Modeling aggregate size distribution of eroded sediments by rain-splash and raindrop impacted flow processes

Size: px
Start display at page:

Download "Modeling aggregate size distribution of eroded sediments by rain-splash and raindrop impacted flow processes"

Transcription

1 Modeling aggregate size distribution of eroded sediments by rain-splash and raindrop impacted flow processes Selen Deviren Saygın* Gunay Erpul Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ankara University, Diskapi-Ankara, Turkey ( *Presenting authour Soil Erosion Modelling Workshop JRC Ispra March 2017

2 Research highligths Previous studies have clearly indicated that sediment characteristics and especially its size distrubution are dynamicly changes under water-induced erosion conditions (Hairsine et al., 1999; Hogarth et al., 2004, Asadi et al., 2007; Baigorria and Romero, 2007; Rose et al., 2007, Asadi et al., 2011). The size distribution of eroded sediments can provide basic information regarding erosion processes (Loch and Donnollan, 1982; Miller and Baharuddin, 1987; Mitchell et al., 1983; Proffitt and Rose, 1991; Meyer et al., 1992). A better understanding of the dynamics of the sediment size distribution will improve understanding of erosion and sedimentation processes, and consequently improve erosion modeling. For next genaration process-based modelling technology it is essential to model mass-fragmentation to accurately estimate transport capacity, soil loss rates and erodibility etc. Nearing et al. (1990) indicate that major deficiency in WEPP model to represent detachment process is in terms of sediment size distrubutions. Thus, it has been proposed the developing separate predictive equations for sediment sizes from rill and interrill areas and incorporating these equations into process-based erosion prediction technologies.

3 Research highligths At this point, we can say that modelling of the sediment size distribution with an proper mathematical model would be useful in modeling and monitoring the changing erosional conditions. From the past to the present, many statistical methods have been proposed to describe the particle-size distribution of sediments (Cooke et al., 1993; Zobeck et al., 2003). Some of them are the conventional Gaussian or normal, log-normal (Shirazi and Boersma, 1984; Buchan, 1989), modified lognormal (Wagner and Ding, 1994), log-hyperbolic (Hartmann and Christiansen, 1988), bi- or multimodal (Pinnick et al., 1985), Rosin-Rammler (Kittleman, 1964),Weibull (Wohletz et al., 1989), and others (Zobeck et al., 2003). Although these studies are cruial for mass-fragmentation model developments in terms of process-based approach, performed measurements on eroded sediments and modelling of them with a proper methodology are quite limited opposite to wind erosion measurements. Thus, we tried to find best modelling approach to model eroded sediment size variations under water-induced erosion conditions. In this context, we compared to the three different mathematical aggregate size distribution model (Log-normal, Fractal and Weibull) performance, mostly used for dust modeling in wind erosion process, for eroded sediments derived from rainfall simulations to simulate fragile ecosytem dynamics in semi-arid catchment scale.

4 Rainfall simulations

5 Log-normal cumulative distribution function (CDF)

6 Fractal cumulative distribution function (CDF) Fractal M ( x < M T X L ) = x X where M(x < x L )s the cumulative mass smaller than diameter x, x L is the diameter of the largest particle, and M T is the total sample mass L 3 D2 derived from Mandelbrot, 1982; Turcotte 1986; Tyler and Wheatcraft 1989; Tyler and Wheatcraft 1992 MSE: 0,0063 R 2 : 0,953 D 50 : 1,828 Sample graph: Dry Aggregate size distrubution modelling for cultivated agricultural land before rainfall simulations

7 Weibull cumulative distribution function (CDF) Weibull M ( x M T where M(x < X ) is the cumulative mass x smaller than diameter X, M T is the total sample mass, the b parameter is a scale factor and the c parameter is a shape factor. < X ) c x = 1 exp ( ) b derived from Wohletz et. al. 1989; Perfect and Kay, 1995; Zobeck et al MSE: 0,0015 R 2 : 0,989 D 50 : 1,49 Sample graph: Dry Aggregate size distrubution modelling for cultuvated agricultural land before rainfall simulations

8 Measured and predicted D 50 values along with MSE and R 2 values for the splashed sediments Land Use Cultivated Land Cultivated Land Grassland Grassland Forest Forest Slope Intensity D 50 Measured Lognormal MSE R 2 Fractal MSE R 2 Weibull MSE R 2 9% 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h

9 Measured and predicted D 50 values along with MSE and R 2 values for the runoff sediments Land Use Cultivated Cultivated Land Land Grassland Grassland Forest Forest Slope Intensity D 50 Measured Lognormal MSE R 2 Fractal MSE R 2 Weibull MSE R 2 9% 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h mm h % 80 mm h -1 No data* 120 mm h % 80 mm h mm h % 80 mm h mm h

10 Results Results clearly indicated that cultivated land and grassland soils have produced similar size aggregate distributions and D 50 values after rainfall simulations for detachment and transport processes opposite to the soils of the forest plantation area under the saturated soil conditions. And, the all studied models had higher potential to estimate the eroded sediment distributions obtained from various rainfall simulations. Especially, the Weibull model has shown the best fit with the lowest MSE values ( MSE ) and the highest determination coefficient (0.998 R ) for modeling eroded sediments by RST and RIFT processes. The Log-normal approach generally resulted in a lower estimated value than the actual value opposite to the Fractal approach which showed a tendency to higher model estimates. In summary, this study of laboratory rainfall simulations demonstrated that the Weibull cumulative distribution function can be used effectively to model the aggregate size distribution of raindrop and shallow flow-induced sediment transport processes References Asadi, H., Ghadiri, H., Rose, C. W., & Rouhipour, H. (2007). Interrill soil erosion processes and their interaction on low slopes. Earth Surface Processes and Landforms, 32(5), Asadi, H., Moussavi, A., Ghadiri, H., & Rose, C. W. (2011). Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology, 406(1), Baigorria, G. A., & Romero, C. C. (2007). Assessment of erosion hotspots in a watershed: integrating the WEPP model and GIS in a case study in the Peruvian Andes. Environmental Modelling & Software, 22(8), Buchan, G. D. (1989). Applicability of the simple lognormal model to particle size distribution in soils. Soil Science, 147(3), Cooke, R.U., Warren, A., & Goudie, A.S. (1993). Desert Geomorphology. Univ. College London Press, London. Hairsine, P. B., Sander, G. C., Rose, C. W., Parlange, J. Y., Hogarth, W. L., Lisle, I., & Rouhipour, H. (1999). Unsteady soil erosion due to rainfall impact: a model of sediment sorting on the hillslope. Journal of Hydrology, 220(3), Gardner, W. R. (1956). Representation of Soil Aggregate-Size Distribution by a Logarithmic-Normal Distribution1, 2. Soil Science Society of America Journal, 20(2), Hartmann, D., & Christiansen, C. (1988). Settling-velocity distributions and sorting processes on a longitudinal dune: a case study. Earth Surface Processes and Landforms, 13, 656. Hogarth, W. L., Rose, C. W., Parlange, J. Y., Sander, G. C., & Carey, G. (2004). Soil erosion due to rainfall impact with no inflow: a numerical solution with spatial and temporal effects of sediment settling velocity characteristics. Journal of Hydrology, 294(4), Kittleman Jr, L. R. (1964). Application of Rosin's distribution in size-frequency analysis of clastic rocks. Journal of Sedimentary Research, 34(3) Loch, R. J., & Donnollan, T. E. (1983). Field rainfall simulator studies on two clay soils of the Darling Downs, Queensland. II. Aggregate Breakdpwn, sediment properties and soil erodibility. Soil Research, 21(1), Meyer, L. D., Line, D. E., & Harmon, W. C. (1992). Size characteristics of sediment from agricultural soils. Journal of Soil and Water Conservation, 47(1), Miller, W. P., & Baharuddin, M. K. (1987). Particle size of interrill-eroded sediments from highly weathered soils. Soil Science Society of America Journal, 51(6), Mitchell, J. K., Mostaghimi, S., & Pond, M. C. (1983). Primary particle and aggregate size distribution of eroded soil from sequenced rainfall events. TRANSACTIONS of the ASAE, 26(6), Nearing, M. A., Lane, L. J., Alberts, E. E., & Laflen, J. M. (1990). Prediction technology for soil erosion by water: status and research needs. Soil Science Society of America Journal, 54(6), Pinnick, R. G., Fernandez, G., Hinds, B. D., Bruce, C. W., Schaefer, R. W., & Pendleton, J. D. (1985). Dust generated by vehicular traffic on unpaved roadways: sizes and infrared extinction characteristics. Aerosol Science and Technology, 4(1), Proffitt, A. P. B., & Rose, C. W. (1991). Soil erosion processes. II. Settling velocity characteristics of eroded sediment. Soil Research, 29(5), Rose, C. W., Yu, B., Ghadiri, H., Asadi, H., Parlange, J. Y., Hogarth, W. L., & Hussein, J. (2007). Dynamic erosion of soil in steady sheet flow. Journal of Hydrology, 333(2), Shirazi, M. A., & Boersma, L. (1984). A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48(1), Wagner, L. E., & Ding, D. (1994). Representing aggregate size distributions as modified lognormal distributions. Transactions of the ASAE, 37(3), Wohletz, K. H., Sheridan, M. F., & Brown, W. K. (1989). Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J. Geophys. Res, 94(B11), Zobeck, T. M., Popham, T. W., Skidmore, E. L., Lamb, J. A., Merrill, S. D., Lindstrom, M. J.,... & Yoder, R. E. (2003). Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distributions. Soil Science Society of America Journal, 67(2),

Simulations demonstrating interaction between coarse and fine sediment loads in rain-impacted flow

Simulations demonstrating interaction between coarse and fine sediment loads in rain-impacted flow Earth Surface Processes and Landforms Interaction Earth Surf. Process. between Landforms coarse and (in press) fine sediment loads 1 Published online in Wiley InterScience (www.interscience.wiley.com)

More information

Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple experiment

Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple experiment Journal of Hydrology 277 (2003) 116 124 www.elsevier.com/locate/jhydrol Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple experiment Bin Gao a, M.T. Walter

More information

Journal of Hydrology

Journal of Hydrology Journal of Hydrology 454 455 (2012) 123 130 Contents lists available at SciVerse ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Soil erosion processes and sediment

More information

Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and

Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and projected erosion levels and their impact on natural resource

More information

The Influence of Antecedent Soil Moisture Conditions on Inter-rill Soil Erosion

The Influence of Antecedent Soil Moisture Conditions on Inter-rill Soil Erosion The Influence of Antecedent Soil Moisture Conditions on Inter-rill Soil Erosion Ilja van Meerveld Ilja.van.meerveld@vu.nl Acknowledgements p Andrew Barry p Graham Sanders p Jean-Yves Parlange p Seifeddine

More information

HYDRAULIC MODELING OF SOIL ERORION

HYDRAULIC MODELING OF SOIL ERORION 18-21 August 28, Daejeon, Korea HYDRAULIC MODELING OF SOIL ERORION Liu Qing-quan Institute of Mechanics, Chinese Academy of Sciences, Beijing 18, China. Email: qqliu@imech.ac.cn ABSTRACT: The prediction

More information

Raindrop-impact-induced erosion processes and prediction: a review

Raindrop-impact-induced erosion processes and prediction: a review HYDROLOGICAL PROCESSES Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/hyp.5788 Raindrop-impact-induced erosion processes and prediction: a review P. I. A. Kinnell* School

More information

KINEROS2/AGWA. Fig. 1. Schematic view (Woolhiser et al., 1990).

KINEROS2/AGWA. Fig. 1. Schematic view (Woolhiser et al., 1990). KINEROS2/AGWA Introduction Kineros2 (KINematic runoff and EROSion) (K2) model was originated at the USDA-ARS in late 1960s and released until 1990 (Smith et al., 1995; Woolhiser et al., 1990). The spatial

More information

The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension

The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1393 1407 (2009) Copyright 2009 John Wiley & Sons, Ltd. Published online 16 June 2009 in Wiley InterScience (www.interscience.wiley.com).1828

More information

HYDROL No. of Pages 5, Model 6+ 2 July 2007 Disk Used ARTICLE IN PRESS Journal of Hydrology (2007) xxx, xxx xxx

HYDROL No. of Pages 5, Model 6+ 2 July 2007 Disk Used ARTICLE IN PRESS Journal of Hydrology (2007) xxx, xxx xxx Journal of Hydrology (2007) xxx, xxx xxx available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jhydrol 2 Reduced raindrop-impact driven soil erosion 3 by infiltration 4 Jeffrey D.

More information

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China**

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China** This paper was peer-reviewed for scientific content. Pages 732-736. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

A rational method for estimating erodibility and critical shear stress of an eroding rill

A rational method for estimating erodibility and critical shear stress of an eroding rill Available online at www.sciencedirect.com Geoderma 144 (2008) 628 633 www.elsevier.com/locate/geoderma A rational method for estimating erodibility and critical shear stress of an eroding rill T.W. Lei

More information

Influence of rock fragment coverage on soil erosion and hydrological

Influence of rock fragment coverage on soil erosion and hydrological Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling S. Jomaa a,*, D.A. Barry a, B.C.P. Heng b, A. Brovelli a, G.C. Sander c, J.-Y. Parlange

More information

A simulation model for unified interrill erosion and rill erosion on hillslopes

A simulation model for unified interrill erosion and rill erosion on hillslopes HYDROLOGICAL PROCESSES Hydrol. Process. 2, 469 486 (26) Published online 18 October 25 in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/hyp.5915 A simulation model for unified interrill erosion

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

Chapter 2. Commonalities in WEPP and WEPS and Efforts Towards a Single Erosion Process Model

Chapter 2. Commonalities in WEPP and WEPS and Efforts Towards a Single Erosion Process Model Chapter 2 Commonalities in WEPP and WEPS and Efforts Towards a Single Erosion Process Model D.C. Flanagan 1 & S.M. Visser 2 1 Agricultural Engineer & WEPP Leader USDA - Agricultural Research Service &

More information

Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL

Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL 1.1 Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL D.C. Flanagan, J.C. Ascough II, A.D. Nicks, M.A. Nearing and J.M. Laflen 1.1 Introduction The USDA - Water Erosion Prediction Project (WEPP)

More information

Continuing Education Associated with Maintaining CPESC and CESSWI Certification

Continuing Education Associated with Maintaining CPESC and CESSWI Certification Continuing Education Associated with Maintaining CPESC and CESSWI Certification Module 2: Stormwater Management Principles for Earth Disturbing Activities Sponsors: ODOTs Local Technical Assistance Program

More information

USDA Rocky Mountain Research Station, 1221 S. Main St.,

USDA Rocky Mountain Research Station, 1221 S. Main St., An ASABE Meeting Presentation Paper Number: 095553 Improving Erosion Modeling on Forest Roads in the Lake Tahoe Basin: Small Plot Rainfall Simulations to Determine Saturated Hydraulic Conductivity and

More information

Generation and size distribution of sediment eroded in a small-scale catchment of the Western Cape (South Africa)

Generation and size distribution of sediment eroded in a small-scale catchment of the Western Cape (South Africa) Water Pollution X 195 Generation and size distribution of sediment eroded in a small-scale catchment of the Western Cape (South Africa) N. Z. Jovanovic 1, R. D. H. Bugan 1, C. Petersen 1, W. P. De Clercq

More information

Modelling interrill soil erosion in the semiarid zone of Cameroon

Modelling interrill soil erosion in the semiarid zone of Cameroon Symposium no. 3 Paper no. 37 Presentation: poster Modelling interrill soil erosion in the semiarid zone of Cameroon MAINAM Félix (1), ZINCK J. Alfred () and VAN RANST Eric (3) (1) IRAD, B.P 33 Maroua,

More information

A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires

A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires P.R. Robichaud

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling

Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling WATER RESOURCES RESEARCH, VOL. 48, W05535, doi:10.1029/2011wr011255, 2012 Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling S. Jomaa,

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

Potential Impacts of Climate Change on Soil Erosion Vulnerability Across the Conterminous U.S.

Potential Impacts of Climate Change on Soil Erosion Vulnerability Across the Conterminous U.S. Potential Impacts of Climate Change on Soil Erosion Vulnerability Across the Conterminous U.S. Catalina Segura 1, Ge Sun 2, Steve McNulty 2, and Yang Zhang 1 1 2 1 Soil Erosion Natural process by which

More information

The US national project to develop improved erosion prediction technology to replace the USIJE

The US national project to develop improved erosion prediction technology to replace the USIJE Sediment Budgets (Proceedings of the Porto Alegre Symposium, December 1988). IAHS Publ. no. 174, 1988. The US national project to develop improved erosion prediction technology to replace the USIJE L.

More information

Experimental testing of a stochastic sediment transport model

Experimental testing of a stochastic sediment transport model Journal of Hydrology (2008) 348, 425 430 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jhydrol Experimental testing of a stochastic sediment transport model Stephen Bernard

More information

Randy B. Foltz and William J. Elliot 1

Randy B. Foltz and William J. Elliot 1 Measuring and Modeling Impacts of Tire Pressure on Road Erosion Randy B. Foltz and William J. Elliot 1 Abstract The sediment production from highway tire pressures, constant reduced tire pressures, and

More information

The effect of soil physical parameters on soil erosion. Introduction. The K-factor

The effect of soil physical parameters on soil erosion. Introduction. The K-factor Geographical Bulletin 2004. Tom. LIII. No. 1 2. pp.77 84. The effect of soil physical parameters on soil erosion ÁDÁM KERTÉSZ TAMÁS HUSZÁR GERGELY JAKAB 1 Introduction The factor K of the Universal Soil

More information

Chapter 10. HYDRAULICS OF OVERLAND FLOW

Chapter 10. HYDRAULICS OF OVERLAND FLOW 10.1 Chapter 10. HYDRAULICS OF OVERLAND FLOW J.E. Gilley and M.A. Weltz 10.1 Introduction Proper identification of hydraulic parameters is essential for the operation of other WEPP model components. Routing

More information

Name: KEY OBJECTIVES HYDROLOGY:

Name: KEY OBJECTIVES HYDROLOGY: Name: KEY OBJECTIVES Correctly define: abrasion, capillarity, deposition, discharge, erosion, evapotranspiration, hydrology, impermeable, infiltration, meander, permeable, porosity, water table, weathering,

More information

MINErosion 4: A user-friendly catchment/landscape erosion prediction model for post mining sites in Central Queensland

MINErosion 4: A user-friendly catchment/landscape erosion prediction model for post mining sites in Central Queensland MINErosion 4: A user-friendly catchment/landscape erosion prediction model for post mining sites in Central Queensland Ashraf Mohammed Khalifa Aly M.Sc. of Soil Resources, Cairo University, Egypt Griffith

More information

Testing a mechanistic soil erosion model with a simple experiment

Testing a mechanistic soil erosion model with a simple experiment Journal of Hydrology 244 (2001) 9±16 www.elsevier.com/locate/jhydrol Testing a mechanistic soil erosion model with a simple experiment A. Heilig a, D. DeBruyn b, M.T. Walter c, C.W. Rose d, J.-Y. Parlange

More information

Rainfall Analysis. Prof. M.M.M. Najim

Rainfall Analysis. Prof. M.M.M. Najim Rainfall Analysis Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Estimate long term mean rainfall for a new station Describe the usage of a hyetograph Define recurrence

More information

Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling

Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling Joan Q. Wu Arthur C. Xu William J. Elliot Department of Biological Systems Engineering Rocky Mountain Research Station

More information

RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. II - Catchment Management A Framework for Managing Rangelands - Hugh Milner

RANGE AND ANIMAL SCIENCES AND RESOURCES MANAGEMENT - Vol. II - Catchment Management A Framework for Managing Rangelands - Hugh Milner CATCHMENT MANAGEMENT A FRAMEWORK FOR MANAGING RANGELANDS Hugh Milner International Water Management Consultant, Australia Keywords: Rangeland management; catchments and watersheds; catchment management

More information

Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes

Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes Available online at www.sciencedirect.com Procedia Environmental Sciences 11 (2011) 1220 1226 Using 7Be to Trace Temporal Variation of Interrill and Rill Erosion on Slopes Gang Liu 1, Qiong Zhang 3, Mingyi

More information

Soil erosion by water is not only associated with on-site land degradation

Soil erosion by water is not only associated with on-site land degradation Soil & Water Management & Conservation Effects of Mulch Cover Rate on Interrill Erosion Processes and the Size Selectivity of Eroded Sediment on Steep Slopes Z.H. Shi * State Key Lab. of Soil Erosion and

More information

Geog Lecture 19

Geog Lecture 19 Geog 1000 - Lecture 19 Fluvial Geomorphology and River Systems http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 346 355) 1. What is Fluvial Geomorphology? 2. Hydrology and the Water

More information

Gully erosion in winter crops: a case study from Bragança area, NE Portugal

Gully erosion in winter crops: a case study from Bragança area, NE Portugal Gully erosion in winter crops: a case study from Bragança area, NE Portugal T. de Figueiredo Instituto Politécnico de Bragança (IPB/ESAB), CIMO Mountain Research Centre, Bragança, Portugal Foreword This

More information

Assessment of Concave and Linear Hillslopes for Post-Mining Landscapes 1

Assessment of Concave and Linear Hillslopes for Post-Mining Landscapes 1 Assessment of Concave and Hillslopes for Post-Mining Landscapes 1 Sumith Priyashantha 2, Brian Ayres 3, Mike O Kane 4, and Mike Fawcett 5 2 O Kane Consultants Inc., 2312 Arlington Avenue, Saskatoon, SK,

More information

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants. Bell Ringer Are soil and dirt the same material? In your explanation be sure to talk about plants. 5.3 Mass Movements Triggers of Mass Movements The transfer of rock and soil downslope due to gravity is

More information

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment

Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Polish J. of Environ. Stud. Vol. 19, No. 5 (2010), 881-886 Review Using the Geographical Information System and Remote Sensing Techniques for Soil Erosion Assessment Nuket Benzer* Landscape Architecture

More information

Which particle of quartz shows evidence of being transported the farthest distance by the stream? A) B) C) D)

Which particle of quartz shows evidence of being transported the farthest distance by the stream? A) B) C) D) 1. Base your answer to the following question on the block diagram below, which represents the landscape features associated with a meandering stream. WX is the location of a cross section. Location A

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Deserts & Wind Action Physical Geology 15/e, Chapter 13 Deserts Desert any arid region that receives less than 25 cm of precipitation

More information

IIHR - Hydroscience & Engineering The University of Iowa Iowa City, Iowa

IIHR - Hydroscience & Engineering The University of Iowa Iowa City, Iowa The Effects of Agriculture Management Practices on Hydrologic Forcing at the Watershed Scale Under Various Hydrologic Conditions by Thanos Papanicolaou IIHR - Hydroscience & Engineering The University

More information

1. Introduction. 2. Study area. Arun Babu Elangovan 1+ and Ravichandran Seetharaman 2

1. Introduction. 2. Study area. Arun Babu Elangovan 1+ and Ravichandran Seetharaman 2 2011 International Conference on Environmental and Computer Science IPCBEE vol.19(2011) (2011) IACSIT Press, Singapore Estimating Rainfall Erosivity of the Revised Universal Soil Loss Equation from daily

More information

Investigation of soil erosion from bare steep slopes of the humid tropic Philippines

Investigation of soil erosion from bare steep slopes of the humid tropic Philippines Investigation of soil erosion from bare steep slopes of the humid tropic Philippines Author Prebitero, A., Rose, Calvin, Yu, Bofu, Ciesiolka, C., oughlan, K., Fentie, B. Published 2005 Journal Title Earth

More information

Pee Dee Explorer. Science Standards

Pee Dee Explorer. Science Standards Science Standards About Pee Dee Explorer What does it mean when someone says they are from the "Pee Dee" of South Carolina? A place is bigger than its physical geography. A "sense of place" weaves together

More information

What factors affect the angle of a slope?

What factors affect the angle of a slope? Climate Rock type and Structure What factors affect the angle of a slope? Aspect Fast mass movements Slides: Slides are movements along the SLIP PLANE, i.e. a line of weakness in the rock or soil structure.

More information

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land UNIT SEVEN: Earth s Water Chapter 21 Water and Solutions Chapter 22 Water Systems Chapter 23 How Water Shapes the Land Chapter Twenty-Three: How Water Shapes the Land 23.1 Weathering and Erosion 23.2

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

EROSION AND SEDIMENT TRANSPORT IN A PROPOSED REGIONAL SANITARY LANDFILL. Jorge Rivera Santos 1 * Godofredo Canino 2

EROSION AND SEDIMENT TRANSPORT IN A PROPOSED REGIONAL SANITARY LANDFILL. Jorge Rivera Santos 1 * Godofredo Canino 2 EROSION AND SEDIMENT TRANSPORT IN A PROPOSED REGIONAL SANITARY LANDFILL Jorge Rivera Santos 1 * Godofredo Canino 2 1 Puerto Rico Water Resources Research Institute School of Engineering P.O.Box 5000 Mayagüez,

More information

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Floodplain modeling Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Scientific Staff: Dr Carmen Maftei, Professor, Civil Engineering Dept. Dr Konstantinos

More information

Earth Science S5E1b (EarthScienceS5E1b)

Earth Science S5E1b (EarthScienceS5E1b) Name: Date: 1. The flattest part of the ocean floor is the A. trench. B. abyssal plain. C. continental shelf. D. mid-ocean rift valley. 2. Which causes some parts of the ocean to be saltier than other

More information

Surface Processes on the Earth. Rocks, Weathering, Erosion and Soil

Surface Processes on the Earth. Rocks, Weathering, Erosion and Soil Surface Processes on the Earth Rocks, Weathering, Erosion and Soil ROCKS AND ROCK CYCLE Rock types Three main types of rock Igneous Metamorphic Sedimentary Igneous Form when magma or lava cools and hardens

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SPECIAL ISSUE FOR NATIONAL LEVEL CONFERENCE "SUSTAINABLE TECHNOLOGIES IN CIVIL

More information

Watershed Application of WEPP and Geospatial Interfaces. Dennis C. Flanagan

Watershed Application of WEPP and Geospatial Interfaces. Dennis C. Flanagan Watershed Application of WEPP and Geospatial Interfaces Dennis C. Flanagan Research Agricultural Engineer USDA-Agricultural Research Service Adjunct Professor Purdue Univ., Dept. of Agric. & Biol. Eng.

More information

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Includes Physical, Chemical, Biological processes Weathering Mechanisms Physical

More information

Mass Wasting: The Work of Gravity

Mass Wasting: The Work of Gravity Chapter 15 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Mass Wasting: The Work of Gravity Tarbuck and Lutgens Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the

More information

What landforms make up Australia?!

What landforms make up Australia?! What landforms make up Australia? The tectonic forces of folding, faulting and volcanic activity have created many of Australia's major landforms. Other forces that work on the surface of Australia, and

More information

Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania

Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania GEORGE NARCIS PELEA, IOANA ALINA COSTESCU, ERIKA BEILICCI, TEODOR EUGEN MAN, ROBERT BEILICCI Faculty of Civil Engineering,

More information

Page 1. Name:

Page 1. Name: Name: 1) Which event is the best example of erosion? dissolving of rock particles on a limestone gravestone by acid rain breaking apart of shale as a result of water freezing in a crack rolling of a pebble

More information

Ch 10 Deposition Practice Questions

Ch 10 Deposition Practice Questions 1. Base your answer to the following question on the data table below. Six identical cylinders, A through F, were filled with equal volumes of sorted spherical particles. The data table shows the particle

More information

Chapter 23 test. Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1

Chapter 23 test. Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1 Chapter 23 test Multiple Choice Identify the choice that best completes the statement or answers the question. Figure 23-1 1. In Figure 23-1, what process does the arrow labeled A represent? a. transpiration

More information

The Impact of Management and Other Factors on the Size Distribution of Hillslope Eroded Sediment

The Impact of Management and Other Factors on the Size Distribution of Hillslope Eroded Sediment University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2009 The Impact of Management and Other Factors on the Size Distribution of Hillslope

More information

Lecture 7: Introduction to Soil Formation and Classification

Lecture 7: Introduction to Soil Formation and Classification Lecture 7: Introduction to Soil Formation and Classification Soil Texture and Color Analysis Lab Results Soil A: Topsoil from Prof. Catalano s backyard Soil B: Soil above beach at Castlewood State Park

More information

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments. Worksheet 3: Time of Concentration (Tc) or travel time (Tt) Project By Date Location Checked Date Check one: Present Developed Check one: Tc Tt through subarea Notes: Space for as many as two segments

More information

THE SCIENCE OF MAPS. ATL Skill: Critical thinking - Use models and simulations to explore complex systems and issues

THE SCIENCE OF MAPS. ATL Skill: Critical thinking - Use models and simulations to explore complex systems and issues THE SCIENCE OF MAPS 8.9C interpret topographic maps and satellite views to identify land and erosional features and predict how these features may be reshaped by weathering ATL Skill: Critical thinking

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Environmental Science Institute The University of Texas - Austin

Environmental Science Institute The University of Texas - Austin Environmental Science Institute The University of Texas - Austin Geologic Wonders of Central Texas Dr. Leon Long This file contains suggestions for how to incorporate the material from this CDROM into

More information

Weathering, Erosion & Soils Quiz

Weathering, Erosion & Soils Quiz Weathering, Erosion & Soils Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The diagram below shows a cross-section of a rock layer. Erosion is the

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

PREDICTING BACKGROUND AND RISK-BASED SEDIMENTATION FOR FOREST WATERSHED TMDLS

PREDICTING BACKGROUND AND RISK-BASED SEDIMENTATION FOR FOREST WATERSHED TMDLS This is not a peer-reviewed article. Watershed Management to Meet Water Quality Standards and TMDLS (Total Maximum Daily Load) Proceedings of the Fourth Conference 10-14 March 2007 (San Antonio, Texas

More information

Updating Slope Topography During Erosion Simulations with the Water Erosion Prediction Project

Updating Slope Topography During Erosion Simulations with the Water Erosion Prediction Project This paper was peer-reviewed for scientific content. Pages 882-887. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Journal of Spatial Hydrology Vol.11, No.1 Spring 2011

Journal of Spatial Hydrology Vol.11, No.1 Spring 2011 Journal of Spatial Hydrology Vol.11, No.1 Spring 2011 Abstract Assessment of Soil Loss Using WEPP Model and Geographical Information System A. Landi 1, A.R. Barzegar 1,*, J. Sayadi 1 and A. Khademalrasoul

More information

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2)

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2) Scientific registration n : Symposium n : 31 Presentation : poster Spatial patterns of soil redistribution and sediment delivery in hilly landscapes of the Loess Plateau Motifs spaciaux de zones d'érosion

More information

Subject Name: SOIL AND WATER CONSERVATION ENGINEERING 3(2+1) COURSE OUTLINE

Subject Name: SOIL AND WATER CONSERVATION ENGINEERING 3(2+1) COURSE OUTLINE Subject Name: SOIL AND WATER CONSERVATION ENGINEERING 3(2+1) COURSE OUTLINE (Name of Course Developer: Prof. Ashok Mishra, AgFE Department, IIT Kharagpur, Kharagpur 721 302) Module 1: Introduction and

More information

Chapter 5: Glaciers and Deserts

Chapter 5: Glaciers and Deserts I. Glaciers and Glaciation Chapter 5: Glaciers and Deserts A. A thick mass of ice that forms over land from the compaction and recrystallization of snow and shows evidence of past or present flow B. Types

More information

Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion

Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion WATER RESOURCES RESEARCH, VOL. 41,, doi:10.1029/2005wr003991, 2005 Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion Xuejun Shao, Hong Wang,

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement)

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement) Lesson 1 (Mass Movement) 7 th Grade Earth s Surface Chapter 3: Erosion and Deposition Weathering the chemical and physical processes that break down rock at Earth s surface Mechanical weathering when rock

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Water erosion begins when runoff from rainfall flows in a thin layer over the land

More information

CRITICAL CONDITIONS FOR RILL INITIATION

CRITICAL CONDITIONS FOR RILL INITIATION CRITICAL CONDITIONS FOR RILL INITIATION C. Yao, T. Lei, W. J. Elliot, D. K. McCool, J. Zhao, S. Chen ABSTRACT. Quantifying critical conditions of rill formation can be useful for a better understanding

More information

Earth Science Physical Setting Relationship Review Sketch all graphs in pencil. Density. Average Temperature. Gravitational Force.

Earth Science Physical Setting Relationship Review Sketch all graphs in pencil. Density. Average Temperature. Gravitational Force. except water Water For a uniform material For a uniform material Volume (cm3) 0 4 10 Volume (cm3) ( C) Altitude of Polaris Average Gradient 0 4 5 90 0 4 5 90 Distance Between Isolines Latitude ( N) Latitude

More information

Pratice Surface Processes Test

Pratice Surface Processes Test 1. The cross section below shows the movement of wind-driven sand particles that strike a partly exposed basalt cobble located at the surface of a windy desert. Which cross section best represents the

More information

River bank erosion risk potential with regards to soil erodibility

River bank erosion risk potential with regards to soil erodibility River Basin Management VII 289 River bank erosion risk potential with regards to soil erodibility Z. A. Roslan 1, Y. Naimah 1 & Z. A. Roseli 2 1 Infrastructure University, Kuala Lumpur, Malaysia 2 Humid

More information

SCIENCE CURRICULUM MAPPING

SCIENCE CURRICULUM MAPPING SCIENCE MAPPING UNIT: E Dates: From Sept. 5,2008 Grade: Third To Oct. 2, 2008 From: 9/5/08 To: 9/22/08 Properties of Matter What are Physical Properties of Matter? What are solids, liquids, and gases?

More information

Development of a Hillslope Erosion Module for the Object Modeling System

Development of a Hillslope Erosion Module for the Object Modeling System An ASAE Meeting Presentation Paper Number: 05-2012 Development of a Hillslope Erosion Module for the Object Modeling System Dennis C. Flanagan, Agricultural Engineer USDA-Agricultural Research Service,

More information

1. Erosion by Running Water Most powerful cause of erosion

1. Erosion by Running Water Most powerful cause of erosion I. Destructive Forces Notes: Destructive force: a process in which land is destroyed or changed such as weathering and erosion. All landforms are a result of a combination of constructive and destructive

More information

Kaskaskia Morphology Study Headwaters to Lake Shelbyville

Kaskaskia Morphology Study Headwaters to Lake Shelbyville Kaskaskia Morphology Study Headwaters to Lake Shelbyville KWA Mini Summit 5 March 2012 1 Kaskaskia Morphology Study Headwaters to Lake Shelbyville Conducted by U.S. Army Corps of Engineers, St. Louis District

More information

Watch the next few slides. When the slides stop transitioning get with an elbow partner to discuss the events that caused the formation of the

Watch the next few slides. When the slides stop transitioning get with an elbow partner to discuss the events that caused the formation of the Watch the next few slides. When the slides stop transitioning get with an elbow partner to discuss the events that caused the formation of the beautiful features. Be as specific as possible. Discuss

More information

E1212 Vol. 3 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

E1212 Vol. 3 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized EU Tacis: Joint Environment Programme 11 FOREST PROTECTION AND REFORESTATION PROJECT,

More information

312/1 GEOGRAPHY PAPER 1 EMBU NORTH EVALUATION EXAM JULY /AUGUST 2018 TIME: 2HRS 45 MIN INSTRUCTIONS

312/1 GEOGRAPHY PAPER 1 EMBU NORTH EVALUATION EXAM JULY /AUGUST 2018 TIME: 2HRS 45 MIN INSTRUCTIONS 312/1 GEOGRAPHY PAPER 1 EMBU NORTH EVALUATION EXAM JULY /AUGUST 2018 TIME: 2HRS 45 MIN INSTRUCTIONS 1. Answer all questions in section A 2. In section B answer question 6 and any other two questions. 3.

More information

VOLUME 2 WATER MANAGEMENT CURRICULA USING ECOHYDROLOGY AND INTEGRATED WATER RESOURCES MANAGEMENT. Erosion and its Effect

VOLUME 2 WATER MANAGEMENT CURRICULA USING ECOHYDROLOGY AND INTEGRATED WATER RESOURCES MANAGEMENT. Erosion and its Effect Regional Workshop: Pathway Towards Improved Water Education Curricula 27-28 November 2017 Penang, Malaysia VOLUME 2 WATER MANAGEMENT CURRICULA USING ECOHYDROLOGY AND INTEGRATED WATER RESOURCES MANAGEMENT

More information

Module 4: Overview of the Fundamentals of Runoff and Erosion

Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4a Goal Once we can better understand the forces which cause erosion and runoff, only then can we begin to minimize the negative results.

More information

Regionalization Methods for Watershed Management - Hydrology and Soil Erosion from Point to Regional Scales

Regionalization Methods for Watershed Management - Hydrology and Soil Erosion from Point to Regional Scales This paper was peer-reviewed for scientific content. Pages 1062-1067. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Earth Science Physical Setting Relationship Review Sketch all graphs in pencil For a uniform material. Density. Average Temperature

Earth Science Physical Setting Relationship Review Sketch all graphs in pencil For a uniform material. Density. Average Temperature except water Water For a uniform material Volume For a uniform material Volume (cm3) 0 4 10 Volume (cm3) ( C) 0 4 5 90 0 4 5 90 Distance Between Isolines Latitude ( N) Latitude ( N) Number of Isolines

More information