PACC 2011 Moscow, 7 9 November, Volcanic eruptions and climate of the Earth: volcanism as an analog of geoingineering

Size: px
Start display at page:

Download "PACC 2011 Moscow, 7 9 November, Volcanic eruptions and climate of the Earth: volcanism as an analog of geoingineering"

Transcription

1 PACC 2011 Moscow, 7 9 November, 2011 Volcanic eruptions and climate of the Earth: volcanism as an analog of geoingineering Irena Borzenkova, Elena Zhiltsova State Hydrological Institute, Second Line, 23, St.Petersburg, , Russia, irena_borzen@mail.ru

2 Content Introduction Types of the volcanic eruptions; Products of the eruptions and stratospheric aerosol; Radiation and climate Impact of volcanic eruptions; Conclusion

3 Introduction Benjamin Franklin was a first who pay attention to the possible climatic effects of the volcanic eruptions; The first comprehensive effort to quantify the atmospheric effects of volcanic eruptions was made by H.Lamb (1970) who compiled the Dust Veil Index (DVI) using historical evidence of atmospheric optima phenomena, and temperature and radiation records;

4 Introduction (continied) Russian academician M.I. Budyko (1974) was first who proposed a way to regulate present climate state by introducing the fine aerosol sulfate particles into the lower stratosphere (13 18 km), which could slightly decrease a value of the meteorological solar constant and reduce the tropospheric temperature by a needed amount of degrees; The important role of aerosols in the regulation of solar radiation incoming to the ground has been confirmed in the IPCC Assessment Reports; Last time M.Budyko s ideas were continued studying in investigations by Yu. Israel (1983, 2005) and Yu.Israel et al. (2005, 2007 etc).

5 C. Hammer and his colleagues (1980) proposed a new method for estimating the contents of volcanic sulfur-acid aerosol in the stratosphere by using ice cores data from the Greenland and the Antarctic ice sheets. The greater part of volcanic gases injected into the stratosphere is assumed to consist of sulfates being oxidized in the atmosphere before falling down with precipitation; Information about past volcanism shows that in a few years after eruptions ice layers contain higher concentrations of dissolved admixtures. The indicator of their availability could be a higher electrolytic conductivity or excess sulfate in the ice layers.

6 Types of volcanic eruptions There are two main types of volcanic eruptions: effusive and explosive ones; All types of the explosive eruptions are accompanied by outbursts of volcanic dust and blowouts of different gases into the atmosphere. At the effusive eruptions, fluid lava outflows with rather small emissions of the gases. Climatic effect is observed after the explosive type eruptions with the Dust Veil Index more than 4.

7 An eruption of the Strombolian type produces a small amount of microcrystalline matter. The height of the column of ejected material is small, and it falls out in the beginning of the eruption. The area covered with the erupted material is small enough; During an eruption of the Volcanian type (the socalled sharp Strombolian eruption), a large amount of small dispersion particles is emitted; the column of erupted matter can reach and even penetrate the tropopause. An example of this type of eruption is that of the Agung volcano, 1963;

8 With an eruption of the Plinian and the Ultraplinian types the column of erupted substance can reach 30 km and more. A large amount of erupted matter rises at a considerable height and scatters over a vast area. The total volume of ejected substance ranges from 0.1 to 50 km3. The Taupo eruption (about 186 AD) is an example of the Ultraplinian type of eruption, when the total volume of ejected substance was 24 km3, 80 percent of which deposited at the distance of 200 km; The Ignimbrite type of eruption is similar to the Plinian one but in this case a lava stream develops converting later into ignimbrite or tufflava. These eruptions produce up to 1000 km3 of matter being a significant source of atmospheric dust. The eruptions of this type were those of the Tambora volcano,1815, the Krakatoa,1883, and the Katmai,1912

9 All types of the explosive eruptions are accompanied by ejections of volcanic dust, water vapor (H 2 O), carbon dioxide (CO 2 ), carbon monoxide (CO), sulfurcontaining gases (SO 2, H 2 S, CS 2 ), and chlorinefluorine compounds (HCl, HF) into the atmosphere. Having high temperatures, these gases penetrate into the lower stratosphere where the sulfurcontaining gases form fine-dispersive layer of fine drops of sulfuric acid; During powerful and catastrophic eruptions amount of gaseous substances and the aerosol particles increases by 2-3 orders and larger; The aerosol is spread around the globe and increases the planetary albedo and produces the negative radiation forcing.

10 Impact on the climate and solar radiation This fine-dispersive layer creates a peculiar screen for coming solar radiation, so that a part of it is absorbed, and some part is reflected back toward the space; After major volcanic eruptions an increased concentration of the stratosphere aerosol layer decreases the absorption of solar radiation on the Earth s surface by more than 10-15%. At the same time scattered radiation increases; After strong and catastrophic eruptions the global air temperature mean can decrease by several tenths of a degree during the following three to five years.

11 S (%) Direct solar radiation changes after eruptions Krakatau (1883), Mon-Pelé (1902) and Katmai (Novaputra) (1912) Krakatau Кракатау S (%) Mon-Pelé Мон-Пеле, Суфриер, Санта-Мария Katmai S (%) 120 Катмай

12 After major volcanic eruptions an increased concentration of the stratosphere aerosol layer decreases the absorption of solar radiation on the Earth s surface by more than 15%. At the same time scattered radiation increases; The surface air temperature change over the terrestrial globe has a complicated mosaic character after volcanic eruptions.

13 Year 1259/ / Powerful and strong eruptions over the last 1000 years Volcano, region Unknown eruptions Height of injection, km >50 Kuwae, Vanuatu > 30 Huaynaputina, Peru Quantity (amount) of material Volume of the gaseous substance more than Tambora eruption Total sulfate deposition was 93 kg SO4/km2 in Antarctica and 23 kg SO4/km2 in Greenland > 30 About more than 70 Mt H 2 SO > 122 Mt of SO Laki, Iceland > 20 2, and about 95 Mt 1784 from this into lower stratosphere Mt of gaseous substances Tambora, Total sulfate deposition was 59 >50 Indonesia kg/km2 in Antarctica and 50 kg/km2 in Gteenland 1883 Krakatau > Mt of gaseous substances By 0.5 C 1912 Katmai, Alaska Mt of sulfide aerosols By C 1963 Agung, Indonesia 20 >16 Mt of sulfide aerosols By C El Chichon, Mexico Pinatubo, the Phillippines Mt of sulfide aerosols By 0.3 C > Mt of sulfide gases, 20 Mt of SO 2 By C Decrease in global temperature and other consequences Global temperature fall by several degrees Celsius The frost ring in dendroclimatical records from the different regions in the Northern and Southern hemisphere Catastrophic social and economic consequences for countries of the South America Almost complete absence of the direct radiation during five months By 3-4 C, the year without the direct solar radiation

14 The combined picture of the anomalies of the mean annual temperature (blue) for the extratropical part of the Northern Hemisphere obtained by using by tree-ring data and the sulphate concentration (pink) from site Dronning Maud Land (East Antarctica) over the last 2000 years.

15 The number of the explosive volcanic eruptions in the different latitudinal zone of the Northern and Southern hemisphere over the last 2000 years (yellow color) and during the Little Ice Ages (blue color) only Number of eruptions ю.ш Latitude с.ш.

16 Radiation effect estimates obtained after the 1991 eruption of volcano Pinatubo based on the general atmosphere circulation models show that radiation cooling resulting from volcano discharge has almost fully compensated for a global temperature increase due to greenhouse gases effect.

17 Conclusion Climate impact of explosive type volcano eruptions is determined by the height of volcanic gas column, sulfur content, latitudinal position of the volcano, and climatic conditions during the eruption; With no major volcanic eruptions of explosive type the upper troposphere-stratosphere background aerosol determining radiation income to the Earth s surface experiences relatively slight variations. These variations cannot noticeably affect the surface air temperature due to ocean thermal inertia; The surface air temperature can change during 2 to 5 years after individual even powerful volcanic eruptions, however no considerable change occurs in the sign of global temperature trend.

18 A prolonged global temperature impact results from a series of volcanic eruptions when an elevated level of sulfate aerosol concentration stays in the stratosphere for 10 to 15 years and more; As a result, the incoming solar radiation and surface air temperature decrease for a long period of time. These effects took place in , , and AD; These episodes were accompanied with global temperature cooling periods that appeared to be a part of a long cooling epoch between AD known as the Little Ice Age.

19 The Medieval Warm as an analog of present of 1930s warming The Medieval Warm Anomalies (MWA) between AD considered as an analogue of the 1930s warming when according to radiation stations data for the extra tropical zone (30 60 N) the incoming solar radiation was maximum. At this time only weak explosive type volcanic activities took place. After the powerful eruptions of Mt. Pelee (1902) and Mt. Katmai (1912) there were no considerable explosive type eruptions until the mid-1940s.

20 Volcanism as an analog of the geoingineering A rapid response of surface air temperature to relatively small changes in aerosol concentration in the upper troposphere and stratosphere is indicative of the possibility of control over the global climate by injecting aerosol of different type directly into these layers of the atmosphere (Budyko, 1974; Israel, 1983, 2005; Israel et al., 2007)

21 References Borzenkova I.I Climate change over the Cenozoic. St.Petersburg, Gidrometeoizdat, 246 p. (in Russian); Borzenkova I.I. and Brook S.A About influence of the volcanic eruptions on the climatic changes in the Lateglacial- Holocene. Proc. of the State Hydrological Institute (Trudy of the State Hydrological Institute), vol. 347, p (in Russian); Budyko M. I., 1974 Climate Change, Gidrometeoizdat, Leningrad, [in Russian]; Izrael Yu. A., I. I. Borzenkova, and D. A. Severov, The Role of Stratospheric Aerosols in the Maintenance of the Present-Day Climate, 2007, Meteorologiya and Hydrologiya, N1, 2007 (in Russian and in English); Борзенкова и др Ледниковые керны и дендрохронологические записи как источники информации об изменениях климата в историческое время. Лёд и снег, 2, с Борзенкова и др Изменение климата внетропической зоны северного полушария за последние 1000 лет: анализ данных и возможных причин. В кн: The Problems of the ecological monitoring and the modeling of the ecosystem, v.24, Moscow, Planet, 2012.

NATURAL CLIMATIC FORCING Part II

NATURAL CLIMATIC FORCING Part II TOPIC #12 NATURAL CLIMATIC FORCING Part II (p 72 in Class Notes) Today we will focus on the third main driver of NATURAL CLIMATIC FORCING: 1) ATRONOMICAL FORCING 2) SOLAR FORCING 3) VOLCANIC FORCING VOLCANIC

More information

FORCING ANTHROPOGENIC

FORCING ANTHROPOGENIC NATURAL CLIMATIC FORCING Earth-Sun orbital relationships, changing landsea distribution (due to plate tectonics), solar variability & VOLCANIC ERUPTIONS vs. ANTHROPOGENIC FORCING Human-Enhanced GH Effect,

More information

Thursday Nov 6 th SIT WITH YOUR GROUP TODAY Topic # 11 Natural Climatic Forcing Part II ANNOUNCEMENTS

Thursday Nov 6 th SIT WITH YOUR GROUP TODAY Topic # 11 Natural Climatic Forcing Part II ANNOUNCEMENTS Thursday Nov 6 th SIT WITH YOUR GROUP TODAY Topic # 11 Natural Climatic Forcing Part II ANNOUNCEMENTS NO CLASS next Tuesday Nov 11 (Veteran s Day) but don t forget that RQ-7 is DUE before Midnight that

More information

Lecture 8. The Holocene and Recent Climate Change

Lecture 8. The Holocene and Recent Climate Change Lecture 8 The Holocene and Recent Climate Change Recovery from the last ice age About 15,000 years ago, the earth began to warm and the huge ice sheets covering much of North America and Eurasia began

More information

ttp://news.discovery.com/earth/iceland-volcano-aurora.html

ttp://news.discovery.com/earth/iceland-volcano-aurora.html ttp://news.discovery.com/earth/iceland-volcano-aurora.html Outline Role of volcanism on the climate system Distribution of Arctic volcanoes Types of eruptions Frequency of Arctic eruptions Influence on

More information

Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74)

Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74) Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74) How the Climatic Effect Occurs.... through the ENERGY BALANCE of course! p 71 Mt Merapi Latitude: 7 32'30"S Indonesia's Mount

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change Volcanos and Climate We learned in Chapter 12 that the volanos play an important role in Earth s climate

More information

Climate forcing volcanic eruptions: future extreme event occurrence likelihoods

Climate forcing volcanic eruptions: future extreme event occurrence likelihoods Climate Change and Extreme Events: Managing Tail Risks Workshop 2 3 February 2010 Washington DC Climate forcing volcanic eruptions: future extreme event occurrence likelihoods Willy Aspinall with apologies

More information

Volcanoes drive climate variability by

Volcanoes drive climate variability by Volcanoes drive climate variability by 1. emitting ozone weeks before eruptions, 2. forming lower stratospheric aerosols that cool Earth, 3. causing sustained ozone depletion, surface warming, and lower

More information

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) NCEA Level 3 Earth and Space Science (91414) 2017 page 1 of 6 Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414) Evidence Statement

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information

WHAT YOU WILL LEARN. Key Concepts: TitleTitle Volcanoes and Global Warming. Carbon dioxide Sulfur dioxide Sulfate aerosols Greenhouse effect

WHAT YOU WILL LEARN. Key Concepts: TitleTitle Volcanoes and Global Warming. Carbon dioxide Sulfur dioxide Sulfate aerosols Greenhouse effect TitleTitle Volcanoes and Global Warming Key Concepts: Carbon dioxide Sulfur dioxide Sulfate aerosols Greenhouse effect WHAT YOU WILL LEARN 1. You will identify materials ejected by volcanic activity. 2.

More information

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Global Climatic Catastrophes (Volcanism and Impact Events) - I. I.

ENVIRONMENTAL STRUCTURE AND FUNCTION: CLIMATE SYSTEM Vol. II - Global Climatic Catastrophes (Volcanism and Impact Events) - I. I. GLOBAL CLIMATIC CATASTROPHES (VOLCANISM AND IMPACT EVENTS) I. I. Borzenkova Department of Climatology, State Hydrological Institute, Russia Keywords: anthropogenic climatic catastrophes, asteroids, astroblems,

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Agronomy 406 World Climates

Agronomy 406 World Climates Agronomy 406 World Climates April 3, 2018 Causes of natural climate changes (finish). Schedule is being adjusted. No change to due dates. Bring IPCC Fifth Assessment Report Summary for Policymakers to

More information

1. Deglacial climate changes

1. Deglacial climate changes Review 3 Major Topics Deglacial climate changes (last 21,000 years) Millennial oscillations (thousands of years) Historical Climate Change (last 1000 years) Climate Changes Since the 1800s Climate Change

More information

Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between

Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Climate Throughout Geologic Time Has Been Controlled Primarily by the Balance Between Cooling Caused by Major Explosive Eruptions of Evolved Magmas Typical of Island Arcs and Warming Caused by Voluminous

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

2. Fargo, North Dakota receives more snow than Charleston, South Carolina. 2015 National Tournament Division B Meteorology Section 1: Weather versus Climate Chose the answer that best answers the question 1. The sky is partly cloudy this morning in Lincoln, Nebraska. 2. Fargo,

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

Climate Change. April 21, 2009

Climate Change. April 21, 2009 Climate Change Chapter 16 April 21, 2009 Reconstructing Past Climates Techniques Glacial landscapes (fossils) CLIMAP (ocean sediment) Ice cores (layering of precipitation) p Otoliths (CaCO 3 in fish sensory

More information

XV. Understanding recent climate variability

XV. Understanding recent climate variability XV. Understanding recent climate variability review temperature from thermometers, satellites, glacier lengths and boreholes all show significant warming in the 2th C+ reconstruction of past temperatures

More information

Factors That Affect Climate

Factors That Affect Climate Factors That Affect Climate Factors That Affect Climate Latitude As latitude (horizontal lines) increases, the intensity of solar energy decreases. The tropical zone is between the tropic of Cancer and

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Climate 1: The Climate System

Climate 1: The Climate System Climate 1: The Climate System Prof. Franco Prodi Institute of Atmospheric Sciences and Climate National Research Council Via P. Gobetti, 101 40129 BOLOGNA SIF, School of Energy, Varenna, July 2014 CLIMATE

More information

Guiding Question: What effects do volcanic eruptions have on the Earth's climate, and how can we tell?

Guiding Question: What effects do volcanic eruptions have on the Earth's climate, and how can we tell? Recommended Age: Intermediate Level (Grade 6-8); Secondary Level (Grade 9-12) Guiding Question: What effects do volcanic eruptions have on the Earth's climate, and how can we tell? Concepts: Volcanic eruptions

More information

The Atmosphere and Atmospheric Energy Chapter 3 and 4

The Atmosphere and Atmospheric Energy Chapter 3 and 4 The Atmosphere and Atmospheric Energy Chapter 3 and 4 Size of the Earth s Atmosphere Atmosphere produced over 4.6 billion years of development Protects us from radiation Completely surrounds the earth

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

GLOBAL WARMING AND THE GREENHOUSE EFFECT

GLOBAL WARMING AND THE GREENHOUSE EFFECT GLOBAL WARMING AND THE GREENHOUSE EFFECT Our planet temperature is warming significantly due to human activities? OR Last few years warming is part of a natural global cycle? 1998 : The warmest year on

More information

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto:

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto: 2018 Science Olympiad: Badger Invitational Meteorology Exam Team Name: Team Motto: This exam has 50 questions of various formats, plus 3 tie-breakers. Good luck! 1. On a globally-averaged basis, which

More information

SOME ASPECTS of COSMIC RAY MODULATION

SOME ASPECTS of COSMIC RAY MODULATION SOME ASPECTS of COSMIC RAY MODULATION Yuri Stozhkov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia stozhkov@fian.fiandns.mipt.ru FORGES,

More information

Topic 6: Insolation and the Seasons

Topic 6: Insolation and the Seasons Topic 6: Insolation and the Seasons Solar Radiation and Insolation Insolation: In Sol ation The Sun is the primary source of energy for the earth. The rate at which energy is radiated is called Intensity

More information

IMPACT OF AEROSOLS FROM THE ERUPTION OF EL CHICHÓN ON BEAM RADIATION IN THE PACIFIC NORTHWEST

IMPACT OF AEROSOLS FROM THE ERUPTION OF EL CHICHÓN ON BEAM RADIATION IN THE PACIFIC NORTHWEST IX. IMPACT OF AEROSOLS FROM THE ERUPTION OF EL CHICHÓN ON BEAM RADIATION IN THE PACIFIC NORTHWEST The eruptions of the Mexican volcano El Chichón over the period of March 28 to April 4, 1982 ejected an

More information

Climate Change: Past and Future ERTH 303, 3 December, 2009

Climate Change: Past and Future ERTH 303, 3 December, 2009 Climate Change: Past and Future ERTH 303, 3 December, 2009 a) Defining climate change b) Patterns of past climate change c) Causes of past climate change 1 2006 temperature relative to 1951-1980 means

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Climate Discovery Teacher s Guide

Climate Discovery Teacher s Guide Unit:Little Ice Age Lesson: 8 Materials & Preparation Time: Preparation: 30 minutes Teaching: Two, 45- minute, class periods Materials for the Teacher: Dark Skies PowerPoint presentation (or overhead transparencies)

More information

Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes

Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Meteorology Practice Test

Meteorology Practice Test Meteorology Practice Test 1. Transition zones between two air masses of different densities are called what? 2. A front occurs when a cold air mass replaces a warmer one. 3. A front occurs when a warm

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely CHAPTER 3 SOLAR AND TERRESTRIAL RADIATION MULTIPLE CHOICE QUESTIONS 1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely 2. is the distance between successive

More information

IMPACTS OF A WARMING ARCTIC

IMPACTS OF A WARMING ARCTIC The Earth s Greenhouse Effect Most of the heat energy emitted from the surface is absorbed by greenhouse gases which radiate heat back down to warm the lower atmosphere and the surface. Increasing the

More information

Physical and Optical Properties of the Stratospheric Aerosol Layer

Physical and Optical Properties of the Stratospheric Aerosol Layer Physical and Optical Properties of the Stratospheric Aerosol Layer Patrick Hamill Department of Physics and Astronomy San Jose State University San Jose, California Justification for this Talk Much debate

More information

Volcanoes and climate change

Volcanoes and climate change Volcanoes and climate change Volcanic fallout reveals secrets of past eruptions IMPORTANT INFORMATION about a past volcanic eruption's impact on climate is provided by determining the height of the eruption.

More information

Volcanism and Climate Variability / Snow and Ice Albedo Feedback in Earth's Climate System

Volcanism and Climate Variability / Snow and Ice Albedo Feedback in Earth's Climate System Climate Science Volcanism and Climate Variability / Snow and Ice Albedo Feedback in Earth's Climate System NATIONAL CLIMATOGRAPHIES Background: One of the missions that NOAA's National Climatic Data Center(NCDC)

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Historical Changes in Climate

Historical Changes in Climate Historical Changes in Climate Medieval Warm Period (MWP) Little Ice Age (LIA) Lamb, 1969 Hunters in the snow by Pieter Bruegel, 1565 Retreat of the Rhone Glacier shown by comparing the drawing from 1750

More information

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere?

The Atmosphere. Importance of our. 4 Layers of the Atmosphere. Introduction to atmosphere, weather, and climate. What makes up the atmosphere? The Atmosphere Introduction to atmosphere, weather, and climate Where is the atmosphere? Everywhere! Completely surrounds Earth February 20, 2010 What makes up the atmosphere? Argon Inert gas 1% Variable

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

). It is a gas produced naturally in the stratosphere where it strongly absorbs incoming

). It is a gas produced naturally in the stratosphere where it strongly absorbs incoming Page 1 of 6 What Determines How Much Ultraviolet Radiation Reaches the Earth s Surface? The amount of UV radiation reaching the Earth s surface varies widely around the globe and through time. Several

More information

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1

School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1 School Name Team # International Academy East Meteorology Test Graphs, Pictures, and Diagrams Diagram #1 Use the map above, and the locations marked A-F, to answer the following questions. 1. The center

More information

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years Lecture 3 - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years METR 113/ENVS 113 Spring Semester 2011 March 1, 2011 Suggested Reading

More information

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation Lecture 6: Radiation Transfer Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere Vertical and latitudinal energy distributions Absorption, Reflection,

More information

Lecture 6: Radiation Transfer

Lecture 6: Radiation Transfer Lecture 6: Radiation Transfer Vertical and latitudinal energy distributions Absorption, Reflection, and Transmission Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature

More information

Atmospheric Volcanic Loading Derived from Bipolar Ice Cores: Accounting for the Spatial Distribution of Volcanic Deposition

Atmospheric Volcanic Loading Derived from Bipolar Ice Cores: Accounting for the Spatial Distribution of Volcanic Deposition Atmospheric Volcanic Loading Derived from Bipolar Ice Cores: Accounting for the Spatial Distribution of Volcanic Deposition Chaochao Gao, Luke Oman*, Alan Robock, and Georgiy L. Stenchikov Department of

More information

Northern New England Climate: Past, Present, and Future. Basic Concepts

Northern New England Climate: Past, Present, and Future. Basic Concepts Northern New England Climate: Past, Present, and Future Basic Concepts Weather instantaneous or synoptic measurements Climate time / space average Weather - the state of the air and atmosphere at a particular

More information

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011 Computer Modeling of the Atmosphere & Climate System has revolutionized Weather Forecasting and

More information

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Day 1 of Global Warming Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Atmosphere Atmosphere = the thin layer (1/100 th of Earth s diameter) of gases that surrounds

More information

Climate Change: Global Warming Claims

Climate Change: Global Warming Claims Climate Change: Global Warming Claims Background information (from Intergovernmental Panel on Climate Change): The climate system is a complex, interactive system consisting of the atmosphere, land surface,

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Global temperature record reaches one-third century

Global temperature record reaches one-third century Dec. 16, 2011 Vol. 21, No. 7 For Additional Information: Dr. John Christy, (256) 961-7763 john.christy@nsstc.uah.edu Dr. Roy Spencer, (256) 961-7960 roy.spencer@nsstc.uah.edu Global temperature record

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

Climate Changes due to Natural Processes

Climate Changes due to Natural Processes Climate Changes due to Natural Processes 2.6.2a Summarize natural processes that can and have affected global climate (particularly El Niño/La Niña, volcanic eruptions, sunspots, shifts in Earth's orbit,

More information

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. Climatology is the study of Earth s climate and the factors that affect past, present, and future climatic

More information

Climate change: How do we know?

Climate change: How do we know? Climate change: How do we know? This graph, based on the comparison of atmospheric samples contained in ice cores and more recent direct measurements, provides evidence that atmospheric CO2 has increased

More information

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 17 The Atmosphere: Structure and Temperature 17.1 Atmosphere Characteristics Composition of the Atmosphere Weather is constantly changing, and it refers

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

What is the IPCC? Intergovernmental Panel on Climate Change

What is the IPCC? Intergovernmental Panel on Climate Change IPCC WG1 FAQ What is the IPCC? Intergovernmental Panel on Climate Change The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations

More information

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 16 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition

Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007461, 2007 Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution

More information

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1. Climate Chap. 2 Introduction I. Forces that drive climate and their global patterns A. Solar Input Earth s energy budget B. Seasonal cycles C. Atmospheric circulation D. Oceanic circulation E. Landform

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

How Volcanism Controls Climate Change

How Volcanism Controls Climate Change How Volcanism Controls Climate Change V13D-2633 Peter L. Ward Teton Tectonics, Jackson, WY US Geological Survey retired peward@wyoming.com 307-413-4055 Fundamental Conclusion Large, explosive, volcanic

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind

6. What has been the most effective erosive agent in the climate system? a. Water b. Ice c. Wind Multiple Choice. 1. Heinrich Events a. Show increased abundance of warm-water species of planktic foraminifera b. Show greater intensity since the last deglaciation c. Show increased accumulation of ice-rafted

More information

Effusive basaltic. Explosive. Bárðarbunga 2014 Pinatubo 1991 USGS. Arctic-Images/Corbis

Effusive basaltic. Explosive. Bárðarbunga 2014 Pinatubo 1991 USGS. Arctic-Images/Corbis How variations in the rates of effusive basaltic flood volcanism versus aerosol-forming explosive volcanism have driven climate change and rates of mass extinction throughout Earth history Effusive basaltic

More information

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin]

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin] Aerosol Challenge: Global Warming 1910s 1950s 1990s 2 1 0 +1 +2 T [Kelvin] Observed warming during 20 th century, Tapio Schneider, J. Climate, 2001 1 Aerosols are liquid or solid particles suspended in

More information

NEW ZEALAND CLIMATE: THE IMPACT OF MAJOR VOLCANIC ERUPTIONS

NEW ZEALAND CLIMATE: THE IMPACT OF MAJOR VOLCANIC ERUPTIONS Weather and Climate (1998) 18 (1): 11-20 1 1 NEW ZEALAND CLIMATE: THE IMPACT OF MAJOR VOLCANIC ERUPTIONS M. James Salinger National Institute of Water and Atmospheric Research ABSTRACT Major volcanic eruptions

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

HOW VOLCANISM AFFECTS CLIMATE

HOW VOLCANISM AFFECTS CLIMATE HOW VOLCANISM AFFECTS CLIMATE Climatologists may disagree on how much the recent global warming is natural or manmade but there is general agreement that volcanism constitutes a wildcard in climate, producing

More information

Pinatubo June 12, 1991 Three days before major eruption of June 15, Dr. Alan Robock

Pinatubo June 12, 1991 Three days before major eruption of June 15, Dr. Alan Robock Pinatubo June 12, 1991 Three days before major eruption of June 15, 1991 Dr. Alan Robock Satellites, Weather and Climate Module 8b: Air Quality - Volcanoes Santorini, 1628 BC Etna, 44 BC Tambora, 1815

More information

Section 3. Climate and the General Circulation Causes of Climate Change

Section 3. Climate and the General Circulation Causes of Climate Change Section 3. Climate and the General Circulation Causes of Climate Change Why the earth s climate changes is not totally understood. Many theories attempt to explain the changing climate, but no single theory

More information

Chapter 14: The Changing Climate

Chapter 14: The Changing Climate Chapter 14: The Changing Climate Detecting Climate Change Natural Causes of Climate Change Anthropogenic Causes of Climate Change Possible Consequences of Global Warming Climate Change? -Paleo studies

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

Volcanism as an Agent of Climate Forcing: The Roles, Extent, and Limitations

Volcanism as an Agent of Climate Forcing: The Roles, Extent, and Limitations Zakk Carter ATS 320 The Changing Climate Term Paper Winter Term 2/6/14 Volcanism as an Agent of Climate Forcing: The Roles, Extent, and Limitations Introduction Volcanoes are not only one of the major

More information

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading Extremes of Weather and the Latest Climate Change Science Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate

More information

Ocean and Climate I.

Ocean and Climate I. Ocean and Climate I http://www.gerhardriessbeck.de/ Physical Characteristics of the Ocean Surface area: 3.61 10 14 m 2 Mean depth: 3.7 km Ocean volume: 3.2 10 17 m 3 Mean density: 1.035 10 3 kg/m 3 Ocean

More information