

what is Bayes theorem? posterior = likelihood * prior / C who was Bayes? Reverend Thomas Bayes (70-76) part-time mathematician buried in Bunhill Cemetary, Moongate, London famous paper in 763 Phil Trans Roy Soc London was Bayes the first with this idea? (Laplace?)

More information

DEXSeq paper discussion

DEXSeq paper discussion DEXSeq paper discussion L Collado-Torres December 10th, 2012 1 / 23 1 Background 2 DEXSeq paper 3 Results 2 / 23 Gene Expression 1 Background 1 Source: http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/applexpression.shtml

More information

Design and Analysis of Gene Expression Experiments

Design and Analysis of Gene Expression Experiments Design and Analysis of Gene Expression Experiments Guilherme J. M. Rosa Department of Animal Sciences Department of Biostatistics & Medical Informatics University of Wisconsin - Madison OUTLINE Æ Linear

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences

ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences Wentao Yang October 30, 2018 1 Introduction This vignette is intended to give a brief introduction of the ABSSeq

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

Optimal Shrinkage Estimation of Variances With Applications to Microarray Data Analysis

Optimal Shrinkage Estimation of Variances With Applications to Microarray Data Analysis Optimal Shrinkage Estimation of Variances With Applications to Microarray Data Analysis Tiejun TONG and Yuedong WANG Microarray technology allows a scientist to study genomewide patterns of gene expression.

More information

arxiv: v1 [stat.me] 25 Aug 2016

arxiv: v1 [stat.me] 25 Aug 2016 Empirical Null Estimation using Discrete Mixture Distributions and its Application to Protein Domain Data arxiv:1608.07204v1 [stat.me] 25 Aug 2016 Iris Ivy Gauran 1, Junyong Park 1, Johan Lim 2, DoHwan

More information

Normalization and differential analysis of RNA-seq data

Normalization and differential analysis of RNA-seq data Normalization and differential analysis of RNA-seq data Nathalie Villa-Vialaneix INRA, Toulouse, MIAT (Mathématiques et Informatique Appliquées de Toulouse) nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org

More information

Gordon Smyth, WEHI Analysis of Replicated Experiments. January 2004 IMS NUS Microarray Tutorial. Some Web Sites. Analysis of Replicated Experiments

Gordon Smyth, WEHI Analysis of Replicated Experiments. January 2004 IMS NUS Microarray Tutorial. Some Web Sites. Analysis of Replicated Experiments Some Web Sites Statistical Methods in Microarray Analysis Tutorial Institute for Mathematical Sciences National University of Sinapore January, 004 Gordon Smyth Walter and Eliza Hall Institute Technical

More information

5.2 Expounding on the Admissibility of Shrinkage Estimators

5.2 Expounding on the Admissibility of Shrinkage Estimators STAT 383C: Statistical Modeling I Fall 2015 Lecture 5 September 15 Lecturer: Purnamrita Sarkar Scribe: Ryan O Donnell Disclaimer: These scribe notes have been slightly proofread and may have typos etc

More information

David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis

David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis March 18, 2016 UVA Seminar RNA Seq 1 RNA Seq Gene expression is the transcription of the

More information

Mixtures of Negative Binomial distributions for modelling overdispersion in RNA-Seq data

Mixtures of Negative Binomial distributions for modelling overdispersion in RNA-Seq data Mixtures of Negative Binomial distributions for modelling overdispersion in RNA-Seq data Cinzia Viroli 1 joint with E. Bonafede 1, S. Robin 2 & F. Picard 3 1 Department of Statistical Sciences, University

More information

Design of microarray experiments

Design of microarray experiments Design of microarray experiments Ulrich Mansmann mansmann@imbi.uni-heidelberg.de Practical microarray analysis March 23 Heidelberg Heidelberg, March 23 Experiments Scientists deal mostly with experiments

More information

BIOINFORMATICS ORIGINAL PAPER

BIOINFORMATICS ORIGINAL PAPER BIOINFORMATICS ORIGINAL PAPER Vol 21 no 11 2005, pages 2684 2690 doi:101093/bioinformatics/bti407 Gene expression A practical false discovery rate approach to identifying patterns of differential expression

More information

Summary and discussion of: Controlling the False Discovery Rate via Knockoffs

Summary and discussion of: Controlling the False Discovery Rate via Knockoffs Summary and discussion of: Controlling the False Discovery Rate via Knockoffs Statistics Journal Club, 36-825 Sangwon Justin Hyun and William Willie Neiswanger 1 Paper Summary 1.1 Quick intuitive summary

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

Analyses biostatistiques de données RNA-seq

Analyses biostatistiques de données RNA-seq Analyses biostatistiques de données RNA-seq Ignacio Gonzàlez, Annick Moisan & Nathalie Villa-Vialaneix prenom.nom@toulouse.inra.fr Toulouse, 18/19 mai 2017 IG, AM, NV 2 (INRA) Biostatistique RNA-seq Toulouse,

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is

The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is Example The logistic regression model is thus a glm-model with canonical link function so that the log-odds equals the linear predictor, that is log p 1 p = β 0 + β 1 f 1 (y 1 ) +... + β d f d (y d ).

More information

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Some General Types of Tests

Some General Types of Tests Some General Types of Tests We may not be able to find a UMP or UMPU test in a given situation. In that case, we may use test of some general class of tests that often have good asymptotic properties.

More information

cdna Microarray Analysis

cdna Microarray Analysis cdna Microarray Analysis with BioConductor packages Nolwenn Le Meur Copyright 2007 Outline Data acquisition Pre-processing Quality assessment Pre-processing background correction normalization summarization

More information

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001).

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference:

More information

Dispersion modeling for RNAseq differential analysis

Dispersion modeling for RNAseq differential analysis Dispersion modeling for RNAseq differential analysis E. Bonafede 1, F. Picard 2, S. Robin 3, C. Viroli 1 ( 1 ) univ. Bologna, ( 3 ) CNRS/univ. Lyon I, ( 3 ) INRA/AgroParisTech, Paris IBC, Victoria, July

More information

Third European DOE User Meeting, Luzern 2010

Third European DOE User Meeting, Luzern 2010 Correcting for multiple testing Old tricks, state-of-the-art solutions and common sense Ivan Langhans CQ Consultancy CQ Consultancy Expertise in Chemometrics; the interaction between Chemistry and Statistics

More information

Probabilistic Inference for Multiple Testing

Probabilistic Inference for Multiple Testing This is the title page! This is the title page! Probabilistic Inference for Multiple Testing Chuanhai Liu and Jun Xie Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: chuanhai,

More information

To Estimate or Not to Estimate?

To Estimate or Not to Estimate? To Estimate or Not to Estimate? Benjamin Kedem and Shihua Wen In linear regression there are examples where some of the coefficients are known but are estimated anyway for various reasons not least of

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 6, Issue 1 2007 Article 24 A Bayesian Approach to Estimation and Testing in Time-course Microarray Experiments Claudia Angelini Daniela

More information

Low-Level Analysis of High- Density Oligonucleotide Microarray Data

Low-Level Analysis of High- Density Oligonucleotide Microarray Data Low-Level Analysis of High- Density Oligonucleotide Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley UC Berkeley Feb 23, 2004 Outline

More information

arxiv: v1 [stat.me] 1 Dec 2015

arxiv: v1 [stat.me] 1 Dec 2015 Bayesian Estimation of Negative Binomial Parameters with Applications to RNA-Seq Data arxiv:1512.00475v1 [stat.me] 1 Dec 2015 Luis León-Novelo Claudio Fuentes Sarah Emerson UT Health Science Center Oregon

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org

More information

Semi-Penalized Inference with Direct FDR Control

Semi-Penalized Inference with Direct FDR Control Jian Huang University of Iowa April 4, 2016 The problem Consider the linear regression model y = p x jβ j + ε, (1) j=1 where y IR n, x j IR n, ε IR n, and β j is the jth regression coefficient, Here p

More information

Design of Microarray Experiments. Xiangqin Cui

Design of Microarray Experiments. Xiangqin Cui Design of Microarray Experiments Xiangqin Cui Experimental design Experimental design: is a term used about efficient methods for planning the collection of data, in order to obtain the maximum amount

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

Microarray time course experiments. Terry Speed UC Berkeley and WEHI

Microarray time course experiments. Terry Speed UC Berkeley and WEHI Microarray time course experiments Terry Speed UC Berkeley and WEHI Functional Genomics: Principles of Statistics and Biology Firenze, May 9-13, 2005 2 Outline Types and features Design, including replication

More information

False discovery rate procedures for high-dimensional data Kim, K.I.

False discovery rate procedures for high-dimensional data Kim, K.I. False discovery rate procedures for high-dimensional data Kim, K.I. DOI: 10.6100/IR637929 Published: 01/01/2008 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue

More information

*Equal contribution Contact: (TT) 1 Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv

*Equal contribution Contact: (TT) 1 Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv Supplementary of Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling Hadas Zur*,1, Ranen Aviner*,2, Tamir Tuller 1,3 1 Department of Biomedical Engineering,

More information

Differential Expression with RNA-seq: Technical Details

Differential Expression with RNA-seq: Technical Details Differential Expression with RNA-seq: Technical Details Lieven Clement Ghent University, Belgium Statistical Genomics: Master of Science in Bioinformatics TWIST, Krijgslaan 281 (S9), Gent, Belgium e-mail:

More information

Poisson regression: Further topics

Poisson regression: Further topics Poisson regression: Further topics April 21 Overdispersion One of the defining characteristics of Poisson regression is its lack of a scale parameter: E(Y ) = Var(Y ), and no parameter is available to

More information

changes in gene expression, we developed and tested several models. Each model was

changes in gene expression, we developed and tested several models. Each model was Additional Files Additional File 1 File format: PDF Title: Experimental design and linear models Description: This additional file describes in detail the experimental design and linear models used to

More information

Rank conditional coverage and confidence intervals in high dimensional problems

Rank conditional coverage and confidence intervals in high dimensional problems conditional coverage and confidence intervals in high dimensional problems arxiv:1702.06986v1 [stat.me] 22 Feb 2017 Jean Morrison and Noah Simon Department of Biostatistics, University of Washington, Seattle,

More information

TESTING SIGNIFICANCE OF FEATURES BY LASSOED PRINCIPAL COMPONENTS. BY DANIELA M. WITTEN 1 AND ROBERT TIBSHIRANI 2 Stanford University

TESTING SIGNIFICANCE OF FEATURES BY LASSOED PRINCIPAL COMPONENTS. BY DANIELA M. WITTEN 1 AND ROBERT TIBSHIRANI 2 Stanford University The Annals of Applied Statistics 2008, Vol. 2, No. 3, 986 1012 DOI: 10.1214/08-AOAS182 Institute of Mathematical Statistics, 2008 TESTING SIGNIFICANCE OF FEATURES BY LASSOED PRINCIPAL COMPONENTS BY DANIELA

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS Ying Liu Department of Biostatistics, Columbia University Summer Intern at Research and CMC Biostats, Sanofi, Boston August 26, 2015 OUTLINE 1 Introduction

More information

Frequentist Accuracy of Bayesian Estimates

Frequentist Accuracy of Bayesian Estimates Frequentist Accuracy of Bayesian Estimates Bradley Efron Stanford University Bayesian Inference Parameter: µ Ω Observed data: x Prior: π(µ) Probability distributions: Parameter of interest: { fµ (x), µ

More information

Are a set of microarrays independent of each other?

Are a set of microarrays independent of each other? Are a set of microarrays independent of each other? Bradley Efron Stanford University Abstract Having observed an m n matrix X whose rows are possibly correlated, we wish to test the hypothesis that the

More information

ROW AND COLUMN CORRELATIONS (ARE A SET OF MICROARRAYS INDEPENDENT OF EACH OTHER?) Bradley Efron Department of Statistics Stanford University

ROW AND COLUMN CORRELATIONS (ARE A SET OF MICROARRAYS INDEPENDENT OF EACH OTHER?) Bradley Efron Department of Statistics Stanford University ROW AND COLUMN CORRELATIONS (ARE A SET OF MICROARRAYS INDEPENDENT OF EACH OTHER?) By Bradley Efron Department of Statistics Stanford University Technical Report 244 March 2008 This research was supported

More information

Robust Bayesian Variable Selection for Modeling Mean Medical Costs

Robust Bayesian Variable Selection for Modeling Mean Medical Costs Robust Bayesian Variable Selection for Modeling Mean Medical Costs Grace Yoon 1,, Wenxin Jiang 2, Lei Liu 3 and Ya-Chen T. Shih 4 1 Department of Statistics, Texas A&M University 2 Department of Statistics,

More information

On testing the significance of sets of genes

On testing the significance of sets of genes On testing the significance of sets of genes Bradley Efron and Robert Tibshirani August 17, 2006 Abstract This paper discusses the problem of identifying differentially expressed groups of genes from a

More information

A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification

A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification Ming Yuan and Christina Kendziorski (March 17, 2005) Abstract Although both clustering and identification

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 11 1 / 44 Tip + Paper Tip: Two today: (1) Graduate school

More information

Estimation of the False Discovery Rate

Estimation of the False Discovery Rate Estimation of the False Discovery Rate Coffee Talk, Bioinformatics Research Center, Sept, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses

Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association for binary responses Outline Marginal model Examples of marginal model GEE1 Augmented GEE GEE1.5 GEE2 Modeling the scale parameter ϕ A note on modeling correlation of binary responses Using marginal odds ratios to model association

More information