Principles of Igneous and Metamorphic Petrology John D. Winter Second Edition

Size: px
Start display at page:

Download "Principles of Igneous and Metamorphic Petrology John D. Winter Second Edition"

Transcription

1 Principles of Igneous and Metamorphic Petrology John D. Winter Second Edition

2 Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: Pearson Education Limited 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6 10 Kirby Street, London EC1N 8TS. All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. ISBN 10: ISBN 13: British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Printed in the United States of America

3 The previous analysis indicates that only mafic intrusions are susceptible to the effects of differentiation by gravity settling of crystals. There is evidence, however, that many silicic bodies have evolved along a liquid line of descent. Several investigators have used the approach to the ternary eutectic in the systems albite orthoclase silica (Figure 3) to indicate the evolution of late granitic liquids toward the thermal minimum, or eutectic, composition. Others have used the same clustering of analyses around the minimum to indicate eutectic partial melts of sialic material in the continental crust. Certainly, a eutectic magma could result from either process. Included in Figure 3 are the cation norm components of the successive intrusive phases of the Tuolumne Intrusive Series. Note the progressive approach of these magmas to the eutectic composition along a trend that follows the decompression eutectic path. Whatever the origin of the parental magma in this case, this series appears to have evolved toward the low-pressure thermal minimum. Harker-type bivariate variation diagrams of intrusive sequences also indicate evolutionary trends. Bateman and Chappell (1979) interpreted the trends for the Tuolumne Intrusive Series to be the result of fractional crystallization. Similar fractional crystallization-based interpretations for Sierran zoned granitoids have been proposed by Bateman and Nokelberg (1978) and Noyes et al. (1983). Although the compositional trends may be compatible with fractional crystallization, crystal settling has been considered very problematic in such viscous silicic magmas (Brandeis and Jaupart, 1986; Sparks et al., 1984). Harper et al. (2005), however, cited viscosity and field criteria supporting crystal settling in hydrous granites. Later in this chapter, we shall explore methods by which fractional crystallization can occur without crystal settling. As we shall see in Section 4, mixing of silicic (crustal melts) and mafic (mantle melts) is a popular alternative interpretation to the evolutionary trends in some of these systems. In addition to gravity settling, three other mechanisms may facilitate the separation of crystals and liquid. Filter pressing (compaction), mentioned earlier in reference to partial melting, is also possible in crystal mushes that form as cumulates or crystal suspensions. The amount of trapped intercumulus liquid between cumulate minerals may be as high as 60 vol. % (Irvine, 1980b). With the added weight of further accumulation, the crystal mush may be compacted (McKenzie, 1984), squeezing much of the liquid out into the main magma body. Another method of filter pressing involves the movement of a phenocryst-laden crystal mush. Any constriction in the conduit causes the crystals to interfere and slow with respect to the liquid. Another similar mechanism by which crystals may be segregated from the liquid occurs when crystal-rich magmas flow in a laminar fashion near the walls of the magma body. The process is known as flow segregation (or flow[age] separation, or flow[age] differentiation). The motion of the magma past the stationary walls of country rock (Figure 4) creates shear in the viscous liquid as a result of the velocity gradient near the walls. The resulting differential motion forces the magma to flow around phenocrysts, Relative shear Qtz P total = P H2 O Country Rock Direction of flow 1 atm 1 GPa 3 GPa Grain dispersive pressure Ab Or Magma FIGURE 3 Position of the H 2 O-saturated ternary eutectic (minimum melt composition) in the albite orthoclase silica system at various pressures. The shaded portion represents the composition of most granites. Included are the compositions of the Tuolumne Intrusive Series, with the arrow showing the direction of the trend from early to late magma batches. Experimental data from Wyllie et al. (1976). FIGURE 4 Flow of magma adjacent to a wall of country rock results in differential motion and shear in the magma. Where such shear is constricted, as between adjacent phenocrysts or between phenocrysts and the contact, a force (called grain-dispersive pressure) is generated and pushes the phenocrysts apart and away from the contact. 217

4 thereby exerting pressure on them at constrictions where phenocrysts are near one another or near the contact itself. The pressure, called grain dispersive pressure (Komar, 1972), forces the grains apart and away from the contact. This effect is greatest near the walls, and it drops off quickly toward the magma interior, where the flow becomes uniform. Phenocrysts thus concentrate away from the walls to mitigate the pressure buildup. This concentration is most apparent in dikes and sills, where the volume affected by the contact comprises a substantial proportion of the body, resulting in a distinct concentration of coarse phenocrysts toward the center (Figure 5). Flow segregation is an interesting, though localized, phenomenon and cannot be responsible for the evolution of more than a small proportion of igneous rocks. A third mechanism involves the separation and rise of buoyant liquids from boundary layers in which crystals form without themselves moving. This relatively new model has become popular recently and will be introduced in Section 5. The majority of fractional crystallization models assume that fractionation has taken place in a stationary magma chamber at constant pressure. The rise of basaltic magmas, as pointed out by O Hara (1968b), may involve fairly continuous fractional crystallization as it rises, which must obviously be a polybaric fractionation process. One result is that the fractionating minerals vary as their stability fields are crossed (e.g., garnet to spinel to plagioclase). Another is that the shift in the eutectic point with pressure also causes the quantity of the liquidus phases that crystallize to vary. In particular, the increase in the size of the field FIGURE 5 Increase in size and concentration of olivine phenocrysts toward the center of small dikes by flow differentiation. Isle of Skye, Scotland. After Drever and Johnston (1958). Reproduced by permission of the Royal Society of Edinburgh. a b c d e for olivine with decreasing pressure requires that a lot of olivine must form as the melt composition follows the liquidus away from the olivine side of the diagram in a rising basaltic melt (see Problem 1). Thus, the relative amount of olivine that crystallizes with a rising basaltic magma will be far greater than the amount that forms during isobaric crystallization. The broad acceptance of Bowen s (1928) contention that fractional crystallization is the predominant mechanism of magmatic differentiation is now being questioned. This one process cannot account for all of the diversity in the broad spectrum of natural igneous rocks, even if we allow for variations due to the influence of changes in pressure or associated fluids. Some observed chemical trends simply cannot be accomplished by fractional crystallization. Other classical examples of fractional crystallization have not withstood more critical analysis and the test of time. For example, the 300-m thick Triassic diabase Palisades Sill, on the eastern banks of the Hudson River, is commonly cited as an example of a vertically differentiated sill with layers formed by gravity settling. The overall composition of the sill is tholeiitic basalt, as demonstrated by the upper and lower chill zones. The 10- to 20-m thick olivine-rich layer at the base is commonly attributed to differentiation by settling and accumulation of early-forming dense olivine crystals. Although vertical chemical trends in the sill are compatible with fractional crystallization of pyroxene and pyroxene accumulation zones occur near the bottom of the sill, the striking olivine layer is not compatible with the trends, and olivine is far too rare elsewhere in the sill to be consistent with the concentration in the layer. The layer has recently been reinterpreted as one of several late intrusions of magma into the crystallizing tholeiitic liquid of the sill. This injected pulse was olivine rich and dense, so it accumulated near the base (Husch, 1990). Some magma series, such as the calcalkaline series associated with subduction zones, may involve mixing of components to a greater extent than fractional crystallization trends. Other cases against fractional crystallization were based on proportionality arguments. The great granite batholith belts, for example, are thought to be too extensive to have been created by fractional crystallization from a basaltic parent. It would require approximately 20 parts of original basalt to create 1 part late granitic liquid by fractional crystallization. We need not walk long in places like the Sierra Nevada, with so many square kilometers of granitic rocks, to wonder where all of the basalt went! Modern theories that consider granite batholiths to be much thinner than originally thought (Hamilton and Myers, 1967, see Chapter 4) reduce the magnitude of the problem, so we could still follow Bowen (1948) and postulate that the lower levels of the crust are composed of the denser fractionated gabbros. Seismic and gravity surveys, however, argue against this possibility, making the origin of granite batholiths via fractionation from a basaltic parent untenable (Presnall, 1979). These arguments serve only to demonstrate that fractional crystallization cannot lead to all of the magmatic rocks now exposed at the surface of the Earth. It is still a 218

5 common and important process, particularly in the early crystallization of mafic liquids, but there are other important differentiation processes and other primary magmas. 2.2 Volatile Transport Chemical differentiation can also be accomplished when a separate vapor phase coexists with a magma and liquid vapor fractionation takes place. A vapor phase may be introduced in any of three principal ways. First, a fluid may be released by heating of hydrated or carbonated wall rocks. We shall discuss some ramifications of this process in later sections of this chapter. Second, as a volatile-bearing but undersaturated magma rises and pressure is reduced, the magma may eventually become saturated in the vapor, and a free vapor phase is released. Because the vapor phase has a lower density than the melt, it rises, diffusing through the magma, and concentrates near the top of the magma chamber. Such concentrated fluid may even permeate into the roof rocks. This process usually involves an H 2 O-rich fluid, and it produces a variety of hydrothermal alteration effects. For example, the alkali metasomatism known as fenitization above nephelinite carbonatite bodies has been attributed to alkali-rich fluids derived from the highly alkaline intrusives. A third mechanism for generating a separate fluid phase is a result of late-stage fractional crystallization. Most early-formed igneous minerals are anhydrous (even hydrous minerals are less so than associated melts), so their segregation from a hydrous melt enriches the melt in H 2 O and other volatile phases. Eventually the magma reaches the saturation point, and a hydrous vapor phase is produced. This somewhat paradoxical boiling off of water as a magma cools has been called retrograde (or resurgent) boiling. Of course, the three processes by which a vapor can be produced need not be entirely separate, and all three may contribute to saturation and volatile release from a magma, depending upon the composition of the original magma, the rates of cooling and rise, the initial volatile content, the extent of fractional crystallization, the temperature, the nature of the wall rocks, etc. As a separate vapor is produced, the chemical constituents in the system partition themselves between the liquid and vapor phases in appropriate equilibrium proportions, some remaining preferentially in the melt and others becoming enriched in the vapor phase. The result is a silicate-saturated vapor phase in association with a vapor-saturated silicate liquid phase. The cation sites in minerals are much more constrained and selective than in melts, so the chemical constituents in minerals are generally much simpler. As a result, the process of fractional crystallization tends to remove only a few elements from the liquid in significant quantities, and a number of incompatible, LIL, and non-lithophile elements become concentrated in the latest liquid fraction. Many of these will further concentrate in the vapor, once formed. This is particularly true in the case of resurgent boiling because the melt already is evolved by the time the vapor phase is released. The vapor phase may contain unusually high concentrations of volatile constituents such as H 2 O, CO 2, S, Cl, F, B, and P, as well as a wide range of incompatible and chalcophile elements. The volatile release and concentration associated with pluton rise or resurgent boiling may momentarily increase the pressure at the top of the intrusion and fracture the roof rocks in some shallow intrusions (it may also initiate volcanic eruptions). Both the vapor phase and some of the late silicate melt are likely to escape along a network of these fractures as dikes of various sizes. The silicate melt commonly crystallizes to a mixture of quartz and feldspar. It is typically found in small dikes with a sugar-like texture, which is informally called aplite. The vapor phase is typically concentrated as dikes or pods in, or adjacent to, the parental granitic pluton, where it crystallizes to form a characteristically magmagenic form of pegmatite. Although pegmatite is used as a textural classification term for very coarse grain size, and there are other methods of creating large crystals, the type of pegmatite described above is the most common. The large grain size in magmagenic pegmatites is not due to a slow cooling rate but is a result of poor nucleation and very high diffusivity in the H 2 O-rich phase, which permits chemical species to migrate readily and add to rapidly growing minerals. The size of crystals in pegmatites can occasionally be impressive, such as spodumene, microcline, or mica crystals 6 to 10 m across. Most pegmatites are simple, essentially very coarse granites. Others are more complex, with a tremendous con centration of incompatible elements and a highly varied mineral ogy, commonly displaying a concentric zonation (Jahns and Burnham, 1969; C erný, 1991; Simmons et al., 2003), as shown in Figure 6. Because the late fluid segregation concentrates several unusual elements, pegmatites are important economic resources and are mined for Li, Be, the rare earths, W, Zr, and a host of others elements that are rarely concentrated in other environments. They are also a major source of gems. Vapors that completely escape the magma and move to higher levels may cool further and precipitate low-temperature minerals, such as sulfides in a hydrothermal system (commonly mixed in part with meteoric water). Miarolitic pods, or cavities, are smaller fluid segregations trapped in the plutonic host. When finally exposed at the surface, they are coarse mineral clusters (usually a few centimeters across), the centers of which are typically hollow voids from which the fluid subsequently escaped. The hollow cavities have euhedral crystals (of the same minerals comprising the pluton) that extend inward, where they grew into the fluid, unimpeded by other minerals. Like complex pegmatites, some miarolitic cavities or pods have a concentric structure consisting of layers of different mineralogy (Jahns and Burnham, 1969; McMillan, Because the addition of H 2 O lowers the melting point of magmas, the release of hydrous fluid into the country rocks causes the liquidus temperature in the main magma body to rise suddenly, resulting in rapid crystallization of much of the liquid remaining with the previously formed 219

6 FIGURE 6 Schematic sections of three zoned fluid-phase deposits (not at the same scale). (a) Miarolitic pod in granite (several centimeters across). (b) Asymmetric zoned pegmatite dike with aplitic base (several tens of centimeters across). (c) Asymmetric zoned pegmatite with granitoid outer portion (several meters across). From Jahns and Burnham (1969). minerals. This is an alternative way of generating porphyritic texture and is common in many silicic plutons. 2.3 Liquid Immiscibility Two liquids that don t mix seems an unlikely occurrence, and it is. Yet most of us are familiar with salad oil and oil slicks, so we have some concept of the phenomenon. Many oils do not mix with water, and, because they are less dense, the oil floats to the top of the water, forming a distinct layer. Most immiscible phases, whether liquids or solids, homogenize at elevated temperatures due to the increased entropy and molecular vibrational energy, although for oil water at atmospheric pressure, the homogenizing temperature is above the boiling point of water. The solvus, representing liquid or solid immiscibility on a phase diagram, is therefore convex upward on a temperature composition diagram. We have already encountered immiscible liquids in the forsterite silica system, where, on the high-silica side of the diagram, a highly silica-rich liquid separates from a less silica-rich one. Throughout the 20th century, geologists appealed to liquid immiscibility as a mechanism for magmatic differentiation, thinking that it might be responsible for the separation of a granitic liquid from an evolving system (presumably from an initial basaltic parent). Such a separation into contrasting liquid systems was also used to explain enigmatic cases of bimodal volcanism, such as the basalt rhyolite occurrences of the Snake River Yellowstone area, or the Basin-and-Range of the southwestern United States. There are two problems with applying the forsterite silica liquid immiscibility gap to natural magmas. First, the temperature of liquid immiscibility is far too high (over 1700 C) to represent a reasonable crustal process. Of course, the Mg-Si-O system is rather restricted, leading one to ask whether the addition of other components, required to create more natural magmas, would lower the temperature of the solvus. The effect, however, of adding alkalis, alumina, etc. is to eliminate the solvus completely. When this was experimentally demonstrated, liquid immiscibility was relegated to the compost pile of magmatic processes. Interest was renewed when Roedder (1951) discovered a low-temperature immiscibility gap in the central portion of the fayalite leucite silica system (Figure 7) at temperatures and compositions that are conceivable for some Fe-rich natural magmas. Roedder (1979) provided a review of liquid immiscibility in silicate magmas, citing dozens of references in which natural occurrences of immiscible liquids were described, including a significant proportion of the lunar samples returned by the Apollo program. Three natural magmatic systems are widely recognized as having immiscible liquids in some portion of their compositional range. The first is the system mentioned above, which most commonly translates to natural Fe-rich tholeiitic basalts, which experience an initial trend toward iron enrichment. In the later stages of fractionation, a granitic melt ( 775% SiO 2 ) separates from a basaltic melt (' 40% SiO2 ). Once separated, the silicic liquid must have a much lower density than the Fe-rich mafic liquid, and we would expect it to rise and collect near the top of the magma 220

7 SiO Fa Fa Two liquids Lc Kfs SiO 2 SiO 2 FIGURE 7 Two immiscibility gaps in the system fayalite leucite silica. The central one is of a composition, and at a low enough temperature (see the section in the upper left) to be attainable in some Fe-rich natural magmas (after Roedder, 1979, copyright the Mineralogical Society of America). Projected into the simplified system are the compositions of natural immiscible silicate pair droplets from interstitial Fe-rich tholeiitic glasses (Philpotts, 1982). chamber. Crystallization of the magma must be advanced by the time liquid separation occurs, however, and both liquids are likely to become trapped in the already-formed crystal network. Philpotts (1982) described the textures of some Ferich Hawaiian basalts in which small droplets of the two immiscible liquids are mingled in the interstitial glass trapped between plagioclase and augite crystals. The separate droplet compositions may be determined by microprobe and are projected into the Fa-Lc-silica system in Figure 7, along with the liquid immiscibility gap of Roedder (1951). The actual liquid compositions plot slightly outside the experimental gap, probably because of the effects of Fe 2 O 3, TiO 2, and P 2 O 5, which expand the immiscible field. The low oxygen fugacity of the lunar basalts is the probable reason that immiscible liquids are so common in them. Observing immiscible droplets is clear evidence of the process, but evidence is far less obvious that immiscible granitic liquids have separated and formed substantial segregations from Fe-rich tholeiites that are over 70% crystallized. Perhaps filter pressing may aid the process, and the granophyric layers and lenses at the top of many mafic intrusions, including the Palisades Sill and the Skaergård intrusion (McBirney, 1975) may be the products of immiscible liquids. In such cases, liquid immiscibility is a late-stage addition to a more extensive process of fractional crystallization in these mafic intrusions. Granitic bodies and other large-scale evolved liquids, however, are unlikely products of immiscible liquids. A second system displaying immiscible liquid behavior is the separation of a sulfide-rich liquid from a sulfidesaturated silicate magma. Less than one-tenth of a percent of sulfur is sufficient to saturate a silicate magma and release an iron sulfide melt that is also rich in Cu, Ni, and other chalcophile elements. Small, round, immiscible sulfide droplets in a silicate glass matrix, similar to Philpotts (1982) granitic tholeiitic examples above, have been observed in a number of quenched ocean basalt glasses. Economically important massive sulfide segregations in large, layered mafic complexes have formed by separation and accumulation of immiscible sulfide melts. A third liquid immiscibility gap occurs in highly alkaline magmas that are rich in CO 2. These liquids separate into two fractions, one enriched in silica and alkalis and the other in carbonate. These give rise to the nephelinite carbonatite association. Although these are the three generally recognized occurrences of immiscible liquids, other magmas might separate into two liquid phases under certain circumstances. These possibilities include lamprophyres (Philpotts, 1976; Eby, 1980), komatiites, lunar mare, and various other volcanics (see Roedder, 1979, for a summary). The close spatial and temporal association of contrasting liquids may result from a number of processes in addition to liquid immiscibility. We can apply three tests to juxtaposed rocks to evaluate them as products of immiscible liquids. First, the magmas must be immiscible when heated experimentally, or they must plot on the boundaries of a known immiscibility gap, as in Figure 7. Second, immiscible liquids are in equilibrium with each other, and thus they must also be in equilibrium with the same minerals. If the two associated liquids crystallized different minerals or the same mineral with different compositions, they cannot be an immiscible pair. Finally, we may be able to use the pattern of trace element fractionation between the two liquids to evaluate them as immiscible. Partitioning of minor and trace elements between Fe-rich mafic liquids and granitic liquids, for example, can be distinctive when compared to the more common mafic magmas with less Fe. Some incompatible elements (P, for example) are preferentially incorporated into an Fe-rich mafic liquid over the complimentary silicic one. A granitic rock relatively depleted in these incompatible trace elements may be a product of liquid immiscibility. Of course, a low concentration in a particular trace element can also result if the liquid was derived from a similarly depleted source. It is far more reliable, then, if rocks representing both of the immiscible liquids can be evaluated. This has been accomplished for some mixed dike rocks (Vogel and Wilband, 1978), but no one has yet succeeded in identifying a mediumsized or larger granite as derived from an immiscible liquid. Although liquid immiscibility is now widely accepted as a phenomenon in natural magmas, the extent of the process is still in question, and its importance in generating large bodies or a significant proportion of evolved magmatic rocks is doubtful. 3 MAGMA MIXING Magma mixing is a bit like liquid immiscibility in reverse, and so was some of the reasoning behind its historical origins. The reigning paradigm of fractional crystallization implies 221

The Practice Book for Conceptual Physics. Paul G. Hewitt Eleventh Edition

The Practice Book for Conceptual Physics. Paul G. Hewitt Eleventh Edition The Practice Book for Conceptual Physics Paul G. Hewitt Eleventh Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on

More information

Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition

Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition Introductory Chemistry Essentials Nivaldo J. Tro Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

Introductory Statistics Neil A. Weiss Ninth Edition

Introductory Statistics Neil A. Weiss Ninth Edition Introductory Statistics Neil A. Weiss Ninth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at:

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition

Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM JE England and Associated Companies throughout the world Visit

More information

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition

Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Physics for Scientists & Engineers with Modern Physics Douglas C. Giancoli Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava Introduction Chapter 4 Igneous rocks form by the cooling of magma (or lava). Large parts of the continents and all the oceanic crust are composed of. and Intrusive Igneous Activity The Properties and Behavior

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

Elementary Statistics in Social Research Essentials Jack Levin James Alan Fox Third Edition

Elementary Statistics in Social Research Essentials Jack Levin James Alan Fox Third Edition Elementary Statistics in Social Research Essentials Jack Levin James Alan Fox Third Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

More information

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma

Igneous Rocks. Definition of Igneous Rocks. Igneous rocks form from cooling and crystallization of molten rock- magma Igneous Rocks Definition of Igneous Rocks Igneous rocks form from cooling and crystallization of molten rock- magma Magma molten rock within the Earth Lava molten rock on the Earth s s surface Igneous

More information

Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition

Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition Differential Equations and Linear Algebra C. Henry Edwards David E. Penney Third Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

William R. Wade Fourth Edition

William R. Wade Fourth Edition Introduction to Analysis William R. Wade Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics Randall D. Knight Third Edition

Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics Randall D. Knight Third Edition Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics Randall D. Knight Third Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Student Workbook for College Physics: A Strategic Approach Volume 2 Knight Jones Field Andrews Second Edition

Student Workbook for College Physics: A Strategic Approach Volume 2 Knight Jones Field Andrews Second Edition Student Workbook for College Physics: A Strategic Approach Volume 2 Knight Jones Field Andrews Second Edition Pearson Education Limited Edinburgh Gate Harlow Esse CM2 2JE England and Associated Companies

More information

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere Igneous Rock Magma Molten rock under the surface Temperature = 600 o 1400 o C Magma Chamber Large pool of magma in the lithosphere Magma chamber - most all magma consists of silicon and oxygen (silicate)

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM0 JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 014 All

More information

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks Igneous rocks form as molten magma or lava cools and solidifies. Magma is completely or partly molten

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Chemistry: The Central Science Brown LeMay Bursten Murphy Woodward Twelfth Edition

Chemistry: The Central Science Brown LeMay Bursten Murphy Woodward Twelfth Edition Chemistry: The Central Science Brown LeMay Bursten Murphy Woodward Twelfth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit

More information

Process Control Instrumentation Technology Curtis D. Johnson Eighth Edition

Process Control Instrumentation Technology Curtis D. Johnson Eighth Edition Process Control Instrumentation Technology Curtis D. Johnson Eighth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 204

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

Interpreting Phase Diagrams

Interpreting Phase Diagrams Interpreting Phase Diagrams Understanding chemical reactions requires that we know something about how materials behave as the temperature and pressure change. For a single component (like quartz or ice)

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) - Constitution of Magmas Magmas Best, Ch. 8 Hot molten rock T = 700-1200 degrees C Composed of ions or complexes Phase Homogeneous Separable part of the system With an interface Composition Most components

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members:

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Igneous Rocks Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members: Types of Magma Basaltic, Basic or Mafic very hot (900-1200 C) very fluid

More information

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02

GEOLOGY. Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 GEOLOGY Subject : GEOLOGY (For under graduate student.) Paper No. : Paper 02 Introduction to Geology 02 Topic No. & Title : 37 Magma Bowen Series (Part 01) Academic Script What is Igneous Petrology? Igneous

More information

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Igneous Rocks and Intrusive Activity

Igneous Rocks and Intrusive Activity Summary IGNEOUS ROCKS AND METAMORPHIC ROCKS DERIVED FROM IGNEOUS parents make up about 95 percent of Earth s crust. Furthermore, the mantle, which accounts for more than 82 percent of Earth s volume, is

More information

C = 3: Ternary Systems: Example 1: Ternary Eutectic

C = 3: Ternary Systems: Example 1: Ternary Eutectic Phase Equilibrium C = 3: Ternary Systems: Example 1: Ternary Eutectic Adding components, becomes increasingly difficult to depict 1-C: P - T diagrams easy 2-C: isobaric T-X, isothermal P-X 3-C:?? Still

More information

The Moon: Internal Structure & Magma Ocean

The Moon: Internal Structure & Magma Ocean The Moon: Internal Structure & Magma Ocean 1 Lunar Magma Ocean & Lunar Interior 2 Two possible views of the Moon s interior: The Moon: Internal Structure 3 Like Earth, the Moon is a differentiated body.

More information

A Rock is a solid aggregate of minerals.

A Rock is a solid aggregate of minerals. Quartz A Rock is a solid aggregate of minerals. Orthoclase Feldspar Plagioclase Feldspar Biotite Four different minerals are obvious in this piece of Granite. The average automobile contains: Minerals

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Esse CM2 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: wwwpearsonedcouk Pearson Education Limited 214 All

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

The 3 types of rocks:

The 3 types of rocks: Igneous Rocks and Intrusive Igneous Activity The 3 types of rocks:! Sedimentary! Igneous! Metamorphic Marble 1 10/7/15 SEDIMENTARY ROCKS Come from rocks sediments (rock fragments, sand, silt, etc.) Fossils

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin Rolph E. Anderson Seventh Edition

Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin Rolph E. Anderson Seventh Edition Multivariate Data Analysis Joseph F. Hair Jr. William C. Black Barry J. Babin Rolph E. Anderson Seventh Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies

More information

Lab 4 - Identification of Igneous Rocks

Lab 4 - Identification of Igneous Rocks Lab 4 - Identification of Igneous Rocks Page - Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly recognize

More information

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. CHAPTER 5 Igneous Rocks SECTION 5.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Lab 3 - Identification of Igneous Rocks

Lab 3 - Identification of Igneous Rocks Lab 3 - Identification of Igneous Rocks Page - 1 Introduction A rock is a substance made up of one or more different minerals. Thus an essential part of rock identification is the ability to correctly

More information

A First Course in Probability Sheldon Ross Ninth Edition

A First Course in Probability Sheldon Ross Ninth Edition A First Course in Probability Sheldon Ross Ninth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide

More information

Introduction to Electrodynamics David J. Griffiths Fourth Edition

Introduction to Electrodynamics David J. Griffiths Fourth Edition Introduction to Electrodynamics David J. Griffiths Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World

More information

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature 1 - C Systems The system H 2 O Heat an ice at 1 atm from-5 to 120 o C Heat vs. Temperature Fig. 6.7. After Bridgman (1911) Proc. Amer. Acad. Arts and Sci., 5, 441-513; (1936) J. Chem. Phys., 3, 597-605;

More information

THE ROCK CYCLE & ROCKS. Subtitle

THE ROCK CYCLE & ROCKS. Subtitle THE ROCK CYCLE & ROCKS Subtitle 3. Three rocks that do not have minerals or are composed of nonmineral matter. Coal Pumuce Obsidian THE ROCK CYCLE Why do scientists study rocks? Rocks contain clues about

More information

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments GY303 Igneous & Metamorphic Petrology Lecture 7: Magma Sources and Tectonic Environments Factors controlling Magma production Source rock composition Amount of fluids, especially H 2 O Pressure (Depth)

More information

Rocks. Types of Rocks

Rocks. Types of Rocks Rocks Rocks are the most common material on Earth. They are naturally occurring aggregates of one or more minerals. 1 Igneous rocks, Types of Rocks Sedimentary rocks and Metamorphic rocks. 2 1 3 4 2 IGNEOUS

More information

Introduction. Volcano a vent where molten rock comes out of Earth

Introduction. Volcano a vent where molten rock comes out of Earth Introduction Volcano a vent where molten rock comes out of Earth Example: Kilauea Volcano, Hawaii Hot (~1,200 o C) lava pools around the volcanic vent. Hot, syrupy lava runs downhill as a lava flow. The

More information

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Fluorine and Chlorine in Alkaline Rocks and A-type Granites

Fluorine and Chlorine in Alkaline Rocks and A-type Granites Fluorine and Chlorine in Alkaline Rocks and A-type Granites Using the fluorine and chlorine content of Amphibole, Apatite and Biotite to monitor magma halogen content Chilwa Province, Malawi, and Carboniferous

More information

Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011

Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011 M&M s Magma Chamber 1 Differentiation of Magmas By Fractional Crystallization Modified from Karl Wirth, rev. July 2011 Objective The objective of this exercise is to gain first-hand knowledge of the process

More information

Announcements. Homework 2 due today Reading: p LMI

Announcements. Homework 2 due today Reading: p LMI Announcements Homework 2 due today Reading: p.219-241 LMI The many shapes and sizes of igneous intrusions plutons Concordant and discordant intrusions Note scale in future slides! From Winter, Intro to

More information

Chapter 4 Up from the Inferno: Magma and Igneous Rocks

Chapter 4 Up from the Inferno: Magma and Igneous Rocks Chapter 4 Up from the Inferno: Magma and Igneous Rocks Up from the Inferno: Magma and Igneous Rocks Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts

More information

Textures of Igneous Rocks

Textures of Igneous Rocks Page 1 of 6 EENS 212 Prof. Stephen A. Nelson Petrology Tulane University This document last updated on 12-Feb-2004 Introduction to Igneous Rocks An igneous rock is any crystalline or glassy rock that forms

More information

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli Chapter 5: Crystal-Melt phase diagrams Effect of water pressure on feldspar stability Hypersolvus vs.

More information

A Second Course in Statistics Regression Analysis William Mendenhall Terry Sincich Seventh Edition......

A Second Course in Statistics Regression Analysis William Mendenhall Terry Sincich Seventh Edition...... A Second Course in Statistics Regression Analysis William Mendenhall Terry Sincich Seventh Edition...... Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies

More information

Karen C. Timberlake William Timberlake Fourth Edition

Karen C. Timberlake William Timberlake Fourth Edition Basic Chemistry Karen C. Timberlake William Timberlake Fourth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and 20 MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout) Chain silicate eg Diopside Mg and Fe ions link SiO 3 chains The chain runs up and down

More information

Chapter: Earth Materials

Chapter: Earth Materials Table of Contents Chapter: Earth Materials Section 1: Minerals Section 2: Igneous Rocks Section 3: Sedimentary Rocks Section 4: Metamorphic Rocks and the Rock Cycle 1 Minerals Common Elements Composition

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Earth Science 11: Earth Materials: Rock Cycle

Earth Science 11: Earth Materials: Rock Cycle Name: Date: Earth Science 11: Earth Materials: Rock Cycle Chapter 2, pages 44 to 46 2.1: Rock Cycle What is a Rock? A solid mass of mineral or mineral-like matter that occurs naturally as part of our planet

More information

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE DANIEL HAWKINS Western Kentucky University Research Advisor: Andrew Wulff INTRODUCTION Round Point, in the

More information

Magmatic Ore Deposits:

Magmatic Ore Deposits: Magmatic Ore Deposits: A number of processes that occur during cooling and crystallization of magmatic bodies can lead to the separation and concentration of minerals. 1- Pegmatites 2- Layered intrusions

More information

How 2 nd half labs will work

How 2 nd half labs will work How 2 nd half labs will work Continue to use your mineral identification skills Learn to describe, classify, interpret rock hand samples: Igneous sedimentary metamorphic volcanic plutonic (1 week) (1 wk)

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

Structure of the Earth

Structure of the Earth And the ROCK CYCLE Structure of the Earth Compositional (Chemical) Layers Crust: Low density High in silicon (Si) and oxygen (O) Moho: Density boundary between crust and mantle Mantle: Higher density High

More information

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40 REMINDER 2 chapters covered next week Sedimentary Rocks Soils and Weathering (first half) Learn vocabulary for both! Turn to Neighbor: Without using your book or notes, try to remember which te mineral

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 3 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT

EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT EESC 4701: Igneous and Metamorphic Petrology IGNEOUS ROCK CLASSIFICATION LAB 2 HANDOUT Sources: University of Washington, Texas A&M University, University of Southern Alabama What is an igneous rock (a

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks.

Feldspars. Structure. The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Feldspars The feldspars are by far the most abundant group of minerals and are found in igneous, metamorphic and many sedimentary rocks. Structure Felsdpars are framework silicates where each silica tetrahedra

More information

Topics. Magma Ascent and Emplacement. Magma Generation. Magma Rise. Energy Sources. Instabilities. How does magma ascend? How do dikes form?

Topics. Magma Ascent and Emplacement. Magma Generation. Magma Rise. Energy Sources. Instabilities. How does magma ascend? How do dikes form? Magma Ascent and Emplacement Reading: Encyclopedia of Volcanoes: Physical Properties of Magmas (pp. 171-190) Magma Chambers (pp. 191-206) Plumbing Systems (pp. 219-236) Magma ascent at shallow levels (pp.237-249)

More information

Phase Equilibrium. Phase Rule. Phase Diagram

Phase Equilibrium. Phase Rule. Phase Diagram Phase Equilibrium Phase Rule Phase Diagram Makaopuhi Lava Lake Magma samples recovered from various depths beneath solid crust From Wright and Okamura, (1977) USGS Prof. Paper, 1004. Makaopuhi Lava Lake

More information

CHAPTER ROCK WERE FORMED

CHAPTER ROCK WERE FORMED HOW CHAPTER 5 ROCK WERE FORMED 1 I. Modern geology- 1795 A. James Hutton- 1. uniformitarianism- "the present is the key to the past" a. b. the geologic processes now at work were also active in the past

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

Differentiation of Magmas By Fractional Crystallization

Differentiation of Magmas By Fractional Crystallization Wirth Magmatic Differentiation Using M&M s 1 HANDOUT Differentiation of Magmas By Fractional Crystallization Objective The objective of this exercise is to gain first-hand knowledge of the process of magmatic

More information

Magma Formation and Behavior

Magma Formation and Behavior Magma Formation and Behavior Introduction: The study of body waves as they pass through Earth's interior provides strong evidence that the Earth's mantle is composed almost entirely of solid ultramafic

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle Chapter 10 Rocks 1 Chapter 10 Section 1 Rocks and the Rock Cycle 2 10.1 Rocks and the Rock Cycle Magma is the parent material for all rocks. Once the magma cools and hardens, many changes can occur. Geology:

More information