CE415L Applied Fluid Mechanics Laboratory

Size: px
Start display at page:

Download "CE415L Applied Fluid Mechanics Laboratory"

Transcription

1 Applied Fluid Mechanics Laboratory Learning Objective Following completion of this experiment and the analysis of the data, you should be able to 1. generalize results of introducing changes to a natural stream 2. distinguish between qualitative and quantitative forms of observation and analysis 3. use photographs to document observations and to support the verbal description and analysis Introduction Many civil engineering projects involve placing structures in or near natural waterways, such as streams and rivers. These structures may be bridges or culverts that allow a road, railroad, path or pipeline to pass over them. A structure, such as a pipeline, might also be placed below the stream bed to convey the material to be transported across the stream. Modifications to the stream elements, such as armoring the stream bank or bed might also be constructed with the intention of controlling erosion at those locations. A more drastic change would be to reroute the stream to make way for a building project. Regardless of the type of construction or its intended purpose, the stream dynamics will always affect and be affected by changes imposed on the stream. Purpose The primary purpose of this experiment is to initiate a variety of modifications to a model stream and to observe, record and describe how the stream responds to those changes. Modeling real-life systems is an inherently complex undertaking. Though such modeling can provide useful data and insight into actual processes, it is also difficult to ensure that results obtained in the model are truly representative of the real world. In this experiment, we are mainly interested in observing basic erosion-deposition processes common to many civil engineering projects. Another purpose of this experiment is to help you to distinguish between qualitative quantitative observation and analysis. Working definitions we could use for conducting and report this experiment include qualitative noting the physical appearance of and changes to the stream bed material distribution and water flow rates and patterns quantitative -- measuring the physical dimensions of and measurable changes to the stream bed materials and water flow patterns Equipment The following equipment will be provided: Stream table with moveable bed material (plastic sand-size particles) Timer Camera Various structure models and components Procedure For all of the following parts, assume that the normal stream flow is generally north to south Dept of Civil Engineering, SIUE 1 of 7 Revised 8/22/2013

2 Part 1 - Establishing the Existing Stream (Baseline) The water supply to the stream table should be connected. With no structures in the streamway, slowly turn on the water and adjust the flow rate using the knob (at the bottom of the flow meter unit) so that a natural-looking, relatively stable, channel forms over several minutes. You should note that the foam subbase underlying the stream bed material has two shallow channels formed into it to encourage the stream to form into two relatively narrow portions of the table. Be sure to keep this in mind and locate the constructed modifications so that the stream is not forced to go too far outside the pre-formed channel areas. Part 2 Constructing Projects in the Existing Stream A. Bridge Foundations 1. Construct the model bridge across a developed channel. Install approach slopes. 2. Restore the channel and bank surfaces to the original condition after the bridge is constructed. 3. Photograph the as-built conditions. 4. Resume stream flow. Observe: a. Erosion (scour) at foundation elements and in adjacent areas of the channel and bank b. Deposition at foundation elements and in adjacent areas of the channel and bank 5. Stop stream flow after 2 minutes. Photograph the new conditions. 6. Photograph or sketch (in plan view) the stream channel shape after the stream flows. 7. For the analysis, describe a. how the bridge foundation affected the stream channel, b. how the approach slope backfill affected the stream channel c. how changes to the stream channel could affect the bridge or approach slopes. B. Culverts 1. Construct the model single culvert in a well-developed channel. The inside bottom (invert) of the culvert should be level with the top of the sediment on the stream bed. 2. Backfill up to the sides of the culvert. Otherwise restore the channel and bank surfaces to their original condition after the culvert is constructed. 3. Photograph the as-built conditions. 4. Resume stream flow. Observe: a. Erosion (scour) at culvert and in adjacent areas of the channel and bank b. Deposition at culvert and in adjacent areas of the channel and bank 5. Stop stream flow after 2 minutes. Photograph the new conditions. 6. Photograph or sketch (in plan view) the stream channel shape in the area of the culvert (within a length up to 2 times the channel width both upstream and downstream of the culvert) before and after constructing the culvert Dept of Civil Engineering, SIUE 2 of 7 8/22/2013

3 7. For the analysis, describe d. how the culvert affected the stream channel e. how observed changes to the stream channel could affect the culvert performance, both structurally and hydraulically. 8. Repeat the steps above using a double culvert with both culverts having the same invert elevation. Part 3 Stream Modifications A. Stream Relocation 1. In a reach of the stream that appears to be relatively stable, relocate the main channel to either straighten it or induce a curve around some hypothetical structure or building project area. Do not merely insert a structure into the stream, but instead reconstruct the stream channel shape to force the stream to follow a new intended path. Using flags, mark the boundaries (property line) of the project area. 2. Restore the channel surface where the relocation begins and ends to the original condition. 3. Photograph the as-built conditions. 4. Resume stream flow. 5. Stop stream flow after 2 minutes. Observe any significant changes to either the newly constructed reach or adjacent portions of the existing stream. Photograph the new conditions. 6. For the analysis, describe a. how the relocation affected the stream channel, b. how changes to the relocated stream channel are tending to affect the relocation project c. observable or potential problems for adjacent properties resulting from the project. B. Bank Stabilization 1. Select a straight section of the stream channel that seems to have a well-defined, yet eroding bank shape. 2. Photograph the existing conditions. 3. Add protection to the face of the bank with the goal of protecting a structure located near the top edge of the bank. 4. Resume stream flow. Observe: a. Erosion (scour) in adjacent areas of the channel and bank b. Deposition in adjacent areas of the channel and bank 5. Stop stream flow after 2 minutes. Photograph the new conditions. 6. Photograph or sketch (in plan view) the stream channel shape in the area of the protected bank (within a length up to 2 times the channel width both upstream and downstream of the construction) before and after constructing the bank stabilization Dept of Civil Engineering, SIUE 3 of 7 8/22/2013

4 project. Include important dimensions, such as distance from the bank edge to the structure you are trying to protect, channel width, erosion, etc. 7. For the analysis, describe a. how the bank protection affected the stream channel b. how changes to the stream channel affected the protected bank. 8. Repeat the steps above for a structure located at the top of the bank on the outside of a curved stretch of the stream. Part 4 Stream Flow Changes A. Stream Flow Rate Increase a. Remove all structures from the stream and re-establish a stable stream profile at a low flow rate. Use the flow meter indication times ten as the flow rate quantity in units of cubic feet per second. b. Choose and mark reference points at three selected locations along the stream length. c. Photograph and sketch the streambed and bank details at each reference location. d. Note significant channel and bank changes resulting from the increased flow rate. e. Adjust the stream flow rate to be twice the original flow rate. Run the stream at this flow rate for 2 minutes. f. Photograph and sketch the streambed and bank details at each reference location. B. Stream Flow Rate Decrease a. Adjust the stream flow rate to be equal to the original low flow rate. Run the stream at this flow rate for 2 minutes. b. Photograph and sketch the streambed and bank details at each reference location. c. Note significant channel and bank changes resulting from the decreased flow rate. Analysis and Report Analysis for this report should focus on carefully observing and concisely commenting on the qualitative behavior of the stream channel following the introduction of changes to the stream. You should note that this differs from your other civil engineering lab courses where specific physical measurements were dictated by the lab procedure and the results were expressed numerically following prescribed computations. The Summary of Results table shall include a description, written in two or three complete sentences (including references to figures), that summarizes the most significant observations for each structural change made to the stream. Please note that the figures (photographs and sketches) comprise your data for which your work is evaluated. This evaluation then is strongly based on the following items: clearly annotated with captions and callouts (see Exhibit A, attached) to aid the reader in identifying the features mentioned in the commentary; original and modified stream flow path(s) are clearly marked; figures are in the order that you refer to them in the Summary of Results. only include figures that you reference in the Summary of Results Dept of Civil Engineering, SIUE 4 of 7 8/22/2013

5 Photography suggestions Photographs are a very important tool commonly used to document engineering explorations, observations and conditions. Photographs not only help you tell the story to others but can also help remind you about important features and even help you see something you may not have noticed when you were originally on site. The photographs that you take in the course of this experiment they will be the primary data used to illustrate the observations for your experiment. Here are some tips to help get good quality photographic documentation. 1. Take lots of photographs. You can choose which ones to keep and use later. 2. Take photographs standing back at a distance to establish the project surroundings. These photo graphs help to establish a sense of scale and how the project fits into its surroundings. Shoot from a high (aerial) point of view if feasible and from the point of view of an observer on the ground. 3. Come closer to the subject of the photograph, such as to frame the entire bridge or culvert. This helps the viewer to narrow the frame of reference and concentrate on the main subject. This is where many details may be highlighted if clearly visible at this scale. 4. Zoom in or use macro-focus to take a close-up view of some detail. When you get to within a few inches of the subject you should consider turning the flash to OFF to avoid hot-spots and unequal coverage of the flash. Also be sure to avoid moving the camera because at close distance and low light camera movement becomes very apparent. 5. Take lots of photographs Dept of Civil Engineering, SIUE 5 of 7 8/22/2013

6 Exhibit A Examples of photographs with annotations to include in the report. Be sure to include the legend on the first page of the photo attachments. The general stream direction is assumed to be north to south. Figure A-1 - Looking upstream at the proposed bridge site from the downstream (south) side. The red line traces the approximate stream profile at the bridge location. Original stream path Modified stream path Channel profile (light from laser level) LEGEND Dept of Civil Engineering, SIUE 6 of 7 8/22/2013

7 The piers supporting the east end of the bridge are located at about the location of the main channel the stream had created prior to construction. Figure A-2 - Looking upstream at the bridge nearing completion of construction. Water was not flowing in the stream during construction. Scour downstream of the bridge and a deflected channel caused erosion of the east embankment. Upstream of the bridge, scour of the stream channel pattern widened somewhat to the east and west. Figure A-3 Aerial view of the bridge and stream following five minutes of flow occurring after the end of construction. The stream runs left (north) to right (south). The bridge piers and new abutment slopes have caused the stream channel to split around the piers and flow at greater velocity at and to a distance of eight to ten stream-widths downstream of the bridge location Dept of Civil Engineering, SIUE 7 of 7 8/22/2013

Field Trip Number One. By: Pat Dryer. Geography 360

Field Trip Number One. By: Pat Dryer. Geography 360 Field Trip Number One By: Pat Dryer Geography 360 Table of Contents Introduction. Page 1 Stop One... Page 2 Stop Two... Page 4 Stop Three... Page 5 Stop Four... Page 7 Bibliography Page 8 Campus Map Source:

More information

CASE STUDIES. Introduction

CASE STUDIES. Introduction Introduction The City of Winston-Salem faces the challenge of maintaining public infrastructure (e.g., water and sewer lines, storm drains, roads, culverts and bridges) while minimizing the potential impacts

More information

EROSIONAL FEATURES. reflect

EROSIONAL FEATURES. reflect reflect Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features

More information

Erosional Features. What processes shaped this landscape?

Erosional Features. What processes shaped this landscape? Have you ever looked at the land around you and wondered what processes shaped what you see? Perhaps you see mountains, valleys, rivers, or canyons. Do you know how long these geologic features have been

More information

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON PUBLIC WORKS CANADA WESTERN REGION REPORT ON GEOTECHNICAL INVESTIGATION PROPOSED MARTIN RIVER BRIDGE MILE 306.7 MACKENZIE HIGHWAY Submitted by : R. D. Cook, P.Eng. Soils Engineer Special Services Western

More information

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS

Probabilistic Evaluation of a Meandering Low-Flow Channel. February 24 th, UMSRS Probabilistic Evaluation of a Meandering Low-Flow Channel February 24 th, 2014 2014 UMSRS 1 2 acknowledgments Low- Flow Channel (LFC) overview Proposed Diversion Channel collects runoff from: The Rush

More information

Rock Sizing for Multi-Pipe & Culvert Outlets

Rock Sizing for Multi-Pipe & Culvert Outlets Rock Sizing for Multi-Pipe & Culvert Outlets STORMWATER AND WATERWAY MANAGEMENT PRACTICES Photo 1 Rock pad outlet structure at end of a duel stormwater pipe outlet Photo 2 Rock pad outlet structure at

More information

SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK

SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK SEARCHING FOR SEDIMENT SOURCES IN SPRING CREEK Christopher Frederick, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: cjf702@jaguar1.usouthal.edu. Sediment deposition

More information

Why Stabilizing the Stream As-Is is Not Enough

Why Stabilizing the Stream As-Is is Not Enough Why Stabilizing the Stream As-Is is Not Enough Several examples of alternatives to the County s design approach have been suggested. A common theme of these proposals is a less comprehensive effort focusing

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA

A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA A STUDY OF LOCAL SCOUR AT BRIDGE PIERS OF EL-MINIA Dr. Gamal A. Sallam 1 and Dr. Medhat Aziz 2 ABSTRACT Bridges are critical structures that require a substantial investment to construct and serve an important

More information

HAW CREEK, PIKE COUNTY, MISSOURI-TRIB TO SALT RIVER ERODING STREAM THREATHENING COUNTY ROAD #107, FOURTEEN FT TALL ERODING BANK WITHIN 4 FT OF THE

HAW CREEK, PIKE COUNTY, MISSOURI-TRIB TO SALT RIVER ERODING STREAM THREATHENING COUNTY ROAD #107, FOURTEEN FT TALL ERODING BANK WITHIN 4 FT OF THE HAW CREEK, PIKE COUNTY, MISSOURI-TRIB TO SALT RIVER ERODING STREAM THREATHENING COUNTY ROAD #107, FOURTEEN FT TALL ERODING BANK WITHIN 4 FT OF THE ROAD, PROJECT CONSTRUCTED IN 1 DAY, MARCH 10, 2009 BY

More information

ERDC/LAB TR-0X-X 100. Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event

ERDC/LAB TR-0X-X 100. Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event ERDC/LAB TR-0X-X 100 Figure 7-3 Maximum velocity magnitudes for existing conditions for 100-year flood event ERDC/LAB TR-0X-X 101 Figure 7-4 Model schematization of Option 1 Figure 7-5 Bed displacement

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT Eric W. Larsen REPORT FOR DUCKS UNLIMITED March 31, 2006-1 - Contents

More information

Countermeasure Calculations and Design

Countermeasure Calculations and Design Countermeasure Calculations and Design Summarized from Bridge Scour and Stream Instability Countermeasures, Experience, Selection, and Design Guidance, Second Edition, Publication No. FHWA NHI 01-003,

More information

Erosion. erosion OBJECTIVES SCHEDULE PREPARATION VOCABULARY MATERIALS. For the class. The students. For each student. For each team of four

Erosion. erosion OBJECTIVES SCHEDULE PREPARATION VOCABULARY MATERIALS. For the class. The students. For each student. For each team of four activity 2 Erosion OBJECTIVES In this activity, students are introduced to the process of erosion. They use stream tables to demonstrate the relationship between moving water and erosion. The students

More information

GOING WITH THE FLOW (1 Hour)

GOING WITH THE FLOW (1 Hour) GOING WITH THE FLOW (1 Hour) Addresses NGSS Level of Difficulty: 3 Grade Range: 3-5 OVERVIEW In this activity, students use a stream table to model the processes of erosion and streambed formation. The

More information

Tenmile Lakes Delta Building Study

Tenmile Lakes Delta Building Study Tenmile Lakes Delta Building Study Since the late 1940 s, Tenmile Lakes has seen a sharp increase in sediment accumulation at the mouths of the tributaries that feed the lake. To monitor this sediment

More information

Identifying, Understanding and Addressing Flood-Related Hazards

Identifying, Understanding and Addressing Flood-Related Hazards Identifying, Understanding and Addressing Flood-Related Hazards Julie Moore, P.E. July 9, 2012 Agenda Traditional approach to river management Understanding flood-related hazards Common flood and flood

More information

Degradation Concerns related to Bridge Structures in Alberta

Degradation Concerns related to Bridge Structures in Alberta Degradation Concerns related to Bridge Structures in Alberta Introduction There has been recent discussion regarding the identification and assessment of stream degradation in terms of how it relates to

More information

Do you think sediment transport is a concern?

Do you think sediment transport is a concern? STREAM RESTORATION FRAMEWORK AND SEDIMENT TRANSPORT BASICS Pete Klingeman 1 What is Your Restoration Project Like? k? Do you think sediment transport is a concern? East Fork Lewis River, WA Tidal creek,

More information

Step 5: Channel Bed and Planform Changes

Step 5: Channel Bed and Planform Changes Step 5: Channel Bed and Planform Changes When disturbed, streams go through a series of adjustments to regain equilibrium with the flow and sediment supply of their watersheds. These adjustments often

More information

NORTHUMBERLAND COUNTY, PA

NORTHUMBERLAND COUNTY, PA QUAKER RUN Stream and Wetland Restoration As-Built Completion Report and First Year Monitoring Data Coal Township NORTHUMBERLAND COUNTY, PA Upstream Before Upstream After Prepared for: COAL TOWNSHIP 805

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

Stream Simulation: A Simple Example

Stream Simulation: A Simple Example Stream Simulation: A Simple Example North Thompson Creek, CO Paul T. Anderson U.S.D.A. Forest Service Here s How We Started May 2011 2-1 USDA-Forest Service Here s How We Finished Forest Service Aquatic

More information

The last three sections of the main body of this report consist of:

The last three sections of the main body of this report consist of: Threatened and Endangered Species Geological Hazards Floodplains Cultural Resources Hazardous Materials A Cost Analysis section that provides comparative conceptual-level costs follows the Environmental

More information

FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED

FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED FOLLOW-UP ON CHANNELIZATION IN SPRING CREEK SUB-WATERSHED Justin R. Beebe, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. jrb308@jaguar1.usouthal.edu. Spring Creek is a tributary

More information

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE

HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE PUBLIC WORKS CANADA HYDROLOGY AND HYDRAULICS MUSKEG RIVER BRIDGE KILOMETRE 207.9, LIARD HIGKWAY December 1978 I I f I I I I # Bolter Parish Trimble Ltd. ONLIULTINO Public Works, Canada, 9925-109 Street,

More information

Laboratory Investigation of Submerged Vane Shapes Effect on River Banks Protection

Laboratory Investigation of Submerged Vane Shapes Effect on River Banks Protection Australian Journal of Basic and Applied Sciences, 5(12): 1402-1407, 2011 ISSN 1991-8178 Laboratory Investigation of Submerged Vane Shapes Effect on River Banks Protection Touraj Samimi Behbahan Department

More information

LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS

LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS TAISUKE ISHIGAKI Disaster Prevention Research Institute, Kyoto University Fushimi, Kyoto 612-8235, Japan YASUYUKI BABA Disaster Prevention

More information

CCR Rule Annual Inspection Report (cont.) 2

CCR Rule Annual Inspection Report (cont.) 2 The inspection findings consisted of maintenance items and items that were not observed to be signs or potential signs of significant structural weakness. No deficiencies or disrupting conditions that

More information

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Daisuke

More information

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives:

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives: We athering E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 1 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 4-ESS1-1 Identify evidence from patterns

More information

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer ONE ROCK DAM ORD A low grade control structure built with a single layer of rock on the bed of the channel. ORDs stabilize the bed of the channel by slowing the flow of water, increasing roughness, recruiting

More information

Design and Construction

Design and Construction Design and Construction Stream Simulation With power point slides shamelessly stolen from: Forest Service AOP Training Course Bob Gubernick Paul Anderson John Kattell USDA Forest Service Interim Directive

More information

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004

Vermont Stream Geomorphic Assessment. Appendix E. River Corridor Delineation Process. VT Agency of Natural Resources. April, E0 - April, 2004 Vermont Stream Geomorphic Assessment Appendix E River Corridor Delineation Process Vermont Agency of Natural Resources - E0 - River Corridor Delineation Process Purpose A stream and river corridor delineation

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 5 Channel Transitions Lecture - 1 Channel Transitions Part 1 Welcome back

More information

Local Scouring due to Flow Jet at Downstream of Rectangular Sharp-Crested Weirs

Local Scouring due to Flow Jet at Downstream of Rectangular Sharp-Crested Weirs Local Scouring due to Flow Jet at Downstream of Rectangular Sharp-Crested Weirs DEHGHANI, AMIR. AHMAD 1, BASHIRI, HAMID and MESHKATI SHAHMIRZADI, MOHAMMAD. EBRAHIM 3 1,3 Dept. of Water Engineering, Gorgan

More information

TSEGI WASH 50% DESIGN REPORT

TSEGI WASH 50% DESIGN REPORT TSEGI WASH 50% DESIGN REPORT 2/28/2014 Daniel Larson, Leticia Delgado, Jessica Carnes I Table of Contents Acknowledgements... IV 1.0 Project Description... 1 1.1 Purpose... 1 Figure 1. Erosion of a Headcut...

More information

Sessom Creek Sand Bar Removal HCP Task 5.4.6

Sessom Creek Sand Bar Removal HCP Task 5.4.6 Sessom Creek Sand Bar Removal HCP Task 5.4.6 Prepared by: Dr. Thomas Hardy Texas State University Dr. Nolan Raphelt Texas Water Development Board January 6, 2013 DRAFT 1 Introduction The confluence of

More information

Lesson 4. Stream Table Lab. Summary. Suggested Timeline. Objective. Materials. Teacher Background Knowledge

Lesson 4. Stream Table Lab. Summary. Suggested Timeline. Objective. Materials. Teacher Background Knowledge Rivers Instructional Case: A series of student-centered science lessons Suggested Timeline 50 minutes Materials 1 Stream table for each station 1 Calculator for each station Approximately 3 lb of sand

More information

Factors affecting confluence scour

Factors affecting confluence scour & Wang (eds) River Sedimentation 1999., Balkema, Rotterdam. ISBN 9 9 3. 17 19 Factors affecting confluence scour R. B. Rezaur & A. W. Jayawardena. Department of Civil Engineering, The University of Hong

More information

GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012

GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012 GEOMORPHIC CHANGES IN LOWER CACHE CREEK 2012 Eric W. Larsen Technical Memorandum Prepared for Cache Creek Technical Advisory Committee Natural Resources Program Yolo County Board of Supervisors 2012 Prepared

More information

Calculation of Stream Discharge Required to Move Bed Material

Calculation of Stream Discharge Required to Move Bed Material Calculation of Stream Discharge Required to Move Bed Material Objective: Students will map two sections of a stream and calculate the depth, velocity, and discharge of flows required to move the stream

More information

Appendix F Channel Grade Control Structures

Appendix F Channel Grade Control Structures Stream Simulation Appendix F Channel Grade Control Structures This appendix briefly describes permanent grade control structures that are sometimes needed in the upstream and/or downstream reaches adjacent

More information

Limited Visual Dam Safety Inspections OA Oahu Reservoir No Oahu, Hawaii

Limited Visual Dam Safety Inspections OA Oahu Reservoir No Oahu, Hawaii Limited Visual Dam Safety Inspections OA00137 Oahu Reservoir No. 155 Oahu, Hawaii Prepared by: U.S. ARMY CORPS OF ENGINEERS HONOLULU DISTRICT STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES May

More information

Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE

Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE 1) Project Overview Third Annual Monitoring Report Tidal Wetland Restoration 159 Long Neck Point Road, Darien, CT NAE-2007-1130 December 15, 2014 This is the third year of a five year monitoring program

More information

!"#$%&&'()*+#$%(,-./0*)%(!

!#$%&&'()*+#$%(,-./0*)%(! 8:30 Sign in Hoosic River Revival Coalition!"#$%&&'()*+#$%(,-./0*)%(! 12-#30+4/#"5-(60 9:00 Welcome and Introductions 9:15 Goals for Today s Program: A Description of the Planning Process 9:30 First Session:

More information

Sediment Transport Mechanism and Grain Size Distributions in Stony Bed Rivers. S.FUKUOKA 1 and K.OSADA 2

Sediment Transport Mechanism and Grain Size Distributions in Stony Bed Rivers. S.FUKUOKA 1 and K.OSADA 2 Sediment Transport Mechanism and Grain Size Distributions in Stony Bed Rivers S.FUKUOKA 1 and K.OSADA 1 Professor, Research and Development Initiative, Chuo-University, 1-13-7 Kasuga Bunkyo-ku, Tokyo,

More information

High-Gradient Streams

High-Gradient Streams Chapter 4 Surface Processes Section 4 High-Gradient Streams What Do You See? Learning Outcomes In this section, you will Use models and real-time streamflow data to understand the characteristics of highgradient

More information

Chapter 3 Erosion in the Las Vegas Wash

Chapter 3 Erosion in the Las Vegas Wash Chapter 3 Erosion in the Las Vegas Wash Introduction As described in Chapter 1, the Las Vegas Wash (Wash) has experienced considerable change as a result of development of the Las Vegas Valley (Valley).

More information

Carmel River Bank Stabilization at Rancho San Carlos Road Project Description and Work Plan March 2018

Carmel River Bank Stabilization at Rancho San Carlos Road Project Description and Work Plan March 2018 Carmel River Bank Stabilization at Rancho San Carlos Road Project Description and Work Plan March 2018 EXISTING CONDITION The proposed Carmel River Bank Stabilization at Rancho San Carlos Road Project

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

December 11, 2006 File:

December 11, 2006 File: December 11, 2006 File: 15-85-38 Alberta Infrastructure and Transportation Room 301, Provincial Building 9621-96 Avenue Peace River, Alberta T8S 1T4 Attention: Mr. Ed Szmata PEACE REGION (SWAN HILLS AREA)

More information

R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE. HELAVA CREEKl MILE MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973

R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE. HELAVA CREEKl MILE MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973 El R.M.HARW & ASSOCIATES LTD. GEOTECHNICAL INVESTIGATION PROPOSED BRIDGE SITE HELAVA CREEKl MILE 616.4 MACKENZIE HIGHWAY E-2510 OCTOBER 16, 1973 R,M,HARDV & ASSOCIATES LTD. CONSULTING ENGINEERING & TESTING

More information

Materials. Use materials meeting the following.

Materials. Use materials meeting the following. 208.01 Section 208. SOIL EROSION AND SEDIMENTATION CONTROL 208.01 Description. Install and maintain erosion and sedimentation controls to minimize soil erosion and to control sedimentation from affecting

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

GLG598 Surface Processes and Landform Evolution K. Whipple Fall 2012 VERDE RIVER: FLOW MECHANICS, ROUGHNESS, AND SHEAR STRESS

GLG598 Surface Processes and Landform Evolution K. Whipple Fall 2012 VERDE RIVER: FLOW MECHANICS, ROUGHNESS, AND SHEAR STRESS VERDE RIVER: FLOW MECHANICS, ROUGHNESS, AND SHEAR STRESS This lab will introduce you to some common field techniques and some general understanding of the geomorphic processes operating in a stream. The

More information

Dolores River Watershed Study

Dolores River Watershed Study CHAPTER 4: RIVER AND FLOODPLAIN ISSUES The Dolores River falls into a category of streams in Colorado that share some unique characteristics. Like some other mountain streams in the state, it has a steep

More information

CULTURAL HISTORY Suzzette Fig. 1. Undated Plat Map of Suzzette. Unsigned; probably drawn by J. Lee Chambers.

CULTURAL HISTORY Suzzette Fig. 1. Undated Plat Map of Suzzette. Unsigned; probably drawn by J. Lee Chambers. CULTURAL HISTORY Suzzette by Neal McLain The map collection at the Brazoria County Historical Museum contains numerous plat maps of property subdivisions. While examining these maps, I ran across two maps

More information

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0

PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 PENNSYLVANIA DEPARTMENT OF TRANSPORTATION ENGINEERING DISTRICT 3-0 LYCOMING COUNTY S.R.15, SECTION C41 FINAL HYDROLOGIC AND HYDRAULIC REPORT STEAM VALLEY RUN STREAM RELOCATION DATE: June, 2006 REVISED:

More information

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently

The Effects of Flooding on Structures. Or What to Expect when the Drought Ends Violently The Effects of Flooding on Structures Or What to Expect when the Drought Ends Violently Let s Define Flood Increase in discharge compared to normal level Direct runoff of rainfall (we re talking about

More information

Think about the landforms where you live. How do you think they have changed over time? How do you think they will change in the future?

Think about the landforms where you live. How do you think they have changed over time? How do you think they will change in the future? reflect All the landforms on Earth have changed over time and continue to change. Many of the changes were caused by wind, moving water, and moving ice. Mountains have grown and shrunk. Rivers have cut

More information

Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to

Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to Draft exercise for share fair at Bozeman workshop only. This exercise is not ready for distribution. Please send helpful suggestions to foleyd@plu.edu Figure list 1. Trailer photograph 2. Location map

More information

EFFECT OF STREAM-WISE SPACING OF BRIDGE PIERS ON SCOUR DEPTH

EFFECT OF STREAM-WISE SPACING OF BRIDGE PIERS ON SCOUR DEPTH EFFECT OF STREAM-WISE SPACING OF BRIDGE PIERS ON SCOUR DEPTH ASHISH KUMAR Ph. D. Student UMESH C. KOTHYARI Professor Department of Civil Engineering Indian Institute of Technology, (formerly: University

More information

6.11 Naas River Management Unit

6.11 Naas River Management Unit 6.11 Naas River Management Unit 6.11.1 Site 41 Issue: Bed and bank erosion Location: E 0685848 N 6058358 Waterway: Naas River Management Unit: Naas River Facing downstream from Bobeyan Rd bridge Facing

More information

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Habitat Assessment Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Adapted from a presentation by Jean Unmuth, Water Quality Biologist, WI DNR dnr.wi.gov www.uwex.edu erc.cals.wisc.edu

More information

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives:

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives: Sedimentation E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 3 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 4-ESS1-1 Identify evidence from patterns

More information

PolyMet NorthMet Project

PolyMet NorthMet Project RS 26 Draft-01 December 8, 2005 RS26 Partridge River Level 1 Rosgen Geomorphic Survey Rosgen Classification Partridge River from Headwaters to Colby Lake Prepared for PolyMet NorthMet Project December

More information

11. ALPINE GLACIAL LANDFORMS

11. ALPINE GLACIAL LANDFORMS Geomorphology 11. Alpine Glacial Landforms 11. ALPINE GLACIAL LANDFORMS 40 Points One objective of this exercise is for you be able to identify alpine glacial landforms and measure their characteristics.

More information

NAME: DATE: Leaving Certificate GEOGRAPHY: Maps and aerial photographs. Maps and Aerial Photographs

NAME: DATE: Leaving Certificate GEOGRAPHY: Maps and aerial photographs. Maps and Aerial Photographs NAME: DATE: Leaving Certificate Geography Maps and Aerial Photographs Please see Teachers Notes for explanations, additional activities, and tips and suggestions. Learning Support Vocabulary, key terms

More information

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir ISSN 2320-9100 11 International Journal of Advance Research, IJOAR.org Volume 1, Issue 8,August 2013, Online: ISSN 2320-9100 MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

Road Scholar. Williamette Valley Invitational Practice Tournament

Road Scholar. Williamette Valley Invitational Practice Tournament Road Scholar Williamette Valley Invitational Practice Tournament Rules for this Event As you complete this event, enter your answers on the online data sheet. You may click "submit" when done and quietly

More information

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling

B-1. Attachment B-1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling Attachment B-1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications

More information

APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States

APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States APPENDIX A M&T/Llano Seco Long-Term Water Reliability Study These photos are examples of rock spurs in use throughout the United States Glenn Colusa Irrigation District completed a Sacramento River project

More information

Project (Project No. US-CA-62-2) Maintenance Inspection and Reports (Subtask 14.1) Inspection Report No.2

Project (Project No. US-CA-62-2) Maintenance Inspection and Reports (Subtask 14.1) Inspection Report No.2 MEMORANDUM TO: FROM: Jim Well, Ducks Unlimited Mike Harvey, PhD, PG SUBJECT: M&T/ Llano Seco Fish Screen Project (Project No. US-CA-62-2) Maintenance Inspection and Reports (Subtask 14.1) Inspection Report

More information

Changes to Land 5.7B. landforms: features on the surface of Earth such as mountains, hills, dunes, oceans and rivers

Changes to Land 5.7B. landforms: features on the surface of Earth such as mountains, hills, dunes, oceans and rivers All the landforms on Earth have changed over time and continue to change. Many of the changes were caused by wind, moving water, and moving ice. Mountains have grown and shrunk. Rivers have cut away land

More information

The Long Profile Characteristics. Why does a river meander in its middle and lower course?

The Long Profile Characteristics. Why does a river meander in its middle and lower course? QU: How are Meanders formed? AIM: To describe and explain meander formation and identify the difference between GCSE and A/S knowledge and expectations. ST: Get the key rivers terms from the pictures.

More information

Summary of Hydraulic and Sediment-transport. Analysis of Residual Sediment: Alternatives for the San Clemente Dam Removal/Retrofit Project,

Summary of Hydraulic and Sediment-transport. Analysis of Residual Sediment: Alternatives for the San Clemente Dam Removal/Retrofit Project, Appendix N SUMMARY OF HYDRAULIC AND SEDIMENT-TRANSPORT ANALYSIS OF RESIDUAL SEDIMENT: ALTERNATIVES FOR THE SAN CLEMENTE DAM REMOVAL/RETROFIT PROJECT, CALIFORNIA the San Clemente Dam Removal/Retrofit Project,

More information

NRCS - THUNDER ROAD #3, TRIBUTARY TO QUILEUTE RIVER CULVERT REMOVAL AND REPLACEMENT PLAN CLALLAM COUNTY, WA., WRIA: 20, SITE:

NRCS - THUNDER ROAD #3, TRIBUTARY TO QUILEUTE RIVER CULVERT REMOVAL AND REPLACEMENT PLAN CLALLAM COUNTY, WA., WRIA: 20, SITE: WDFW CONTROL POINT #1 Re-Bar, Elevation Northing 10004.441 Easting 8002.5905 WDFW CONTROL POINT #2 Re-Bar, Elevation 101.36 Northing 10031.6683 Easting 846.0623 Spike in Tree Elevation = 102.95 Elevation

More information

NRCS - THUNDER ROAD #2, TRIBUTARY TO QUILEUTE RIVER CULVERT REMOVAL AND REPLACEMENT PLAN CLALLAM COUNTY, WA., WRIA: 20, SITE:

NRCS - THUNDER ROAD #2, TRIBUTARY TO QUILEUTE RIVER CULVERT REMOVAL AND REPLACEMENT PLAN CLALLAM COUNTY, WA., WRIA: 20, SITE: WDFW CONTROL POINT #1 Re-Bar, Elevation 100.00 Northing 10004.441 Easting 8002.5905 WDFW CONTROL POINT #2 Re-Bar, Elevation 101.36 Northing 10031.6683 Easting 846.0623 WDFW TBM #1 Spike in Tree Elevation

More information

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 281 THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Karima Attia 1 and Gamal El Saied 2 1

More information

Links to Syllabus. Core Unit 3 Skills Geographical Investigation Core Unit Fluvial processes 1.6 Fluvial adjustment

Links to Syllabus. Core Unit 3 Skills Geographical Investigation Core Unit Fluvial processes 1.6 Fluvial adjustment River Study Links to Syllabus Core Unit 3 Skills Geographical Investigation Core Unit 2 1.5 Fluvial processes 1.6 Fluvial adjustment Mapping Photographs Sketching Statistical analysis Data collection Report

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS TASK QUARTERLY 15 No 3 4, 271 282 NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS MICHAŁ SZYDŁOWSKI Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza

More information

Four Mile Run Levee Corridor Stream Restoration

Four Mile Run Levee Corridor Stream Restoration Four Mile Run Levee Corridor Stream Restoration 30% Design Summary U.S. Army Corps of Engineers, Baltimore District Presentation Outline Four Mile Run 1.) Historic Perspective 2.) Existing Conditions 3.)

More information

MEANDER CURVE (MODIFIED FOR ADEED)

MEANDER CURVE (MODIFIED FOR ADEED) MEANDER CURVE (MODIFIED FOR ADEED) Overview: Friction between water and stream banks causes water to move in a corkscrew fashion. This helical flow is called the water spiral. Gravity and the water spiral

More information

LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT

LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT Mat Salleh M. Z., Ariffin J., Mohd-Noor M. F. and Yusof N. A. U. Faculty of Civil Engineering, University Technology

More information

A PHYSICAL MODEL STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE

A PHYSICAL MODEL STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE A PHYSICA MODE STUDY OF SCOURING EFFECTS ON UPSTREAM/DOWNSTREAM OF THE BRIDGE JIHN-SUNG AI Hydrotec Researc Institute, National Taiwan University Taipei, 1617, Taiwan HO-CHENG IEN National Center for Hig-Performance

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

3.12 Geology and Topography Affected Environment

3.12 Geology and Topography Affected Environment 3 Affected Environment and Environmental Consequences 3.12 Geology and Topography 3.12.1 Affected Environment 3.12.1.1 Earthquakes Sterling Highway MP 45 60 Project Draft SEIS The Kenai Peninsula is predisposed

More information

EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT

EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT Civil Engineering Forum Volume XXI/1 - January 2012 EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT A. S. Amar PT. Rekayasa Industri, EPC Company, 36 Kalibata Timur I, Jakarta, INDONESIA

More information

ALDERON IRON ORE CORP. ENVIRONMENTAL IMPACT STATEMENT KAMI IRON ORE MINE AND RAIL INFRASTRUCTURE, LABRADOR. Appendix P

ALDERON IRON ORE CORP. ENVIRONMENTAL IMPACT STATEMENT KAMI IRON ORE MINE AND RAIL INFRASTRUCTURE, LABRADOR. Appendix P ALDERON IRON ORE CORP. ENVIRONMENTAL IMPACT STATEMENT KAMI IRON ORE MINE AND RAIL INFRASTRUCTURE, LABRADOR Appendix P Additional Monitoring Station Details of Stream Gauging Stations S1, S2, S3, S4, and

More information

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013

APPENDIX E. GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2013 APPENDIX E GEOMORPHOLOGICAL MONTORING REPORT Prepared by Steve Vrooman, Keystone Restoration Ecology September 2 Introduction Keystone Restoration Ecology (KRE) conducted geomorphological monitoring in

More information

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material River Processes Learning Objective: Discover how a river erodes, transports and deposits material Learning Outcomes: Compare vertical and lateral erosion Describe how a river erodes, transports and deposits

More information