Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion

Size: px
Start display at page:

Download "Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion"

Transcription

1 WATER RESOURCES RESEARCH, VOL. 41,, doi: /2005wr003991, 2005 Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion Xuejun Shao, Hong Wang, and Huiwu Hu Department of Hydraulic Engineering, Tsinghua University, Beijing, China Received 26 January 2005; revised 29 August 2005; accepted 22 September 2005; published 1 December [1] Critical conditions for rill erosion are determined through laboratory experiments and one-dimensional numerical simulations. Relationships between rill flow characteristics and slope angle q or plot size are studied both experimentally and numerically for realistic rainfall intensities. The experimental results show that maximum rill flow velocities occur within a specific range of slope angles, q =30 40, which is independent of plot size and degree of overland flow concentration. For a given plot size and rainfall intensity the threshold slope angle for rill erosion depends on a number of factors, including soil erodibility, the degree of overland flow concentration, and the effect of gravity on soil erosion. The effect of plot size on the stable rill width generated by rill erosion is also discussed along with its implications for soil loss predictions. Citation: Shao, X., H. Wang, and H. Hu (2005), Experimental and modeling approach to the study of the critical slope for the initiation of rill flow erosion, Water Resour. Res., 41,, doi: /2005wr Introduction [2] Concentrated flows on hillslopes lead to the initiation and development of rills when flow shear exceeds the critical threshold, and are responsible for the transportation of eroded soil particles through a system of rills and gullies from runoff contributing areas where soil particles are detached by raindrop splash and Hortonian overland flow. [3] Rill erosion is an important component of processbased soil erosion models. Previous research has focused on the critical conditions for rill initiation and development and on their dependence on slope, soil erodibility [Bennett, 1999; Bryan, 2000] and plot length [Watson and Laflen, 1986; Fox and Bryan, 1999]. The hydrodynamic characteristics of rill flow have been studied experimentally during the last few decades [e.g., Yoon and Wenzel, 1971; Shen and Li, 1973; Abrahams et al., 1986; Abrahams and Parsons, 1991; Nearing et al., 1997; Bryan and Rockwell, 1998]. [4] The critical shear stress, t c, required for particle entrainment, has been widely used as a key indicator of soil erodibility and of soil shear strength. Studies on loessderived soils have shown that there is a minimum shear stress required for gully development [Ciampalini and Torri, 1998; Nachtergaele et al., 2002]. Further investigations are needed to identify and define relationships between the critical shear stress of overland flow erosion and key factors related to plot configurations, such as its length, width and slope angle, for realistic plot configurations and storm events. [5] Rills in the laboratory exhibit alternating regions of deposition and detachment for the steady state, uniform initial slope case that were affected by small-scale random variations in the initial conditions of the rill [Lei et al., 1997]. A deterministic model that is not able to capture such natural variability tends to overpredict soil erosion for small measured values, and under predict soil erosion for large Copyright 2005 by the American Geophysical Union /05/2005WR measured values [Nearing, 1998, 2000; Nearing et al., 1999; Gomez et al., 2001]. [6] The transition through various erosion forms represents a continuum as scales increase [Poesen et al., 2003]. A number of approaches to problems of upscaling have been developed in the context of climate and soil erosion [Kirkby et al., 1996; Kirkby, 1999], and both empirical and physically based models have been applied at quite different scales [Amore et al., 2004]. One important issue is to assess to what extent process identification and parameterization carried at one scale can be extrapolated to a different scale [Cerdan et al., 2004]. It has been shown that the homogeneous sediment transport equations reflect only responses at low or medium rainfall intensities, as experimental evidence showed significant departure from the general trend in cases of steep slopes and high rainfall intensities [Mathier and Roy, 1996]. [7] This paper presents the results of laboratory experiments and numerical simulations of rill flows, and investigates relationships between hydraulic factors (flow velocities or critical shear stresses) and plot configurations (e.g., plot length, slope angle, rill width). 2. Experimental Results [8] Both flumes and soil plots are generally used in experimental studies on rill erosion [e.g., Bennett, 1999; Bryan, 2000]. Typical plot layouts are shown in Figures 1a and 1b. Plots with constant horizontally projected area (Figure 1a) always receive the same amount of total rainfall regardless of slope gradient, resulting in constant total runoff from the plots for the same rainfall intensity, if their surfaces are impermeable. In contrast, on plots with constant slope length L (Figure 1b), the total amount of rainfall received can vary significantly as slope angle changes (Figure 2). [9] In this experimental study, a ridged plot (Figure 1c) was used, with an impermeable rigid surface made of Plexiglas. Cloth patches were used to adjust the roughness 1of11

2 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 1. Ridged plot configuration and two types of rainfall simulation plot layout. (a) Constant horizontally projected area, (b) constant slope length, and (c) ridged plot. of the plot surface. This plot is a laboratory version of Wooding 0 s open-book catchment schematization [Wooding, 1965], which is frequently used in numerical simulations. The plot has a fixed slope length of L = 1.5 m, plot width B = 1.0 m and two rill widths b = 0.05 and 0.1 m. During the test runs, the slope angle q varied from 15 to 65 to generate different total runoff. The extreme steep slope angles are required for the completeness of this experimental study. For this plot configuration the overland flow characteristics were found to be quite sensitive to variation of slope angle, and the measured rill flow velocities can be used as an ideal database to verify the numerical model and to test its capability for predicting the effects of slope angle on rill flow hydrodynamics. [10] All the experimental runs were conducted in a recirculating system, which had a rainfall module 1.8m above ground level, with a total of 1341 capillary openings at the bottom of an open tank to produce rainfall with steady, uniform intensity (Figure 3). Raindrops from these capillary openings had diameters of approximately 3 mm. Under the rainfall module a ridged plot shown in Figure 1c was installed, and its slope angle was adjustable by an interval of 2. A reservoir underneath the plot collected runoff and raindrops falling outside the plot. A pump supplied water from the reservoir to the rainfall module. [11] The spacings of capillary openings on the rainfall module bottom were 0.1 m in the transverse direction and 0.01 m in the longitudinal direction (i.e., parallel to rill flow). The amount of rainfall collected on the plot would change following adjustments of slope gradient by a step of 2. Water levels in the rainfall module were kept constant by regulating the weir height at the free falls, to achieve different intensities of steady rainfall. Rill flow velocities were measured using a video camera installed at the toe of the plot, which recorded tracer (dye) movement at the end of the rill from a fixed viewpoint, with a speed of 24 frames per second. The velocity was measured from the leading edge of the dye cloud. [12] The experimental setup is a simplification of the field situation because changes in bed roughness associated with sediment transport [e.g., Gimenez and Govers, 2001] are neglected. In this study, the plot surface had a fixed 2of11 roughness, and all the variations of roughness coefficient for the sheet and rill flows were caused mainly by the transition from laminar to turbulent flow conditions. In each test run, the rainfall simulator was adjusted to generate a steady rainfall intensity to produce steady rill flow on the model plot. The steady runoff discharge, Q, at the plot outlet was then measured by collecting the total runoff within a given time interval. The net rainfall intensity was then calculated on the basis of the measured values of runoff and the slope-dependent projection of the plot area on a horizontal plane. [13] As shown in Figure 4 and Table 1, in this study, the maximum velocities, U max, were found to occur within a specific range of slope angles, i.e., q = This is because slope angles within this range are large enough to create sufficient gravitational acceleration for water flow, and at the same time small enough for the plot to have relatively large projection areas that collect sufficient net rainfall. Figure 2. Variation of total runoff (Q) with the slope angle (q) on a test plot with constant slope length (simulated plot size is 6 m 1.5 m; net rainfall intensity is 1.5 mm/min).

3 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 3. Sketch of the setup for rainfall and rill flow simulation on a 1.5 m 1 m plot. 1, ridged plot; 2, rainfall module; 3, pump; 4, reservoir; 5, video camera. p[14] ffiffiffiffiffiffiffiffiffiin this p ffiffiffiffiffiffiffiffi study, the rill flow shear velocities, u * = t 0 =r = ghj, were found out based on estimated flow depth, h = Q/b/U. The hydraulic slope is defined as J =sinq. Experimental data shown in Figures 4 and 5 were used to test the numerical model calculations. 3. One-Dimensional Mathematical Model for Rill Flow [15] In process-based models of overland flow and soil erosion, hillslope runoff processes are often represented either as broad sheet flows or as rill flows with rectangular cross sections. The hydraulic characteristics of overland flow are usually calculated using the kinematic wave simplification [Kirkby 1990; National Soil Erosion Research Laboratory, 1995] of the dynamic wave model. Baird et al. [1992] considered rilled or gullied topography by using a flow strip concept in which the complex hillslope surface was represented by a series of profile depths of unit width which operate independently of their neighbors. Tayfur and Kavvas [1994] employed an openbook-type schematization of rill topography on a hillslope, and studied both 1-D rill flow and 2-D interrill area overland flows by using the kinematic wave approximation. In this paper the full dynamic wave model is used for rill flow velocity and depth calculations, because it accurately represents the unsteady, nonuniform nature of overland flows and can provide more detailed and reliable results of the hydrodynamic characteristics required in the estimation of potential for overland flow erosion Dynamic Wave Model [16] We assume that all rills are straight and parallel to each other with relatively small spacing, and that the interrill drainage areas, represented by regular shaped strips, are tilted from the divide toward the rill, as shown Figure 4. Observed relationship between normalized rill flow velocity (U/U max ) and slope angle, q, for different rainfall rates, r, and b/b ratios. U max is the maximum rill flow velocity for the same values of r, b/b, and slope angle. 3of11

4 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Table 1. Observed Rill Flow Velocity for Various Rainfall Intensity and Slope Angles Net Rainfall Intensity r, mm/min Relative Rill Width b/b Rill Flow Velocity U for Various Slope Angles q, m/s in Figure 1c. The lateral flow discharge into a rill is considered as a linear source of uniform inflow (Figure 6), perpendicular to the rill flow direction. The numerical model is one-dimensional. The hydrodynamic characteristics are calculated for only one rill. [17] The continuity equation of the dynamic wave model dt dx ¼ r cos q N and the momentum Q 2 þ Q2 C 2 A 2 R in which x is distance from the top of the plot, r is net rainfall intensity (i.e., total rainfall intensity less infiltration rate), A is area of the wetted cross section, N is number of rills per unit width of the plot, Z is the surface elevation of rill flow as shown in Figure 6, and C is Chezy coefficient. The uniform inflow into the rill due to rainfall on interrill area is treated as a linear source term involving r in the derivation of equation (2), which can be cancelled out with other terms if the continuity equation (equation (1)) is ð1þ ð2þ introduced in the derivation, resulting in the conventional form of the Saint-Venant equation. In this system of equations the net rainfall intensity is the driving variable, and the effects of the infiltration process and the impact of raindrop are not included in the momentum equation of rill flow. This assumption is acceptable if overland flow becomes concentrated and rill flow momentum becomes dominant. [18] Figure 7 shows an overall acceptable agreement between model simulations and the experimental results (Table 1) for the cases of rainfall intensity, r, of 4.5 mm/min and 5.1 mm/min, and b/b = 0.05 (see Figure 1 for a definition of b and B). Such hypothetical net rainfall intensities were used in this study to achieve better accuracy in experimental measurements and numerical calculations Stable Rill Width [19] Assuming that rill initiation is simultaneous to particle entrainment, the threshold for rill initiation can be expressed as the critical average flow velocity, U c,for soil detachment using for example Hjulstrom s curve [Hjulstrom, 1935; Vanoni, 1975, Figure 2.46]. In this study stable rill widths are determined through a trialand-error method calculating the widths associated with overland flow velocities matching the critical velocity for Figure 5. Observed relationship between shear velocity, u *, and slope angle, q, at the toe of a 1.5 m 1 m ridged plot. 4of11

5 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 6. A schematic representation of the onedimensional rill flow. particle entrainment. This procedure was repeated for a number of combinations of net rainfall intensity, slope angle, critical flow velocity of soil detachment and fixed slope length. Such stable widths can be regarded as the maximum dimension at the final stage of rill development during a storm event of steady rainfall intensity, since flows in rills with widths larger than the stable one will have an average flow velocity below the critical value, resulting in siltation of rills or gullies and reduction in their cross-sectional area, most probably through the decrease of rill width. Therefore this is a transport-limited erosion process. [20] Relationships between stable rill width and q are established for various U c values and plot sizes (Figures 8 and 9), by assuming that the values of U c are independent of slope angle and the system of concentrated overland flows on the hillslope plot will finally integrate into one dominant rill or gully at the toe of the slope, through the processes of cross grading and micropiracy. It should be noted that the largest stable widths are always achieved within a range of q =30 40 regardless of the plot size and the value of U c, which is consistent with the rill flow velocity calculations. Calculated stable widths of rills are very sensitive to the magnitude of U c, which is affected by a number of factors including soil types, farming practices or environmental conditions. A nonlinear increase of stable width b in response to the reduction of U c is implied by the b-q relationships shown in Figures 8 and 9. [21] Stable rill widths become almost independent of slope angle q after U c exceeds a certain magnitude, and such widths are obviously related to the size of the plot. In addition, on a plot with fixed length L, larger slope angles result in smaller stable rill widths if U c remains a constant value, due to the decrease of runoff as q increases. [22] The variation of the plot size can also result in nonlinear changes in stable rill widths. For instance, a maximum width of b = 0.13 m is formed on a 6 m 1.5 m plot for U c = 0.4 m/s (Figure 8), but on an 80 m 20 m plot it becomes b = 18 m for the same U c (Figure 9), i.e., theoretically, the rill at the toe will be about 140 times wider on a plot about 13 times longer, for the same type of soil. Since the lateral dimensions may be viewed as an indication of the amount of soil erosion occurring due to flow shear within rills or gullies with fixed length, the above result implies that rill erosion in the Figure 7. Observed and calculated rill flow velocities, U, in the 1.5 m 1.0 m plot as a function of the slope angle, q. 5of11

6 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 8. Calculated stable rill width, b, as a function of the slope angle, q, for various values of entrainment velocity, U c (simulated plot size is 6 m 1.5 m; net rainfall intensity is 1.5 mm/min). form of a rill-gully continuum could generate a total soil loss much larger than the summation of those from many shorter and separate rills with the same total length Threshold Slope Angle for Rill Initiation: Constant u * c [23] Basic detachment processes in rill erosion include channel scour, headcutting, slaking, and sidewall sloughing. Process-based erosion models often use critical flow shear, t c, as the primary parameter. The detachment rate is assumed as zero below this value. Even though it is still unclear how its value should be estimated [e.g., Zhu et al., 2001], the critical shear stress is widely used as a key indicator of soil erodibility. Studies on loess-derived soils have shown that the minimum shear stress required for gully development is about t c =5Pa[Ciampalini and Torri, 1998; Nachtergaele et al., 2002], which corresponds to a critical shear velocity of u * c = 0.07 m/s. In this study two extreme cases are considered for the critical shear velocity u * c, i.e., a constant u * c value independent of slope angles (cohesive soil or negligible gravitational effects), and a nonconstant u * c whose value varies with slope angle q (noncohesive soil or strong gravitational effects). [24] Rill flow shear velocities were calculated with b/b = 0.05, r = 2.0 mm/min, and various slope angles. Figure 10 shows the distance required for flow shear to achieve the critical value (u * c = 0.07 m/s) for various slope angles. It is obvious that to achieve the same shear velocity of rill flow, a larger value of x is required if slope angle q is smaller, and vice versa, as identified by Horton [1945]. Shear velocity becomes less dependant on q for very large values of q, i.e., the same increment of Dq will causes a much fast increase in u * for smaller q values (gentler slope) than for larger ones. The same is true for the u * x relationships. Figure 9. Calculated stable rill width, b, as a function of the slope angle, q, for various values of entrainment velocity, U c (simulated plot size is 80 m 20 m; net rainfall intensity is 1.5 mm/min). 6of11

7 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION and 13), which show that for higher degrees of flow concentration, smaller slope angles are needed for the flow shear stresses to exceed the critical value. [27] For overland flows with more than one rill on the plot the results of Figures 12 and 13 may still be used to indicate an average magnitude of u * in the rills for any value of (1 b/b), except that b should be replaced by Sb. A turning point at (1 b/b) = 0.85 can be identified in the u * (1 b/b) relationships of Figure 13, after which u * increases much faster with (1 b/b). Figure 10. Relationship between the shear velocity, u *, and the slope angle, q, ona6m 3 m plot for b/b = 0.05 and r = 2.0 mm/min; x is distance from top of the plot. [25] Figure 11 shows shear velocities at the toe of the 6m 3 m ridged plot calculated for r = 2 mm/min and various values of b/b, which have a similar trend as measured data (Figure 5). Assuming a constant critical shear velocity of u * c = 0.07 m/s (the thick solid line in Figure 11), the critical slope for rill erosion in existing rills (that is, given values of b/b) can be determined in Figure 11 as intersection points with the line u * c = For instance, rill erosion is found to begin at the toe of the 6 m 3m plot when the slope angle is 3 or above, for the relative rill width of b/b = However, for b/b = 0.17, such erosion will not start until the slope angle becomes greater than 10. [26] In this study, the value of (1 b/b) is used to represent the degree of sheet flow concentration on a plot. The condition of b = B indicates no concentrated flow, and b B indicates a very high degree of flow concentration. Therefore the value of (1 b/b) = 0.17 for a 6 m 3m plot indicates a low degree of overland flow concentration, with a rill width of b = 2.5 m and the overland flow spreading over 83% of the plot width. This can be viewed as an ideal sheet flow. In such a way the calculated results are interpreted as u * (1 b/b) relationships (Figures Threshold Slope Angle for Rill Initiation: Nonconstant u * c [28] In addition to rill flow shear stresses, the component of particle gravity down the slope is another major cause of the incipient motion of soil particles, if the soil type is noncohesive or the gravitational effects are nonnegligible. The factor of gravitational action can be taken into account by modifying the expression for t c to let it depend on q [Brooks, 1963]. Starting from a more general case [Vanoni, 1975, equation 2.126], the following relationship can be obtained if the flow direction is parallel to the weight component down the slope, such as in the case of rill flows, t c ¼ cos q sin q t c0 tan f where t c0 is the critical shear stress for particles on a horizontal surface, f is the repose angle. In this study, equation (3) is used to calculate the critical shear velocity u * c for various slope angles, with the value of f being 31. The repose angle, f, may also be viewed as a general parameter of soil erodibility accounting for the effect of gravity on soil particle entrainment (e.g., due to slope failure or to soil detachment caused by the collapse of the walls of a rill or a gully). The value of f represents a threshold of slope angle above which other factors such as gravitational effects dominate soil detachment and turn rill erosion into a transport limited process. The rill will be widened to its stable width faster than in the case of a constant u * c since gravitational effects will accelerate the process. ð3þ Figure 11. Relationship between the shear velocity, u *, and the slope angle, q,atthetoeofa6m3m ridged plot for r = 2.0 mm/min and various values of b/b. 7of11

8 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 12. Relationship between the shear velocity, u *, and the slope angle, q,atthetoeofa6m 3m ridged plot for r = 2.0 mm/min and various values of (1 b/b). [29] The critical slope angles, q c, for overland flow erosion initiation at the toe of the plot, are determined by the intersection points of the calculated u * q curves with the u * c q relationship given by equation (3) (Figure 14). The critical slope angles found in this way vary greatly depending on the value of b/b. Compared with Figure 12, in which no other effects are considered except the rill flow shear stresses, Figure 14 shows a significant reduction in q c. Because equation (3) accounts for more realistic factors such as noncohesive soils and the effect of gravity on erosion, it predicts a higher erosion potential. According to equation (3), for a sheet flow with (1 b/b) = 0.03 (i.e., overland flow covers 97% of the plot width) the critical value of shear velocity at the toe of the plot is achieved at q c = 15. If the overland flows are more concentrated, the critical slope will be much smaller, for instance q c =3 for (1 b/b) = 0.97, which corresponds to a rill width of 0.1 m on this plot. [30] The results are summarized in Figure 15: curves A and B represent values of q c estimated with constant and nonconstant values of u * c, respectively. All soil types exhibit a nonerosion zone even when gravitational effects are taken into account. In the transition zone erosion occurs only for high soil erodibility or strong gravitational effects. The third zone predicts rill flow erosion for cohesive soils even without considering the gravitational effects. Curve A provides a more realistic prediction, in that it accounts for factors commonly encountered in field situations. On the basis of predictions of curve A, for a 6 m 3 m plot with ideal sheet flow, erosion will not occur at the toe of the slope for slope angles up to 15 if the net rainfall intensity remains a steady 2.0 mm/min. It should be noted that the Figure 13. Relationship between the shear velocity, u *, and the degree of flow concentration, (1 b/b), at the toe of a 6 m 3 m ridged plot. 8of11

9 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Figure 14. ridged plot. Relationship between the shear velocity, u *, and slope angle, q, atthetoeofa6m 3m theoretical predictions suggest that the initiation of rill erosion depends strongly on the degree of flow concentration on the plot in question, and the differences in soil types or erosion agents are not important after rills or gullies are formed and overland flows become concentrated. For instance, it can be seen in Figure 15 that for a highly concentrated flow, i.e., (1 b/b) > 0.8, the value of q c is almost identical regardless of soil conditions or gravitational effects, but for (1 b/b) < 0.1 the respective value of q c differs from each other by a factor of up to 200%. Such results may help to find the reason why small-scale random variations in the initial conditions of the rill can lead to variations in erosion that a deterministic model is not able to capture [Nearing, 1998, 2000; Nearing et al., 1999]. 4. Concluding Remarks [31] Threshold conditions for rill erosion on ridged plots with fixed length are studied on the basis of both rainfall simulation experiments and numerical calculations Figure 15. Relationship between the degree of flow concentration, (1 b/b), and critical slope angle, q c,atthetoeofa6m 3 m plot for a net rainfall intensity of 2.0 mm/min. 9of11

10 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION with a one-dimensional mathematical rill flow model. Experimental observations and calculated results are summarized as follows. [32] 1. By using a Hjulstrom-type critical velocity for particle entrainment, U c, stable rill widths are determined through a trial-and-error method calculating the widths associated with overland flow velocities matching the critical velocity for particle entrainment. The maximum widths occur within a range of q = 30 40, consistent with that for the maximum values of U. [33] 2. Calculations show that the effects of plot sizes are significant, e.g., the calculated rill width is about 140 times wider on a plot about 13 times longer. Such results suggest that, the total amount of rill or gully erosion from a series of shorter and nonconnected rills can be much smaller than that from a rill-gully continuum with the same total length as that of the shorter rills put together, provided that the lateral dimension of rills and gullies with fixed lengths can be regarded as an indication of the total amount of rill flow erosion occurred. [34] 3. Factors affecting the erosion processes, particularly the gravitational effects, can be accounted for in this numerical model by using a nonconstant critical shear stress for particle entrainment depending both on repose angle, f, and on the slope angle, q. The model indicates that the threshold of rill erosion depends closely on the degree of flow concentration, while differences between values of u *c are not important after rills or gullies are formed and overland flows become concentrated. Notation A area of the wetted cross section, m 2. B plot width, m. b rill widths, m. C Chezy coefficient, m 1/2 /s. g gravitational acceleration, m/s 2. h rill flow depth, m. J hydraulic slope of rill flow, J =sinq. L slope length, m. N number of rills per unit width of the plot. Q rill flow discharge, m 3 /s. r net rainfall intensity, mm/min. t time, s. U rill flow velocity, m/s. U c critical rill flow velocity, m/s. U max maximum rill flow velocity, m/s. u * shear velocity of rill flows, m/s. u * c critical shear velocity of rill flows, m/s. x distance from the top of the plot, m. Z water surface elevation of rill flows, m. q slope angle, degrees. q c critical slope angles, degrees. r density of water, kg/m 3. t 0 boundary shear stress of rill flows, N/m 2. t c critical shear stress for rill erosion, N/m 2. t c0 critical shear stress for particles on a horizontal surface, N/m 2. f repose angle, degrees. [35] Acknowledgments. Partial financial support of the work presented in this paper from the National Natural Science Foundation of China (grant ), the NSFC Science Fund for Creative Research Groups (grant ), and China s National Key Basic Research and Development Program for its support for this project (grant 2003CB415206) are gratefully acknowledged. The authors are greatly indebted to the three anonymous reviewers for their comments and discussions, which made this paper publishable. References Abrahams, A. D., and A. J. Parsons (1991), Resistance to overland flow on desert pavement and its implications for sediment transport modeling, Water Resour. Res., 27(8), Abrahams, A. D., A. J. Parsons, and S.-H. Luk (1986), Resistance to overland flow on desert hillslopes, J. Hydrol., 88, Amore, E., C. Modica, M. A. Nearing, and V. C. Santoro (2004), Scale effects in USLE and WEPP application for soil erosion computation from three Sicilian basins, J. Hydrol., 293(1 4), Baird, A. J., J. B. Thornes, and G. P. Watts (1992), Extending overland-flow models to problems of slope evolution and the presentation of complex slope-surface topographies, in Overland Flow: Hydraulics and Erosion Mechanics, edited by A. J. Parsons and A. D. Abrahams, pp , UCL Press, London. Bennett, S. J. (1999), Effect of slope on the growth and migration of headcuts in rills, Geomorphology, 30(3), Brooks, H. H. (1963), Discussion of Boundary shear stresses in curved trapezoidal channels by A. T. Ippen and P. A. Drinker, J. Hydraul. Div. Am. Soc. Civ. Eng., 89(HY3), Bryan, R. B. (2000), Soil erodibility and processes of water erosion on hillslope, Geomorphology, 32(3 4), Bryan, R. B., and D. L. Rockwell (1998), Water table control on rill initiation and implications for erosional, Geomorphology, 23(2 4), Cerdan, O., Y. L. Bissonnais, G. Goves, V. Lecomte, K. van Oost, A. Couturier, C. King, and N. Dubreuil (2004), Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy, J. Hydrol., 299(1 2), Ciampalini, R., and D. Torri (1998), Detachment of soil particles by shallow flow: Sampling methodology and observations, Catena, 32(1), Fox, D. M., and R. B. Bryan (1999), The relationship of soil loss by interrill erosion to slope gradient, Catena, 38(3), Gimenez, R., and G. Govers (2001), Interaction between bed roughness and flow hydraulics in eroding rills, Water Resour. Res., 37(3), Gomez, J. A., M. A. Nearing, J. V. Giraldez, and E. E. Alberts (2001), Analysis of sources of variability of runoff volume in a 40 plot experiment using a numerical model, J. Hydrol., 248(1 4), Hjulstrom, F. (1935), Studies of the morphological activity of rivers as illustrated by the River Fyris, Bull. Geol. Inst. Univ. Uppsala, 25(3), Horton, R. E. (1945), Erosional development of streams and their drainage basins: Hydrological approach to quantitative morphology, Bull. Geol. Soc. Am., 88, Kirkby, M. J. (1990), A simulation model for desert runoff and erosion, in Erosion, Transport and Deposition Processes, IAHS Publ., 189, Kirkby, M. J. (1999), Landscape modeling at regional to continental scales, in Process Modeling and Landform Evolution, Lecture Notes Earth Sci. Ser., vol. 78, edited by S. Hergarten and H. J. Neugebauer, pp , Springer, New York. Kirkby, M. J., A. C. Imeson, G. Bergkamp, and L. H. Cammeraat (1996), Scaling up processes and models from the field plot to the watershed and regional areas, J. Soil Water Conserv., 51(5), Lei, T., M. A. Nearing, and K. Haghighi (1997), A model of soil erosion in a rill: Temporal simulation, ASAE Pap , Am. Soc. Agric. Eng., St. Joseph, Mich. Mathier, L., and A. G. Roy (1996), A study on the effect of spatial scale on the parameters of a sediment transport equation for sheetwash, Catena, 26(3 4), Nachtergaele, J., J. Poesen, D. Oostwoud Wijdenes, and L. Vandekerckhove (2002), Medium-term evolution of a gully developed in a loess-derived soil, Geomorphology, 46(3 4), National Soil Erosion Research Laboratory (1995), USDA Water Erosion Prediction Project: technical documentation, Rep. 10, Agric. Res. Serv., U.S. Dep. of Agric., West Lafayette, Indiana. Nearing, M. A. (1998), Why soil erosion models over-predict small soil losses and under-predict large soil losses, Catena, 32(1), Nearing, M. A. (2000), Evaluating soil erosion models using measured plot data: Accounting for variability in the data, Earth Surf. Processes Landforms, 25(9), of 11

11 SHAO ET AL.: CRITICAL SLOPE FOR RILL FLOW EROSION Nearing, M. A., L. D. Norton, D. A. Bulgakov, G. A. Larionov, L. T. West, and K. M. Dontsova (1997), Hydraulics and erosion in eroding rills, Water Resour. Res., 33(4), Nearing, M. A., G. Govers, and L. D. Norton (1999), Variability in soil erosion data from replicated plots, Soil Sci. Soc. Am. J., 63(6), Poesen, J., J. Nachtergaelea, G. Verstraetena, and C. Valentin (2003), Gully erosion and environmental change: Importance and research needs, Catena, 50(2 4), Shen, H. W., and R.-M. Li (1973), Rainfall effect on sheet flow over smooth surface, J. Hydraul. Div. Am. Soc. Civ. Eng., 99(HY5), Tayfur, G., and M. L. Kavvas (1994), Spatially averaged conservation equations for interacting rill-interrill area overland flows, J. Hydraul. Eng., 120(12), Vanoni, V. A. (Ed.) (1975), Sedimentation Engineering, ASCETask Comm., Reston, Va. Watson, D. A., and J. M. Laflen (1986), Soil strength, slope, and rainfall intensity effects on interrill erosion, Trans. ASAE, 29(1), Wooding, R. A. (1965), A hydraulic model for the catchment stream problem, I. Kinematic wave theory, J. Hydrol., 3(3/4), Yoon, Y. N., and H. G. Wenzel (1971), Mechanics of sheet flow under simulated rainfall, J. Hydraul. Div. Am. Soc. Civ. Eng., 97(HY9), Zhu, J. C., C. J. Gantzer, S. H. Anderson, R. L. Peyton, and E. E. Alberts (2001), Comparison of concentrated-flow detachment equations for low shear stress, Soil Tillage Res., 61, H. Hu, X. Shao, and H. Wang, Department of Hydraulic Engineering, Tsinghua University, Beijing , China. (shaoxj@mail.tsinghua. edu.cn) 11 of 11

HYDRAULIC MODELING OF SOIL ERORION

HYDRAULIC MODELING OF SOIL ERORION 18-21 August 28, Daejeon, Korea HYDRAULIC MODELING OF SOIL ERORION Liu Qing-quan Institute of Mechanics, Chinese Academy of Sciences, Beijing 18, China. Email: qqliu@imech.ac.cn ABSTRACT: The prediction

More information

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China**

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China** This paper was peer-reviewed for scientific content. Pages 732-736. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Rill Hydraulics - An Experimental Study on Gully Basin in Lateritic Upland of Paschim Medinipur, West Bengal, India

Rill Hydraulics - An Experimental Study on Gully Basin in Lateritic Upland of Paschim Medinipur, West Bengal, India Journal of Geography and Geology; Vol. 4, No. 4; 2012 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Rill Hydraulics - An Experimental Study on Gully Basin in Lateritic

More information

Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and

Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and Conservation Planning evaluate land management alternatives to reduce soil erosion to acceptable levels. Resource Inventories estimate current and projected erosion levels and their impact on natural resource

More information

CRITICAL CONDITIONS FOR RILL INITIATION

CRITICAL CONDITIONS FOR RILL INITIATION CRITICAL CONDITIONS FOR RILL INITIATION C. Yao, T. Lei, W. J. Elliot, D. K. McCool, J. Zhao, S. Chen ABSTRACT. Quantifying critical conditions of rill formation can be useful for a better understanding

More information

Darcy-Weisbach Roughness Coefficients for Gravel and Cobble Surfaces

Darcy-Weisbach Roughness Coefficients for Gravel and Cobble Surfaces University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering: Papers and Publications Biological Systems Engineering 2-1992 Darcy-Weisbach Roughness Coefficients

More information

Towards a dynamic model of gully growth

Towards a dynamic model of gully growth Erosion, Transport and Deposition Processes (Proceedings of the Jerusalem Workshop, March-April 1987). IAHS Publ. no. 189,1990. Towards a dynamic model of gully growth INTRODUCTION ANNE C KEMP née MARCHINGTON

More information

Gully erosion in winter crops: a case study from Bragança area, NE Portugal

Gully erosion in winter crops: a case study from Bragança area, NE Portugal Gully erosion in winter crops: a case study from Bragança area, NE Portugal T. de Figueiredo Instituto Politécnico de Bragança (IPB/ESAB), CIMO Mountain Research Centre, Bragança, Portugal Foreword This

More information

The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension

The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1393 1407 (2009) Copyright 2009 John Wiley & Sons, Ltd. Published online 16 June 2009 in Wiley InterScience (www.interscience.wiley.com).1828

More information

Green-Ampt infiltration model for sloping surfaces

Green-Ampt infiltration model for sloping surfaces WATER RESOURCES RESEARCH, VOL. 42,, doi:10.1029/2005wr004468, 2006 Green-Ampt infiltration model for sloping surfaces Li Chen 1 and Michael H. Young 1 Received 27 July 2005; revised 31 March 2006; accepted

More information

Slope velocity equilibrium and evolution of surface roughness on a stony hillslope

Slope velocity equilibrium and evolution of surface roughness on a stony hillslope Hydrol. Earth Syst. Sci., 21, 3221 3229, 2017 https://doi.org/10.5194/hess-21-3221-2017 Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Slope velocity equilibrium

More information

A rational method for estimating erodibility and critical shear stress of an eroding rill

A rational method for estimating erodibility and critical shear stress of an eroding rill Available online at www.sciencedirect.com Geoderma 144 (2008) 628 633 www.elsevier.com/locate/geoderma A rational method for estimating erodibility and critical shear stress of an eroding rill T.W. Lei

More information

Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL

Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL 1.1 Chapter 1. OVERVIEW OF THE WEPP EROSION PREDICTION MODEL D.C. Flanagan, J.C. Ascough II, A.D. Nicks, M.A. Nearing and J.M. Laflen 1.1 Introduction The USDA - Water Erosion Prediction Project (WEPP)

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 7 CHAPTER 2 LITERATURE REVIEW A broad understanding of various topics in environmental science and modeling technology was required to complete the studies presented in this thesis, and it is important

More information

Simulations demonstrating interaction between coarse and fine sediment loads in rain-impacted flow

Simulations demonstrating interaction between coarse and fine sediment loads in rain-impacted flow Earth Surface Processes and Landforms Interaction Earth Surf. Process. between Landforms coarse and (in press) fine sediment loads 1 Published online in Wiley InterScience (www.interscience.wiley.com)

More information

Flow Detachment by Concentrated Flow on Smooth and Irregular Beds

Flow Detachment by Concentrated Flow on Smooth and Irregular Beds Flow Detachment by Concentrated Flow on Smooth and Irregular Beds Rafael Giménez* and Gerard Govers ABSTRACT points. Whereas on smooth beds, the total shear stress Historically, soil detachment by overland

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

EXPERIMENT OF CHANNELIZATION DUE TO SEEPAGE EROSION

EXPERIMENT OF CHANNELIZATION DUE TO SEEPAGE EROSION Geotec., Const. Mat. & Env., DOI: https://doi.org/.26/8.46.wre4 ISSN: 286-2982 (Print), 286-299 (Online), Japan EXPERIMENT OF CHANNELIZATION DUE TO SEEPAGE EROSION Wandee Thaisiam, Peerapon Kaewnon and

More information

VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL *Satish Patel 1 and Bimlesh Kumar 2

VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL *Satish Patel 1 and Bimlesh Kumar 2 International Journal of Science, Environment and Technology, Vol. 5, No 6, 2016, 3678 3685 ISSN 2278-3687 (O) 2277-663X (P) VARIATION OF MANNING S ROUGHNESS COEFFICIENT WITH SEEPAGE IN SAND-BED CHANNEL

More information

The objective of this experiment was to identify the

The objective of this experiment was to identify the DETACHMENT IN A SIMULATED RILL T. A. Cochrane, D. C. Flanagan ABSTRACT. The effects of water and sediment inflow to the top of a 25 cm wide rill with a fine sand bed at 5% slope with no rainfall and no

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Benggang erosion in sub-tropical granite weathering crust geo-ecosystems: an example from Guangdong Province

Benggang erosion in sub-tropical granite weathering crust geo-ecosystems: an example from Guangdong Province Erosion, Debris Flows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 455 Benggang erosion in sub-tropical granite weathering crust geo-ecosystems:

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Landslides & Debris Flows

Landslides & Debris Flows T.#Perron# #12.001# #Landslides#&#Debris#Flows# 1# Landslides & Debris Flows Many geologic processes, including those shaping the land surface, are slowacting, involving feedbacks that operate over many

More information

Updating Slope Topography During Erosion Simulations with the Water Erosion Prediction Project

Updating Slope Topography During Erosion Simulations with the Water Erosion Prediction Project This paper was peer-reviewed for scientific content. Pages 882-887. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Erosion and Sedimentation Basics

Erosion and Sedimentation Basics Erosion and Sedimentation Basics Coastal San Luis Resource Conservation District G.W. Bates, PE, CPESC Outline: 1. Terms & Concepts 2. Causes of Erosion 3. The Erosion/Sedimentation Process 4. Erosion

More information

Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling

Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling Adapting WEPP (Water Erosion Prediction Project) for Forest Watershed Erosion Modeling Joan Q. Wu Arthur C. Xu William J. Elliot Department of Biological Systems Engineering Rocky Mountain Research Station

More information

FRACTAL RIVER BASINS

FRACTAL RIVER BASINS FRACTAL RIVER BASINS CHANCE AND SELF-ORGANIZATION Ignacio Rodriguez-Iturbe Texas A & M University Andrea Rinaldo University of Padua, Italy CAMBRIDGE UNIVERSITY PRESS Contents Foreword Preface page xiii

More information

Influence of Terrain on Scaling Laws for River Networks

Influence of Terrain on Scaling Laws for River Networks Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 11-1-2002 Influence of Terrain on Scaling Laws for River Networks D. A. Vasquez D. H. Smith Boyd F. Edwards Utah State

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Eddy Langendoen Ron Bingner USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi

More information

KINEROS2/AGWA. Fig. 1. Schematic view (Woolhiser et al., 1990).

KINEROS2/AGWA. Fig. 1. Schematic view (Woolhiser et al., 1990). KINEROS2/AGWA Introduction Kineros2 (KINematic runoff and EROSion) (K2) model was originated at the USDA-ARS in late 1960s and released until 1990 (Smith et al., 1995; Woolhiser et al., 1990). The spatial

More information

A simulation model for unified interrill erosion and rill erosion on hillslopes

A simulation model for unified interrill erosion and rill erosion on hillslopes HYDROLOGICAL PROCESSES Hydrol. Process. 2, 469 486 (26) Published online 18 October 25 in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/hyp.5915 A simulation model for unified interrill erosion

More information

Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China

Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China Nat Hazards (2015) 79:381 395 DOI 10.1007/s11069-015-1847-y ORIGINAL PAPER Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China Leilei Wen 1,2

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

Laboratory #5 ABE 325 Erosion Processes Laboratory

Laboratory #5 ABE 325 Erosion Processes Laboratory Laboratory #5 ABE 325 Erosion Processes Laboratory Objective: To better understand the process of rill erosion and to understand the interaction between flow rate, sediment yield, slope, and a soil additive.

More information

LONGITUDINAL VELOCITY PATTERNS AND BED MORPHOLOGY INTERACTION IN A RILL

LONGITUDINAL VELOCITY PATTERNS AND BED MORPHOLOGY INTERACTION IN A RILL Earth Surface Processes and Landforms Earth Surf. Process. Landforms 29, 105 114 VELOCITY (2004) PATTIERNS AND BED MORPHOLOGY 105 Published online in Wiley InterScience (www.interscience.wiley.com). DOI:

More information

Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China

Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China J. Hydrol. Hydromech., 64, 2016, 3, 237 245 DOI: 10.1515/johh-2016-0029 Hydraulic characteristics and sediment generation on slope erosion in the Three Gorges Reservoir Area, China Feng Qian 1, 2*, Dongbin

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Rates of gully erosion along Pikes Peak Highway, Colorado, USA

Rates of gully erosion along Pikes Peak Highway, Colorado, USA Landform Analysis, Vol. 17: 75 80 (2011) Rates of gully erosion along Pikes Peak Highway, Colorado, USA Harry A. Katz 1, J. Michael Daniels 1, Sandra E. Ryan 2 1 Department of Geography, University of

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model Drainage Basin Geomorphology Nick Odoni s Slope Profile Model Odoni s Slope Profile Model This model is based on solving the mass balance (sediment budget) equation for a hillslope profile This is achieved

More information

River Embankment Failure due to Overtopping - In Case of Non-cohesive Sediment -

River Embankment Failure due to Overtopping - In Case of Non-cohesive Sediment - Nov 4, 2014 2014 International Workshop on Typhoon and Flood River Embankment Failure due to Overtopping - In Case of Non-cohesive Sediment - Prof. Hajime NAKAGAWA Prof. of Disaster Prevention Research

More information

FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS

FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 10 No: 01 40 FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS Ibrahim H. Elsebaie 1 and Shazy Shabayek Abstract A study of the

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flows Lecture - 6 Design of Channels for Uniform Flow (Refer Slide

More information

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling

Diego Burgos. Geology 394. Advisors: Dr. Prestegaard. Phillip Goodling Sediment Transport into an Urban Tributary Junction Diego Burgos Geology 394 Advisors: Dr. Prestegaard Phillip Goodling 1 Abstract Tributary junctions are an important component of stream morphology and

More information

Factors affecting confluence scour

Factors affecting confluence scour & Wang (eds) River Sedimentation 1999., Balkema, Rotterdam. ISBN 9 9 3. 17 19 Factors affecting confluence scour R. B. Rezaur & A. W. Jayawardena. Department of Civil Engineering, The University of Hong

More information

The US national project to develop improved erosion prediction technology to replace the USIJE

The US national project to develop improved erosion prediction technology to replace the USIJE Sediment Budgets (Proceedings of the Porto Alegre Symposium, December 1988). IAHS Publ. no. 174, 1988. The US national project to develop improved erosion prediction technology to replace the USIJE L.

More information

Towards the prediction of free-forming meander formation using 3D computational fluid dynamics

Towards the prediction of free-forming meander formation using 3D computational fluid dynamics Wasserbaukolloquium 2006: Strömungssimulation im Wasserbau 31 Dresdner Wasserbauliche Mitteilungen Heft 32 Towards the prediction of free-forming meander formation using 3D computational fluid dynamics

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

Formation Of Hydraulic Jumps On Corrugated Beds

Formation Of Hydraulic Jumps On Corrugated Beds International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:10 No:01 37 Formation Of Hydraulic Jumps On Corrugated Beds Ibrahim H. Elsebaie 1 and Shazy Shabayek Abstract A study of the effect

More information

Improved S oil E rosion and S ediment Transport in GS S HA

Improved S oil E rosion and S ediment Transport in GS S HA Improved S oil E rosion and S ediment Transport in GS S HA by Charles W. Downer, Fred L. Ogden, Nawa Pradhan, Siqing Liu, and Aaron R. Byrd PURPOSE: To describe the new sediment transport formulation in

More information

Flow and Bed Topography in a 180 Curved Channel

Flow and Bed Topography in a 180 Curved Channel Flow and Bed Topography in a 180 Curved Channel Jae Wook Jung 1, Sei Eui Yoon 2 Abstract The characteristics of flow and bed topography has been analyzed by changing the bed materials in a 180-degree,

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania

Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania Modeling soil erosion by water on agricultural land in Cenei, Timiş County, Romania GEORGE NARCIS PELEA, IOANA ALINA COSTESCU, ERIKA BEILICCI, TEODOR EUGEN MAN, ROBERT BEILICCI Faculty of Civil Engineering,

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

Rock Sizing for Small Dam Spillways

Rock Sizing for Small Dam Spillways Rock Sizing for Small Dam Spillways STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined spillway on a construction site sediment basin Photo 2 Rock-lined spillway on a small farm dam 1. Introduction A chute

More information

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2)

LI Yong (1,2), FRIELINGHAUS Monika (1), BORK Hans-Rudolf (1), WU Shuxia (2), ZHU Yongyi (2) Scientific registration n : Symposium n : 31 Presentation : poster Spatial patterns of soil redistribution and sediment delivery in hilly landscapes of the Loess Plateau Motifs spaciaux de zones d'érosion

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer ONE ROCK DAM ORD A low grade control structure built with a single layer of rock on the bed of the channel. ORDs stabilize the bed of the channel by slowing the flow of water, increasing roughness, recruiting

More information

REPRESENTATIVE HILLSLOPE METHODS FOR APPLYING

REPRESENTATIVE HILLSLOPE METHODS FOR APPLYING REPRESENTATIVE HILLSLOPE METHODS FOR APPLYING THE WEPP MODEL WITH DEMS AND GIS T. A. Cochrane, D. C. Flanagan ABSTRACT. In watershed modeling with WEPP, the process of manually identifying hillslopes and

More information

2 Development of a Physically Based Hydrologic Model of the Upper Cosumnes Basin

2 Development of a Physically Based Hydrologic Model of the Upper Cosumnes Basin 2 Development of a Physically Based Hydrologic Model of the Upper Cosumnes Basin 2.1 Introduction The physically based watershed hydrologic model, WEHY (watershed environmental hydrology) model (Kavvas

More information

Modelling Breach Formation through Embankments

Modelling Breach Formation through Embankments Modelling Breach Formation through Embankments Mohamed A. A. Mohamed, Paul G. Samuels, Mark W. Morris, Gurmel S. Ghataora 2 HR Wallingford Howbery Park, Wallingford, Oxon, OX 8BA, UK 2 School of Civil

More information

Rock Sizing for Batter Chutes

Rock Sizing for Batter Chutes Rock Sizing for Batter Chutes STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined batter chute Photo 2 Rock-lined batter chute 1. Introduction In the stormwater industry a chute is a steep drainage channel,

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING

EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING NIJOTECH VOL. 10. NO. 1 SEPTEMBER 1986 ENGMANN 57 EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING BY E. O. ENGMANN ABSTRACT Velocity and tracer concentration measurements made in a meandering channel are

More information

Effectiveness of needle cast at reducing erosion after forest fires

Effectiveness of needle cast at reducing erosion after forest fires WATER RESOURCES RESEARCH, VOL. 39, NO. 12, 1333, doi:10.1029/2003wr002318, 2003 Effectiveness of needle cast at reducing erosion after forest fires C. D. Pannkuk and P. R. Robichaud Rocky Mountain Research

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

Regionalization Methods for Watershed Management - Hydrology and Soil Erosion from Point to Regional Scales

Regionalization Methods for Watershed Management - Hydrology and Soil Erosion from Point to Regional Scales This paper was peer-reviewed for scientific content. Pages 1062-1067. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Empirical relationships for the transport capacity of overland flow

Empirical relationships for the transport capacity of overland flow Erosion, Transport and Deposition Processes (Proceedings of the Jerusalem Workshop, March-April 1987). IAHS Publ. no. 189,1990. Empirical relationships for the transport capacity of overland flow INTRODUCTION

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers

Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers WATER RESOURCES RESEARCH, VOL. 41,, doi:10.1029/2004wr003776, 2005 Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers David M. Bjerklie

More information

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS M.L. Kavvas and L.Liang UCD J.Amorocho Hydraulics Laboratory University of California, Davis, CA 95616, USA Uncertainties

More information

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River

Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Temporal variability of partially-contaminated sediments in a strongly regulated reservoir of the upper Rhine River Germain Antoine 1,2,, Thomas Pretet 1,3,, Matthieu Secher 3,, and Anne Clutier 3, 1 Laboratoire

More information

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke 1 Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke with contributions from Norwegian and international project partners 2 Outline 1. Introduction 2. Basic ideas of flow

More information

Experimentally determined distribution of granular-flow characteristics in collisional bed load transport

Experimentally determined distribution of granular-flow characteristics in collisional bed load transport Experimentally determined distribution of granular-flow characteristics in collisional bed load transport Václav Matoušek 1,*, Štěpán Zrostlík 1, Luigi Fraccarollo 2, Anna Prati 2, and Michele Larcher

More information

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope?

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope? Geology 22 Process Geomorphology Final Exam Fall, 1999 Name This exam is closed book and closed notes. Take some time to read the questions carefully before you begin writing. Answer the questions concisely

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW 2. Background 2.1 Introduction The estimation of resistant coefficient and hence discharge capacity in a channel or river is one of the fundamental problems facing river engineers. When applying Manning

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and Equilibrium, Shear Stress, Stream Power and Trends of Vertical Adjustment Andrew Simon USDA-ARS, Oxford, MS asimon@msa-oxford.ars.usda.gov Non-Cohesive versus Cohesive Materials Non-cohesive: sands and

More information

Discharge. Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1. Velocity. Area

Discharge. Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1. Velocity. Area Discharge Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1 Velocity Area Where is the average velocity?? 3 Source: Brooks et al., Hydrology and the Management

More information

Accepted Manuscript. Comparison of soil erosion models used to study the Chinese Loess Plateau

Accepted Manuscript. Comparison of soil erosion models used to study the Chinese Loess Plateau Accepted Manuscript Comparison of soil erosion models used to study the Chinese Loess Plateau Pengfei Li, Xingmin Mu, Joseph Holden, Yiping Wu, Brian Irvine, Fei Wang, Peng Gao, Guangju Zhao, Wenyi Sun

More information

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff.

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff. Objectives Hillslope Hydrology Streams are the conduits of the surface and subsurface runoff generated in watersheds. SW-GW interaction needs to be understood from the watershed perspective. During a storm

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport

The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport S. McLean (1) (1) Mechanical and Environmental Engineering Dept., University of California, Santa Barbara, CA 93106,

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer GEOMORPHOLOGY Rivers split as mountains grow Citation for published version: Attal, M 2009, 'GEOMORPHOLOGY Rivers split as mountains grow' Nature Geoscience, vol. 2, no. 11,

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION July. 2. Vol. 7. No. 2 MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION 1 J. JOMBA, 2 D.M.THEURI, 2 E. MWENDA, 2 C. CHOMBA ABSTRACT Flow in a closed conduit is regarded as open channel

More information

Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations

Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations Conclusion Evaluating Methods for 3D CFD Models in Sediment Transport Computations Hamid Reza Madihi* 1, Bagher Keshtgar 2, Sina Hosseini Fard 3 1, 2, 3 M.Sc. Coastal Environmental Engineering, Graduate

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model

The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-6 (390), 2006 The Sensitivity Analysis of Runoff from Urban Catchment Based on the Nonlinear Reservoir Rainfall-Runoff Model Marcin SKOTNICKI and Marek SOWIŃSKI

More information