Glacier volume estimates in the Indus Basin

Size: px
Start display at page:

Download "Glacier volume estimates in the Indus Basin"

Transcription

1 Glacier volume estimates in the Indus Basin Methods and applications Dr. Holger Frey Department of Geography, University of Zurich Indus Forum Workshop, 11 October 2016 University of Zurich, Switzerland

2 Why estimating glacier volumes? Sea level rise P. Rastner Glacier evolution Landscape changes J. Alean J. Alean Hydropower

3 Where? Karakoram ICIMOD Frey et al. (2012) Bhambri et al. (2012) Chinese Glacier Inventory W-Himalayas Estimating the ice volumes in the Himalaya/Karakoram C-Himalayas region using SRTM (void-filled) accurate glacier inventory data three different approaches E-Himalayas

4 How? Volume-area scaling V = c A γ Slope-dependent thickness estimations (according to Haeberli and Hoelzle, 1995, Ann. Glaciol.) h avg = ( τ / f ρ g sin(α)) (π/4) Modeling of ice-thickness distribution Linsbauer et al. (2009) Huss & Farinotti (2012)

5 How? V-A relations Slope-dependent thickness estimations Ice-thickness distribution models Bahr et al., 1997, JGR h avg = p 4 Haeberli and Hoelzle, 1995 t f r g sina Quick to apply Cogley, 2012, in: Barry et al. Weak correlation of area and thickness Large uncertainties Mean ice thickness calculation Rapid calculation with results similar to GlabTop Include 3D terrain information from DEMs Many subsequent applications: Volume per elevation Glacier bed topography Validation with measurements not possible Can be validated with measurements

6 Ice-thickness distribution models: GlabTop Input: digital glacier outlines + DEM contour lines (50 m) ΔH glacier outlines flowlines surface slope base points h = interpolated glacier bed f t r g sina h A. Linsbauer

7 GlabTop2 Input: digital glacier outlines + DEM Further development of the GlabTop approach (Linsbauer et al., 2012) Calculation of ice thickness at random points and interpolation h = f t r g sina

8 Other ice-thickness distribution models Huss and Farinotti (2012)

9 Results: Glacier volumes 5'000 4'000 3'000 2'000 1' Volume (km 3 ) Volume (km 3 ) Chen & Ohmura (1990) Bahr et al. (1997) Arendt et al. (2006) Haeberli & Hoelzle (1995) GlabTop2 ITEM (Huss & Farinotti, 2012) INDUS BASIN (GlabTop2): 1830 km 3 Karakoram W Himalaya C Himalaya E Himalaya TOTAL Frey et al. 2014

10 Results: mean thickness & SLE Mean ice thicknesses (and corresponding Sea Level Equivalents) Region Chen and Ohmura (1990) Bahr et al. (1997) LIGG et al. (1988) Slope-dep. thickness estimate GlabTop2 HF-model Karakoram m (5.56 mm) m (6.82 mm) m (7.03 mm) m (5.28 mm) 93.8 m (4.18 mm) m (4.65 mm) W Himalayas 57.6 m (1.28 mm) 68.2 m (1.52 mm) 78.7 m (1.75 mm) 58.9 m (1.31 mm) 56.3 m (1.25 mm) 60.7 m (1.35 mm) C Himalayas m (1.61 mm) 77.4 m (1.91 mm) 88.8 m (2.19 mm) 51.6 m (1.27 mm) 55.6 m (1.37 mm) 56.4 m (1.39 mm) E Himalayas 59.6 m (0.58 mm) 70.6 m (0.69 mm) 81.7 m (0.80 mm) 50.2 m (0.49 mm) 54.6 m (0.54 mm) 49.2 m (0.48 mm) HK region 89.1 m (9.03 mm) m (10.95 mm) m (11.78 mm) 82.4 m (8.35 mm) 72.5 m (7.35 mm) 77.7 m (7.87 mm) INDUS BASIN (GlabTop2): 44.9 m (4.55 mm SLE)

11 Results: Hypsometric distribution Frey et al. 2014

12 Results: Summary Indus Basin ~1830 km 3 of glacier ice = mean thickness of ~45 m = ~4.55 mm Sea Level Equivalent Large amounts of ice in flat, low-lying glacier tongues (often under debris cover)

13 Validation Validation of mean thickness-estimation approaches is difficult Ice-thickness distributions can be compared to GPR measurements Linsbauer et al. 2015

14 Validation Frey et al Average differences for 6 glaciers (std devs) of -2.9% (89m) (GlabTop2, blue) and % (63m) (Huss & Farinotti, red)

15 Applications: Future lakes Rhone Glacier

16 Applications: Future lakes Linsbauer et al. 2015

17 Applications: RCMs Dynamic integration of glaciers in a regional climate model REMO: First RCM with dynamic glacier integration Ice volumes so far based on V/A-scaling Glacier volumes distributed over elevation bands as model input Kumar et al. 2015

18 Future work: ITMIX IACS Working Group on Glacier Ice Thickness Estimation Ice Thickness Models Intercomparison experiment (ITMIX) 17 model approaches applied to 21 test cases Farinotti et al. in prep. Next step: Application of GlabTop2 to all glaciers in the World Glacier volumes in the Indus Basin Indus Forum, 11/10/16 Zurich Dr. Holger Frey

19 Conclusions Models are able to estimate distributed ice thicknesses of glaciers DEMs and glacier outlines are globally available automated model approaches can be applied to all glaciers in the World Scaling approaches involve very large uncertainties and should only be applied to large ensembles of glaciers, using local scaling parameters Distributed models allow for validation with measurements Applications of ice thickness distribution include future landscape modeling, glacier evolutions models, runoff predictions

20

21

22 Approach I: Volume area relations Quick and easy to apply Based on relatively few measurements Weak correlation of glacier area and thickness Bahr et al., 1997, JGR Cogley, 2012, in: Barry et al. Glacier separation has a strong influence on results Area: -0.03% Vol: -37%

23 Approach II: Slope-dependent thickness estimations Haeberli and Hoelzle (1995): h avg = ( τ / f ρ g sin(α)) (π/4) (τ parameterized with ΔH, max. 1.5 bar) H max Haeberli and Hoelzle, 1995 Different ways of calculating surface slope α: α tan = arctan (ΔH/l) α DEM = average of all DEM cells in most cases α DEM < α tan ΔH l Correction of α DEM to α tan H min 1 km

24 Two ways of calculating mean slope Haeberli and Hoelzle (1995): α = arctan (ΔH/l) [α l ] In GIS: α = average of all DEM cells [α DEM ] α l α DEM! Corrections of α DEM : If Area > 20 km 2 : -10 Area 5-20 km 2 : - 5 Area 2-5 km 2 : Area < 2 km 2 : no correction

Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach

Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jf002313, 2012 Modeling glacier thickness distribution and bed topography over entire mountain ranges with : Application of a fast and robust

More information

Mapping Glaciers and surging glaciers in the Karakoram using satellite data

Mapping Glaciers and surging glaciers in the Karakoram using satellite data Mapping Glaciers and surging glaciers in the Karakoram using satellite data Frank Paul Department of Geography University of Zurich Sentinel 2: Copernicus 2015! Satellites Image source: Internet Landsat

More information

Snow and Glacier Changes in the Upper Indus Basin

Snow and Glacier Changes in the Upper Indus Basin Snow and Glacier Changes in the Upper Indus Basin Tobias Bolch Department of Geography, Universität Zürich, Switzerland Funding: DFID (ICIMOD-Indus), ESA (Glaciers_cci), T. Bolch et al. 1/36 Indus Basin

More information

Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India

Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India Journal of Glaciology, Vol. 60, No. 220, 2014 doi: 10.3189/2014JoG13J078 277 Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India Prateek GANTAYAT, Anil

More information

China s contribution to Indus Forum (2013-): Changes of observation and projection in climate, runoff and flood/drought over Indus River Basin

China s contribution to Indus Forum (2013-): Changes of observation and projection in climate, runoff and flood/drought over Indus River Basin China s contribution to Indus Forum (2013-): Changes of observation and projection in climate, runoff and flood/drought over Indus River Basin Jiang Tong, Xu Hongmei, Li Xiucang, NCC/CMA Zhao Chengyi,

More information

Journal of Glaciology, Vol. 61, No. 225, 2015 doi: /2015JoG14J159 29

Journal of Glaciology, Vol. 61, No. 225, 2015 doi: /2015JoG14J159 29 Journal of Glaciology, Vol. 61, No. 225, 2015 doi: 10.3189/2015JoG14J159 29 Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based

More information

Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya Karakoram region

Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya Karakoram region Annals of Glaciology 57(71) 2016 doi: 10.3189/2016AoG71A627 119 Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya Karakoram region A. LINSBAUER, 1,2 H. FREY,

More information

ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT

ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT ALPINE GLACIERS AS A CLIMATE PROXY AND AS A PROMINENT CLIMATE IMPACT Wilfried Haeberli and Martin Hoelzle World Glacier Monitoring Service and Glaciology and Geomorphodynamics Group, Geography Department,

More information

Data challenges in Trans-boundary River Basins: Case Study of the Upper Indus Basin

Data challenges in Trans-boundary River Basins: Case Study of the Upper Indus Basin Data challenges in Trans-boundary River Basins: Case Study of the Upper Indus Basin Asif Khan Lead Author (Water chapter- AR6 IPCC) Post Doctorate (Water-Energy-Food-Climate Change, IIASA, Austria) PhD

More information

Digital Elevation Models. Using elevation data in raster format in a GIS

Digital Elevation Models. Using elevation data in raster format in a GIS Digital Elevation Models Using elevation data in raster format in a GIS What is a Digital Elevation Model (DEM)? Digital representation of topography Model based on scale of original data Commonly a raster

More information

Climate Change Impacts on Glaciers and Runoff in Alpine catchments

Climate Change Impacts on Glaciers and Runoff in Alpine catchments Climate Change Impacts on Glaciers and Runoff in Alpine catchments Saeid A. Vaghefi Eawag: Swiss Federal Institute of Aquatic Science and Technology University of Geneva, Institute for Environmental Science

More information

Modelling of surface to basal hydrology across the Russell Glacier Catchment

Modelling of surface to basal hydrology across the Russell Glacier Catchment Modelling of surface to basal hydrology across the Russell Glacier Catchment Sam GAP Modelling Workshop, Toronto November 2010 Collaborators Alun Hubbard Centre for Glaciology Institute of Geography and

More information

Basin characteristics

Basin characteristics Basin characteristics From hydrological processes at the point scale to hydrological processes throughout the space continuum: point scale à river basin The watershed characteristics (shape, length, topography,

More information

Skeletal remains of what was a debris-covered glacier near Mt. Everest

Skeletal remains of what was a debris-covered glacier near Mt. Everest Annual satellite imaging of the world s glaciers Assessment of glacier extent and change GLIMS Development and population of a digital glacier data inventory HIGH ICE Skeletal remains of what was a debris-covered

More information

Remote Sensing 4 Global mass changes from remote sensing

Remote Sensing 4 Global mass changes from remote sensing Remote Sensing 4 Global mass changes from remote sensing Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Why glacier mass changes? o Water resources o Energy

More information

Modeling Transient Permafrost Temperatures below Steep Alpine Topography

Modeling Transient Permafrost Temperatures below Steep Alpine Topography Modeling Transient Permafrost Temperatures below Steep Alpine Topography Jeannette Noetzli 1*, Stephan Gruber 1 and Sven Friedel 2 1 Glaciology, Geomorphodynamics and Geochronology, Department of Geography,

More information

Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble

Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble SUPPLEMENTARY MATERIAL: Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble Harry Zekollari 1, *, Matthias Huss 1,3 and Daniel Farinotti 1, 1 Laboratory of

More information

ECVs: What s operational and what still requires R&D?

ECVs: What s operational and what still requires R&D? Glaciers_cci input on ECVs: What s operational and what still requires R&D? Frank Paul* Department of Geography, University of Zurich *on behalf of the Glaciers_cci consortium Google Earth Operational

More information

Cryosphere matters attribution of observed streamflow changes in headwater catchments of the Tarim River

Cryosphere matters attribution of observed streamflow changes in headwater catchments of the Tarim River Cryosphere matters attribution of observed streamflow changes in headwater catchments of the Tarim River Doris Düthmann, Tobias Bolch *, Tino Pieczonka *, Daniel Farinotti, David Kriegel, Sergiy Vorogushyn,

More information

Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: application of an improved flowline model

Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: application of an improved flowline model 268 Annals of Glaciology 46 2007 Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: application of an improved flowline model Shin SUGIYAMA, 1,2 Andreas BAUDER, 2 Conradin

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki March 17, 2014 Lecture 08: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

RESEARCH COMMUNICATIONS. U. S. Maanya, Anil V. Kulkarni*, Alok Tiwari, Enakshi Dasgupta Bhar and J. Srinivasan

RESEARCH COMMUNICATIONS. U. S. Maanya, Anil V. Kulkarni*, Alok Tiwari, Enakshi Dasgupta Bhar and J. Srinivasan rock glaciers or thawing of frozen ground 4. In general, field campaigns should be targeted towards critical locations, e.g. where lakes are dammed in permafrost terrain, and ideally areas where there

More information

Creating Watersheds and Stream Networks. Steve Kopp

Creating Watersheds and Stream Networks. Steve Kopp Creating Watersheds and Stream Networks Steve Kopp Workshop Overview Demo Data Understanding the tools Elevation Data Types DEM : Digital Elevation Model bare Earth DSM : Digital Surface Model Data Structure

More information

MODULE 7 LECTURE NOTES 5 DRAINAGE PATTERN AND CATCHMENT AREA DELINEATION

MODULE 7 LECTURE NOTES 5 DRAINAGE PATTERN AND CATCHMENT AREA DELINEATION MODULE 7 LECTURE NOTES 5 DRAINAGE PATTERN AND CATCHMENT AREA DELINEATION 1. Introduction Topography of the river basin plays an important role in hydrologic modelling, by providing information on different

More information

Glacier Elevation, Volume and Mass Change

Glacier Elevation, Volume and Mass Change 8/8/12 Glacier Elevation, Volume and Mass Change 1 Outline: Elevation, Volume and Mass Change ① Elevation change fundamentals ② Elevation measurement platforms ③ Calculating elevation change ④ Calculating

More information

Notes for Remote Sensing: Glacier Elevation, Volume and Mass Change

Notes for Remote Sensing: Glacier Elevation, Volume and Mass Change Notes for Remote Sensing: Glacier Elevation, Volume and Mass Change Elevation and Volume Change: Alex S Gardner Atmospheric Oceanic and Space Sciences, University of Michigan Aircraft- and satellite- mounted

More information

MODELLING FUTURE CHANGES IN CRYOSPHERE OF INDUS BASIN

MODELLING FUTURE CHANGES IN CRYOSPHERE OF INDUS BASIN MODELLING FUTURE CHANGES IN CRYOSPHERE OF INDUS BASIN ANIL V. KULKARNI DISTINGUISHED VISITING SCIENTIST DIVECHA CENTRE FOR CLIMATE CHANGE INDIAN INSTITUTE OF SCIENCE BANGALORE 560012 INDIA Presented at

More information

The Cryosphere CCI s. Glaciers CCI Greenland Ice Sheet CCI Antarctica Ice Sheet CCI Sea Ice CCI 2012-

The Cryosphere CCI s. Glaciers CCI Greenland Ice Sheet CCI Antarctica Ice Sheet CCI Sea Ice CCI 2012- The Cryosphere CCI s. Glaciers CCI 2011- Greenland Ice Sheet CCI 2012- Antarctica Ice Sheet CCI 2015- Sea Ice CCI 2012- Ilulissat Climate Days 2015 International workshops on Changes of the Greenland Cryosphere

More information

A NOVEL APPROACH TO MEASURE THE CHANGES IN GLACIER EXTENT OF GANGOTRI GLACIER

A NOVEL APPROACH TO MEASURE THE CHANGES IN GLACIER EXTENT OF GANGOTRI GLACIER A NOVEL APPROACH TO MEASURE THE CHANGES IN GLACIER EXTENT OF GANGOTRI GLACIER M Anul Haq 1, Dr. Kamal Jain 1, Dr K.P.R. Menon 2 1 Department of Civil Engineering, Indian Institute of Technology, Roorkee,

More information

Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models

Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models Clim Dyn DOI 10.1007/s00382-013-1719-7 Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models Valentina Radić Andrew Bliss

More information

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic

Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Uncertainty modeling of glacier surface mapping from GPS: An example from Pedersenbreen, Arctic Xi Zhao, Songtao Ai 1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079,

More information

SPIRIT DEM applications over Svalbard

SPIRIT DEM applications over Svalbard SPIRIT DEM applications over Svalbard Chris Nuth 1, Geir Moholdt 1, Nora Schneevoigt 1, Monica Sund 2,1, Mari Svanem 3, Anne Chapuis 3, Wiley Bogren 4,1, Andreas Kääb 1 1 Department of Geosciences, University

More information

A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials

A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials Nat. Hazards Earth Syst. Sci., 10, 339 352, 2010 Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences A multi-level strategy

More information

RESPONSE OF PERMAFROST TO GLOBAL CHANGE ON THE QINGHAI-XIZANG PLATEAUÑ A GIS-AIDED MODEL

RESPONSE OF PERMAFROST TO GLOBAL CHANGE ON THE QINGHAI-XIZANG PLATEAUÑ A GIS-AIDED MODEL RESPONSE OF PERMAFROST TO GLOBAL CHANGE ON THE QINGHAI-XIZANG PLATEAUÑ A GIS-AIDED MODEL Li Xin, Cheng Guodong, Chen Xianzhang State Key Laboratory of Frozen Soil Engineering, Lanzhou Institute of Glaciology

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki November 17, 2017 Lecture 11: Terrain Analysis Outline: Terrain Analysis Earth Surface Representation Contour TIN Mass Points Digital Elevation Models Slope

More information

AMERICAN METEOROLOGICAL SOCIETY

AMERICAN METEOROLOGICAL SOCIETY AMERICAN METEOROLOGICAL SOCIETY Journal of Climate EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is

More information

MODELING DEM UNCERTAINTY IN GEOMORPHOMETRIC APPLICATIONS WITH MONTE CARLO-SIMULATION

MODELING DEM UNCERTAINTY IN GEOMORPHOMETRIC APPLICATIONS WITH MONTE CARLO-SIMULATION MODELING DEM UNCERTAINTY IN GEOMORPHOMETRIC APPLICATIONS WITH MONTE CARLO-SIMULATION Juha Oksanen and Tapani Sarjakoski Finnish Geodetic Institute Department of Geoinformatics and Cartography P.O. Box

More information

Outline. Remote Sensing, GIS and DEM Applications for Flood Monitoring. Introduction. Satellites and their Sensors used for Flood Mapping

Outline. Remote Sensing, GIS and DEM Applications for Flood Monitoring. Introduction. Satellites and their Sensors used for Flood Mapping Outline Remote Sensing, GIS and DEM Applications for Flood Monitoring Prof. D. Nagesh Kumar Chairman, Centre for Earth Sciences Professor, Dept. of Civil Engg. Indian Institute of Science Bangalore 560

More information

Volume loss from Bering Glacier (Alaska), : comment on Muskett and others (2009)

Volume loss from Bering Glacier (Alaska), : comment on Muskett and others (2009) Volume loss from Bering Glacier (Alaska), 1972 2003: comment on Muskett and others (2009) Berthier E. 1,2 1 CNRS; LEGOS; 14 Av. Ed. Belin, F-31400 Toulouse, France 2 Université de Toulouse; UPS (OMP-PCA);

More information

Model Projection Strategies for Glaciers and Ice Caps and Complete Assessment of Sea Level Rise

Model Projection Strategies for Glaciers and Ice Caps and Complete Assessment of Sea Level Rise Model Projection Strategies for Glaciers and Ice Caps and Complete Assessment of Sea Level Rise Columbia Glacier, 2004 W.T. Pfeffer W. Tad. Pfeffer and David B. Bahr University of Colorado Boulder, Colorado,

More information

5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism

5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism 5 Cryospheric aspects of climate change impacts on snow, ice, and ski tourism snow cover winter tourism glaciers permafrost A multi-day snow cover is projected to become a rare phenomenon in the Swiss

More information

Comparing Flickr tags to a geomorphometric classification. Christian Gschwend and Ross S. Purves

Comparing Flickr tags to a geomorphometric classification. Christian Gschwend and Ross S. Purves Comparing Flickr tags to a geomorphometric classification Christian Gschwend and Ross S. Purves 1 Department of Geography, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich christian.gschwend@geo.uzh.ch,

More information

Inter-linkage case study in Pakistan

Inter-linkage case study in Pakistan 7 th GEOSS Asia Pacific Symposium GEOSS AWCI Parallel Session: 26-28 May, 2014, Tokyo, Japan Inter-linkage case study in Pakistan Snow and glaciermelt runoff modeling in Upper Indus Basin of Pakistan Maheswor

More information

Down-stream process transition (f (q s ) = 1)

Down-stream process transition (f (q s ) = 1) Down-stream process transition (f (q s ) = 1) Detachment Limited S d >> S t Transport Limited Channel Gradient (m/m) 10-1 Stochastic Variation { Detachment Limited Equilibrium Slope S d = k sd A -θ d S

More information

ANALYSIS OF GLACIER CHANGE IN THE SIERRA NEVADA PORTLAND STATE UNIVERSITY DEPARTMENT OF GEOLOGY BRADLEY BUSELLI

ANALYSIS OF GLACIER CHANGE IN THE SIERRA NEVADA PORTLAND STATE UNIVERSITY DEPARTMENT OF GEOLOGY BRADLEY BUSELLI ANALYSIS OF GLACIER CHANGE IN THE SIERRA NEVADA PORTLAND STATE UNIVERSITY DEPARTMENT OF GEOLOGY BRADLEY BUSELLI Study area: Sierra Nevada (Glaciers, 2015) Closer look (Glaciers, 2015) Primary goal: Research

More information

Glacier meteorology Surface energy balance. How does ice and snow melt? Where does the energy come from? How to model melt?

Glacier meteorology Surface energy balance. How does ice and snow melt? Where does the energy come from? How to model melt? Glacier meteorology Surface energy balance How does ice and snow melt? Where does the energy come from? How to model melt? Melting of snow and ice Ice and snow melt at 0 C (but not necessarily at air temperature

More information

Past and future sea-level change from the surface mass balance of glaciers

Past and future sea-level change from the surface mass balance of glaciers The Cryosphere, 6, 9 3, www.the-cryosphere.net/6/9// doi:.94/tc-6-9- Author(s). CC Attribution 3. License. The Cryosphere Past and future sea-level change from the surface mass balance of glaciers B. Marzeion,

More information

Supraglacial Lake Formation and What it Means for Greenland s Future

Supraglacial Lake Formation and What it Means for Greenland s Future Supraglacial Lake Formation and What it Means for Greenland s Future GreenPeace Ulyana Nadia Horodyskyj GEOG 5271 questions of interest How, when and where do these lakes form in Greenland? How do these

More information

Sediment production in Tuni lake catchment due to climate change

Sediment production in Tuni lake catchment due to climate change Sediment production in Tuni lake catchment due to climate change (Proyecto Grande/Erosión y Sedimentación) Ramiro Pillco Zolá &, Seiki Kawagoe, Vanesa Vera San Andres Major University, Bolivia Fukushima

More information

Topographic Maps Lab 1

Topographic Maps Lab 1 Topographic Maps Lab 1 I. Objectives 1. Construct a material model of typical terrain found in a landscape. 2. Construct a topographic map corresponding to the terrain model. 3. Learn how to interpret

More information

Dynamique des rivières. res

Dynamique des rivières. res Dynamique des rivières res 1 Rivers are enormously diverse size: varies by many orders of magnitude geometry: highly variable substrate: bedrock or sediment sediment type: sediment size ranges from mud

More information

Ice thickness measurements and volume estimates for glaciers in Norway

Ice thickness measurements and volume estimates for glaciers in Norway Journal of Glaciology, Vol. 61, No. 228, 2015 doi: 10.3189/2015JoG14J161 763 Ice thickness measurements and volume estimates for glaciers in Norway L.M. ANDREASSEN, 1 M. HUSS, 2,3 K. MELVOLD, 1 H. ELVEHØY,

More information

APPLICATIONS OF DOWNSCALING: HYDROLOGY AND WATER RESOURCES EXAMPLES

APPLICATIONS OF DOWNSCALING: HYDROLOGY AND WATER RESOURCES EXAMPLES APPLICATIONS OF DOWNSCALING: HYDROLOGY AND WATER RESOURCES EXAMPLES Dennis P. Lettenmaier Department of Civil and Environmental Engineering For presentation at Workshop on Regional Climate Research NCAR

More information

AN ASSESSMENT OF THE IMPACT OF RETENTION PONDS

AN ASSESSMENT OF THE IMPACT OF RETENTION PONDS AN ASSESSMENT OF THE IMPACT OF RETENTION PONDS FOR SEDIMENT TRAPPING IN THE ADA CREEK AND LONGWOOD COVE USING REMOTELY SENSED DATA AND GIS ANALYSIS Sudhanshu Sekhar Panda Associate Professor, GIS/Env.

More information

Decadal glacial lake changes in the Koshi basin, central Himalaya, from 1977 to 2010, derived from Landsat satellite images

Decadal glacial lake changes in the Koshi basin, central Himalaya, from 1977 to 2010, derived from Landsat satellite images e-mail: jms@imde.ac.cn http://jms.imde.ac.cn https://doi.org/10.1007/s11629-016-4230-x Decadal glacial lake changes in the Koshi basin, central Himalaya, from 1977 to 2010, derived from Landsat satellite

More information

Monte Rosa east face and Belvedere Glacier:

Monte Rosa east face and Belvedere Glacier: Monte Rosa east face and Belvedere Glacier: Glacier surge, glacier lake, slope instabilities and related emergencies Christian Huggel, Luzia Fischer Glaciers in an Environmental Context: Case Studies C.

More information

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA Rodney M. Chai 1, Leigh A. Stearns 2, C. J. van der Veen 1 ABSTRACT The Bhagirathi River emerges from

More information

AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA

AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA AN EVALUATION ON THE DATA QUALITY OF SRTM DEM AT THE ALPINE AND PLATEAU AREA, NORTH-WESTERN OF CHINA Y. Liu School of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 -liuy@lzu.edu.cn

More information

GOCE Project acronym: Dl_3. Natural. the. December December Month. Actual submission

GOCE Project acronym: Dl_3. Natural. the. December December Month. Actual submission Project no: Project acronym: Instrument: Thematic Priority: GOCE 036952 BRAHMATWINN Specific Targeted Research Project Global Change and Ecosystems Project title: Twinning European and South Asian River

More information

Impact of DEM Resolution on Topographic Indices and Hydrological Modelling Results

Impact of DEM Resolution on Topographic Indices and Hydrological Modelling Results Impact of DEM Resolution on Topographic Indices and Hydrological Modelling Results J. Vaze 1, 2 and J. Teng 1, 2 1 Department of Water and Energy, NSW, Australia 2 ewater Cooperative Research Centre, Australia

More information

USING GIS FOR AVALANCHE SUSCEPTIBILITY MAPPING IN RODNEI MOUNTAINS

USING GIS FOR AVALANCHE SUSCEPTIBILITY MAPPING IN RODNEI MOUNTAINS USING GIS FOR AVALANCHE SUSCEPTIBILITY MAPPING IN RODNEI MOUNTAINS IOANA SIMEA 1 ABSTRACT. Using GIS for avalanche susceptibility mapping in Rodnei Mountains. This case study combines GIS methods with

More information

Global Cryosphere Watch. contributions from and expectations of the internationally coordinated glacier monitoring

Global Cryosphere Watch. contributions from and expectations of the internationally coordinated glacier monitoring GCW, Geneva, 21-24 November 2011 Global Cryosphere Watch contributions from and expectations of the internationally coordinated glacier monitoring potential partner Michael Zemp the devil s advocate World

More information

This content has been downloaded from IOPscience. Please scroll down to see the full text.

This content has been downloaded from IOPscience. Please scroll down to see the full text. Home Search Collections Journals About Contact us My IOPscience This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table of contents for this issue, or

More information

Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland

Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland Lauren Andrews 6 May 2010 GEO 386G: GIS final project Using Ice Thickness and Bed Topography to Pick Field Sites Near Swiss Camp, Greenland Problem Formulation My primary goal for this project is to map

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information.

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. Title Increased future sea level rise due to rapid decay o Author(s)Greve, Ralf CitationProceedings of the First International Symposium on Issue Date 008--04 Doc URL http://hdl.handle.net/5/4868 Type

More information

Glaciers and climate change Jon Ove Hagen, Department of Geosciences University of Oslo

Glaciers and climate change Jon Ove Hagen, Department of Geosciences University of Oslo Glaciers and climate change Jon Ove Hagen, Department of Geosciences University of Oslo joh@geo.uio.no Department of geosciences, Faculty of Mathematics and Natural Sciences Glaciers and climate change

More information

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY Florian Müller (1), Helmut Rott (2) (1) ENVEO IT, Environmental Earth Observation GmbH, Technikerstrasse 21a,

More information

Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan

Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan Pol. J. Environ. Stud. Vol. 26, No. 2 (2017), 525-542 DOI: 10.15244/pjoes/66719 Original Research Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern

More information

Geo-hazard Potential Mapping Using GIS and Artificial Intelligence

Geo-hazard Potential Mapping Using GIS and Artificial Intelligence Geo-hazard Potential Mapping Using GIS and Artificial Intelligence Theoretical Background and Uses Case from Namibia Andreas Knobloch 1, Dr Andreas Barth 1, Ellen Dickmayer 1, Israel Hasheela 2, Andreas

More information

GEOSPATIAL ANALYSIS OF GLACIAL DYNAMICS OF SHIGAR AND SHAYOK BASINS. Syed Naseem Abbas Gilany 1

GEOSPATIAL ANALYSIS OF GLACIAL DYNAMICS OF SHIGAR AND SHAYOK BASINS. Syed Naseem Abbas Gilany 1 GEOSPATIAL ANALYSIS OF GLACIAL DYNAMICS OF SHIGAR AND SHAYOK BASINS 1 OUTLINE Introduction Problem Statement / Rationale Objectives Material and Methods Study Area Datasets Required Data Analysis / Assessment

More information

Air temperature environment on the debriscovered area of Lirung Glacier, Langtang Valley, Nepal Himalayas

Air temperature environment on the debriscovered area of Lirung Glacier, Langtang Valley, Nepal Himalayas Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 83 Air temperature environment on the debriscovered area of Lirung Glacier,

More information

Ultra-High Resolution Time Traveling AgMet Information from Seeding to Harvesting

Ultra-High Resolution Time Traveling AgMet Information from Seeding to Harvesting Ultra-High Resolution Time Traveling AgMet Information from Seeding to Harvesting - seamless data for prospect estimation of crop yields - Dec. 5, 2016 Jai-ho Oh & Kyung-Min Choi Dept. Env. & Atmos. Sci.,

More information

Liliana Pagliero June, 15 th 2011

Liliana Pagliero June, 15 th 2011 Liliana Pagliero liliana.pagliero@jrc.ec.europa.eu June, 15 th 2011 2/18 SWAT MODELLING AT PAN EUROPEAN SCALE: THE DANUBE BASIN PILOT STUDY Introduction The Danube Model Available databases Model set up

More information

Hierarchical Bayesian Modeling and Analysis: Why and How

Hierarchical Bayesian Modeling and Analysis: Why and How Hierarchical Bayesian Modeling and Analysis: Why and How Mark Berliner Department of Statistics The Ohio State University IMA June 10, 2011 Outline I. Bayesian Hierarchical Modeling II. Examples: Glacial

More information

Swath Mode Altimetry. Noel Gourmelen

Swath Mode Altimetry. Noel Gourmelen Swath Mode Altimetry Noel Gourmelen 1 Outline Background Impact case studies: Topography Rates of surface elevation change 2 Products and applications of radar altimetry over Ice Sheet, Ice Caps, Glaciers:

More information

100 year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation

100 year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation Published in "Geophysical Research Letters 37: L10501, 2010" which should be cited to refer to this work. 100 year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation Matthias

More information

!" &#'(&) %*!+,*" -./0"1$ 1% % % - % 8 99:; < % % % % = 1. % % 2 /0 2 8 $ ' 99!; & %% % 2,A 1% %,1 % % % 2 3 %3 % / % / "1 % ; /0 % 2% % % %36

! &#'(&) %*!+,* -./01$ 1% % % - % 8 99:; < % % % % = 1. % % 2 /0 2 8 $ ' 99!; & %% % 2,A 1% %,1 % % % 2 3 %3 % / % / 1 % ; /0 % 2% % % %36 !" #$ &#'(&) *!+,*" - /0"1$ 1 1/0/// 0/02 /04"1 /0//,1$ 5/ - ( 6/027/ ///0 (/0// // - /002220(2 8 99:; < (/ = 1 2 /0$17899; 2 /0 2 8 $ 99?6 @ ' 99!; & 2,A 1,1 2 / / "1 -,14/02- ; /0 2 6,; B,1$ 2"1/0

More information

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding arxiv:0905.07v [physics.geo-ph] May 009 Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Overview on the modelling setup Seven new features in the modelling framework First results for the Alpine Rhine and Engadin Conclusions and Outlook

Overview on the modelling setup Seven new features in the modelling framework First results for the Alpine Rhine and Engadin Conclusions and Outlook SUB PROJECT: Natural water balance of Switzerland and its most important large river basins Overview on the modelling setup Seven new features in the modelling framework First results for the Alpine Rhine

More information

FREEZWATER. Final report. Hydrological potential of snow and artificial snow preservation on Mount Aragats, Armenia

FREEZWATER. Final report. Hydrological potential of snow and artificial snow preservation on Mount Aragats, Armenia University of Fribourg American University of Armenia National Academy of Science, Armenia Cage Holding SA FREEZWATER Final report Hydrological potential of snow and artificial snow preservation on Mount

More information

Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats

Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats Published in "Natural Hazards 84(3): 1741 1763, 2016" which should be cited to refer to this work. Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach

More information

Global Terrestrial Network for Glaciers: an introduction to the internationally coordinated glacier monitoring

Global Terrestrial Network for Glaciers: an introduction to the internationally coordinated glacier monitoring Indus Forum Workshop, Zurich, 12 October 2016 Global Terrestrial Network for Glaciers: an introduction to the internationally coordinated glacier monitoring Samuel U. Nussbaumer, R. Armstrong, F. Fetterer,

More information

Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes

Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes Annals of Glaciology 55(66) 2014 doi: 10.3189/2014AoG66A050 15 Future fluctuations of Mer de Glace, French Alps, assessed using a parameterized model calibrated with past thickness changes C. VINCENT,

More information

Summary for the Greenland ice sheet

Summary for the Greenland ice sheet Contribution of Greenland and Antarctica to future sea level change Catherine Ritz, Gaël Durand, Fabien Gillet-Chaulet, Olivier Gagliardini, Vincent Peyaud EDGe team, LGGE, CNRS/UJF Grenoble, France Ice

More information

Recent changes in glacier area and volume within the southern Canadian Cordillera

Recent changes in glacier area and volume within the southern Canadian Cordillera Annals of Glaciology 46 2007 215 Recent changes in glacier area and volume within the southern Canadian Cordillera Christopher M. DEBEER, * Martin J. SHARP Department of Earth and Atmospheric Sciences,

More information

Melting of snow and ice

Melting of snow and ice Glacier meteorology Surface energy balance How does ice and snow melt? Where does the energy come from? How to model melt? Melting of snow and ice Ice and snow melt at 0 C (but not necessarily at air temperature

More information

Why modelling? Glacier mass balance modelling

Why modelling? Glacier mass balance modelling Why modelling? Glacier mass balance modelling GEO 4420 Glaciology 12.10.2006 Thomas V. Schuler t.v.schuler@geo.uio.no global mean temperature Background Glaciers have retreated world-wide during the last

More information

SEDIMENTS can have different sizes and we can sort them using standard sieves. What size mesh is each sieve?

SEDIMENTS can have different sizes and we can sort them using standard sieves. What size mesh is each sieve? SEDIMENTS can have different sizes and we can sort them using standard sieves What size mesh is each sieve? Streams are the most obvious sculptors of the earth, weathering and eroding the Earth and causing

More information

Lidar-derived Hydrography as a Source for the National Hydrography Dataset

Lidar-derived Hydrography as a Source for the National Hydrography Dataset Lidar-derived Hydrography as a Source for the National Hydrography Dataset Lidar-Derived Hydrography, Bathymetry, and Topobathymetry in the National Hydrography Dataset and 3-Dimensional Elevation Program

More information

!"#$%&'()*+%,-#$%.*&,/0*1)$2,0$3, %4#,5#2607)0%)8$,89,/#+%#*$,-0$030,

!#$%&'()*+%,-#$%.*&,/0*1)$2,0$3, %4#,5#2607)0%)8$,89,/#+%#*$,-0$030, !"#$%&'()*+%,-#$%.*&,/0*1)$2,0$3, %4#,5#2607)0%)8$,89,/#+%#*$,-0$030, (0*8$,@$+68", F07)G7,-6)10%#,H1A07%+,-8$+8*%).1, C$)D#*+)%&,89,I)7%8*)0, :0**&,-60*;#, 7#0$,?,@%18+A4#*)7,B7)#$7#+, C$)D#*+)%&,89,E-,

More information

Requirements for Glaciers

Requirements for Glaciers A recommendation to the Polar Space Task Group (PSTG) V0.2 Nov 2017 Coordinating Author and Point of Contact for this document: Frank Paul Department of Geography University of Zurich Winterthurerstr190

More information

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work?

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciers are important because of their role in creating glacial landscapes (erosional and depositional features).

More information

Determination of the seasonal mass balance of four Alpine glaciers since 1865

Determination of the seasonal mass balance of four Alpine glaciers since 1865 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jf000803, 2008 Determination of the seasonal mass balance of four Alpine glaciers since 1865 M. Huss, 1 A. Bauder,

More information

Calibration of glacier volume area relations from surface extent fluctuations and application to future glacier change

Calibration of glacier volume area relations from surface extent fluctuations and application to future glacier change Journal of Glaciology, Vol. 56, No. 195, 2010 33 Calibration of glacier volume area relations from surface extent fluctuations and application to future glacier change Marco MÖLLER, Christoph SCHNEIDER

More information

Volume measurements of Mittivakkat Gletscher, southeast Greenland

Volume measurements of Mittivakkat Gletscher, southeast Greenland Journal of Glaciology, Vol. 60, No. 224, 2014 doi: 10.3189/2014JoG14J047 1199 Volume measurements of Mittivakkat Gletscher, southeast Greenland Jacob C. YDE, 1 Mette Kusk GILLESPIE, 1* Ronny LØLAND, 1

More information

WRF Historical and PGW Simulations over Alaska

WRF Historical and PGW Simulations over Alaska WRF Historical and PGW Simulations over Alaska Andrew J. Newman 1, Andrew J. Monaghan 2, Martyn P. Clark 1, Kyoko Ikeda 1, Lulin Xue 1, and Jeff R. Arnold 3 GEWEX CPCM Workshop II 1 National Center for

More information

HYDROLOGICAL MODELING OF HIGHLY GLACIERIZED RIVER BASINS. Nina Omani, Raghavan Srinivasan, Patricia Smith, Raghupathy Karthikeyan, Gerald North

HYDROLOGICAL MODELING OF HIGHLY GLACIERIZED RIVER BASINS. Nina Omani, Raghavan Srinivasan, Patricia Smith, Raghupathy Karthikeyan, Gerald North HYDROLOGICAL MODELING OF HIGHLY GLACIERIZED RIVER BASINS Nina Omani, Raghavan Srinivasan, Patricia Smith, Raghupathy Karthikeyan, Gerald North Problem statement Glaciers help to keep the earth cool High

More information

CHAPTER EXIT CHAPTER. Models of Earth. 3.1 Modeling the Planet. 3.2 Mapmaking and Technology. 3.3 Topographic Maps CHAPTER OUTLINE

CHAPTER EXIT CHAPTER. Models of Earth. 3.1 Modeling the Planet. 3.2 Mapmaking and Technology. 3.3 Topographic Maps CHAPTER OUTLINE EXIT CHAPTER.1 Modeling the Planet.2 Mapmaking and Technology. Topographic Maps CHAPTER OUTLINE CHAPTER.1 Modeling the Planet A flat of Earth is a convenient tool, but it can distort the shape, distance,

More information

Uncertainty in Models of Geophysical Mass Flows. Bruce Pitman

Uncertainty in Models of Geophysical Mass Flows. Bruce Pitman Uncertainty in Models of Geophysical Mass Flows Bruce Pitman The University at Buffalo Centrogeo Workshop on Geography and Mathematics 17 November 2003 Interdisciplinary team: Camil Nichita (Math) Abani

More information

Estimating Stream Gradient Using NHD Stream Lines and DEM Data

Estimating Stream Gradient Using NHD Stream Lines and DEM Data Estimating Stream Gradient Using NHD Stream Lines and DEM Data David Nagel, John M. Buffington, and Daniel Isaak U.S. Forest Service, Rocky Mountain Research Station Boise Aquatic Sciences Lab Boise, ID

More information