Electronic Appendix-Analytical methods

Size: px
Start display at page:

Download "Electronic Appendix-Analytical methods"

Transcription

1 Electronic Appendix-Analytical methods A1. U-Pb Geochronology: Analytical Techniques and Data Interpretation All sample preparation, geochemical separations and mass spectrometry were done at the Pacific Centre for Isotopic and Geochemical Research in the Department of Earth and Ocean Sciences, University of British Columbia. Zircon was separated from samples using conventional crushing, grinding, and Wilfley table techniques, followed by final concentration using heavy liquids and magnetic separations. Mineral fractions for analysis were selected on the basis of grain quality, size, magnetic susceptibility and morphology. All zircon was pretreated (chemical abrasion) employing the technique outlined in Scoates and Friedman (2008). Single zircon grains were then dissolved in subboiled 48% HF and 14 M HNO 3 (ratio of ~10:1, respectively, ~75 ml total) in the presence of a mixed U- 205 Pb tracer; zircons for 40 hours at 240 C in 300 ml PFA or PTFE teflon microcapsules contained in high pressure vessels (Parr acid digestion vessels with 125 ml PTFE liners). Sample solutions were then dried to salts at ~130 C. Zircon residues were re-dissolved in ~50 ml of sub-boiled 6.2 M HCl for 12 hours at 210 C in high pressure vessels. These solutions were transferred to 7 ml PFA beakers, dried to a small droplet after addition of 2 ml of 0.5 N H 3 PO 4. Samples were then loaded on single, degassed zone refined Re filaments in 5 ml of a silicic acid - phosphoric acid emitter (Gerstenberger and Haase, 1997). Isotopic ratios were measured using a modified single collector VG-54R thermal ionization mass spectrometer equipped with an analogue Daly photomultiplier. Measurements were done in peak-switching mode on the Daly detector. Analytical blanks during the course of this study were 0.2 pg for U and for Pb up to 5 pg. U fractionation was determined directly on individual runs using the U tracer, and Pb isotopic ratios were corrected for fractionation of 0.23%/amu, based on replicate analyses of the NBS-982 Pb standard and the values recommended by Thirlwall (2000). Reported precisions for Pb/U and Pb/Pb dates were determined by numerically propagating all analytical uncertainties through the entire age calculation using the technique of Roddick (1987). Standard concordia diagrams were constructed (see Figures below) and regression intercepts calculated with Isoplot 3.00

2 (Ludwig, 2003). Unless otherwise noted, all errors are quoted at the 2σ level. The samples and the rationale for the calculated ages are shown in the Table below.

3 Table. U-Th-Pb isotopic data used for age calculations. Wt. U Th Pb 206 Pb* mol % Pb* Pb c 206 Pb 208 Pb 207 Pb 207 Pb 206 Pb corr. 207 Pb 207 Pb 206 Pb Sample mg ppm U ppm x10-13 mol 206 Pb* Pb c (pg) 204 Pb 206 Pb 206 Pb % err 235 U % err 238 U % err coef. 206 Pb ± 235 U ± 238 U ± % disc (a) (b) (c) (d) (c) (e) (e) (e) (e) (f) (g) (g) (h) (g) (h) (g) (h) (i) (h) (i) (h) (i) (h) 15-2 (09WB-15-2 on plots) Compositional Parameters Radiogenic Isotope Ratios B % C % D % E % F % (09WB13 on plots) B % C % D % E % (09WB4 on plots) A % B % C % E % (09WB29 on plots) A % B % C % D % (09WB229 on plots) A % B % C % D % E % (a) A, B etc. are labels for fractions composed of single zircon grains or fragments; all fractions annealed and chemically abraded after Mattinson (2005). (b) Nominal fraction weights estimated from photomicrographic grain dimensions, adjusted for partial dissolution during chemical abrasion. (c) Nominal U and total Pb concentrations subject to uncertainty in photomicrographic estimation of weight and partial dissolution during chemical abrasion. (d) Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U age. (e) Pb* and Pbc represent radiogenic and common Pb, respectively; mol % 206 Pb* with respect to radiogenic, blank and initial common Pb. (f) Measured ratio corrected for spike and fractionation only. Daly analyses, based on analysis of NBS-982. (g) Corrected for fractionation, spike, and common Pb; up to 2 pg of common Pb was assumed to be procedural blank: 206Pb/204Pb = ± 1.0%; 207Pb/204Pb = ± 1.0%; 208Pb/204Pb = ± 1.0% (all uncertainties 1-sigma). Excess over blank was assigned to initial common Pb. (h) Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007). (i) Calculations are based on the decay constants of Jaffey et al. (1971). 206Pb/238U and 207Pb/206Pb ages corrected for initial disequilibrium in 230Th/238U using Th/U [magma] = 3. (j) Corrected for fractionation, spike, and blank Pb only. Isotopic Ages

4 Table. Results of U-Pb dating of diamondiferous rocks in Wawa area. Sample Material used for zircon extraction Type of dated rock and location Age Basis for the age estimate Comments 15-2 Matrix of lamprophyric breccia 13 Granite clast in conglomerate Lamprophyric breccia at pt 15-2 Conglomerate outcrop at pt 13, on highway ± 1.8 Ma ± 1.5 Ma based on one concordant grain that gives the youngest age result upper intercept of 3-point regression, with one of the grains concordant at the interpreted age The maximum age for the rock as we cannot be certain that the dated zircon is not a concordant xenocryst rather than a primary magmatic grain. 4 Felsic dyke crosscutting conglomerate 29 Granite clast in conglomerate 229 Gabbro clasts in conglomerate Conglomerate outcrop at pt 4 Conglomerate outcrop at pt 29, on the east side of the Mildred Lake fault Conglomerate outcrop at pt 229 Sample numbers correspond to points on the map of Fig ± 1.8 Ma ± 1.1 Ma ± 1.2 Ma upper intercept of 3 point regression all grains concordant and overlapping with age based on 4 point weighted average of 207 Pb/ 206 Pb dates. all grains concordant and overlapping with age based on 5 point weighted average of 207 Pb/ 206 Pb dates One of four grains does not lie along otherwise linear trend, suggesting that it underwent a distinct Pb loss history.

5 206 Pb/ 238 U WB4 3 point regression excluding grain B that is off trend B 2670 data-point error ellipses are A E 0.49 C Intercepts at 223 ± 110 & ± 1.8 [±7.3] Ma MSWD = Pb/ 235 U WB ± 1.8 Ma, based on 207 Pb/206 Pb date for concordant F data-point error ellipses are D Pb/ 238 U F C 2680 E B Pb/ 235 U 0.53 data-point error ellipses are 2 09WB E 206 Pb/ 238 U D 0.49 B Intercepts at 302 ± 79 & ± 1.5 [±7.4] Ma MSWD = 1.3 Electronic Supplementary Fig Pb/ 235 U

6 WB /- 1.0 Ma data-point error ellipses are data-point error symbols are Pb/ 238 U Pb/ 206 Pb Age (Ma) Mean = ± 1.0 [0.037%] 2 Wtd by data-pt errs only, 0 of 4 rej. MSWD = 0.86, probability = 0.46 (error bars are 2 ) Pb/ 235 U WB /-!"#$%%"& 1.2 Ma!"#$%#&'&$%!&()& data-point error ellipses are data-point error symbols are Pb/ 238 U Pb/ 235 U 207 Pb/ 206 Pb Age (Ma) Mean = ± 1.2 [0.046%] 2 Wtd by data-pt errs only, 0 of 5 rej. MSWD = 0.39, probability = 0.81 (error bars are 2 ) Electronic Supplementary Fig. 2

7 A2. Infrared spectroscopy Thirty diamonds were analyzed for nitrogen content and aggregation state studies using a Nicolet 710 Fourier Transform Infrared (FTIR) spectrometer with a Nic-Plan IR microscope attachment and a liquid nitrogen reservoir, at the EOS Department (UBC). Absorption spectra were measured in the range of 4, cm -1 at a resolution of 8 cm -1 and at a signal of 256 scans. Forty nine diamonds were analyzed at the FTIR miscroscope fitted with a Thermo Nicolet Nexus 470 FTIR spectrometer and a liquid nitrogen reservoir (Department of Earth and Atmospheric Sciences, the University of Alberta). Duplicate samples were used to ensure compatibility of analyses from both labs. The spectra were measured in the same wavelength range at a signal of 200 scans. All diamonds were mounted on the edge of a glass slide and spectra were recorded at the point of maximum light transmission through the sample. A Type II diamond of known thickness was used as a reference to correct for varying diamond thicknesses in the mounted samples. Baseline spectra corrections were performed using Omnic version 6.0a software and de-convoluted using least square techniques into spectra of single N, paired N, tetrahedral N and platelets as described in De Stefano et al. (2006). Based on the concentration of nitrogen and its aggregation state, diamonds are divided into type I (stones with >20 ppm N) or II (stones with no measurable N). Type I diamonds were further subdivided into type Ib (stones with single N atoms) and type Ia (stones with aggregated N). The latter are in turn classified into Type IaA (stones containing mainly pairs of N), type IaB (stones containing mainly N tetrahedra), as well as into the transitional group IaAB. A3. Extraction of heavy minerals Samples collected from outcropping metaconglomerates were processed for recovery of heavy minerals (olivine, pyroxenes, ilmenite, garnet, corundum, magnetite, rutile, sapphirine, chromite with occasional quartz, plagioclase and amphibole). The recovery was done in 3 commercial laboratories. Small conglomerate samples were processed at CF Minerals Ltd (Kelowna, Canada) by attrition milling. Mill design precludes contamination as heavy minerals are continuously removed during attrition. Among five samples from pits# 4; 5; 6; 7; and 13 weighing 24.58kg; 23.04kg; kg; kg

8 and 25.38kg, indicator minerals were recovered from only the samples from pits # 6 and #7 (see map with pit locations in Verley 2009). A total of 644 chromite, 20 olivine, 3 garnet, 1 ilmenite and 1 clinopyroxene grains were recovered. Larger samples from pits # 1; 4 and 8 weighing 710.5, and kgs respectively were processed at SGS Mineral Services (Lakefield, Canada) by a standard diamond recovery method (Dense Media Separation plant). The indicator minerals (178) were picked from the concentrates generated by DMS operations. The plant was specifically assembled for the exclusive use of conglomerate testing to exclude a possibility of sample cross-contamination. A total of 91 chromite, 18 olivine, 51 garnet, 5 ilmenite grains were recovered. The conglomerate was also sampled by105 pit sites, and the samples weighing on average 5 tonnes were processed to recover diamonds and heavy minerals through DMS plant (SGS Mineral Services). A total of 349 tonnes was processed, yielding 3603 diamonds weighing 82.7 carats. All heavy minerals extracted from these samples are probed and the analyses are reported in Electronic Supplementary Table 2. The largest metaconglomerate samples (70 to 80 tones) were collected in original test pits and processed by DMS at Kennecott Exploration Canada Inc Facility (Thunder Bay, Canada). The 298 ton sample of this material yielded 3265 diamonds weighing in total 89.4 carats, with the largest recovered diamonds 1.5 and 1.0 carats. Additional information about the processes of diamond and indicator recovery can be found in Verley (2009). Comparison of heavy mineral counts between duplicate samples processed at different laboratories (see Table below) shows a significant heterogeneity in the heavy minerals distribution. The similar processing for indicator minerals was performed on samples of overlying metasandstones. They are found to be barren for diamonds, but contain few occasional grains of heavy minerals of the same type and compositions as those found in metaconglomerates.

9 Table. Recovery of heavy minerals for identical or proximal samples Locations Sample Recovery method Grains found weight Pit kg Attrition milling at CFM Lab 149 Chr, 10 Ol Pit tn Attrition milling, then DMS at SGS Lab 2 Pyr, 1 Rut Pit kg Attrition milling at CFM Lab 125 Chr, 1 Alm, 1 Cpx, 1 Ilm, 10 Ol, 2 Pyr 25 m away from Pit 7 - MBP tn Attrition milling, then DMS at SGS Lab 1 Pyr Pit kg DMS at SGS Lab 200+ Chr, 40 Pyr 5 m from Pit 4 - MBP tn DMS at SGS Lab 1 Cpx, 2 Qz 5 m from Pit 4 - MBP tn DMS at SGS Lab 1 Ol, 2 Ilm Pit kg DMS at SGS Lab 200+ Chr, 1 Pyr, 3 Ilm 10 m from Pit 8 - MBP tn DMS at SGS Lab 1 Qz, 4 cpx, 2 Ol, 9 Pyr, 2 Ilm MBP tn Kennecott DMS 16 Chr, 80 Cpx,32 Pyr, 4 Ol, 8 Sap, 7 Rub, 10 Ilm MBP401 ~ 6 tn DMS at SGS Lab No indicators MBP301 ~ 6 tn DMS at SGS Lab 1 Ilm, 2 Cd, 1 Pyr, 1Alm, 11 Cpx, 4 Ol, 2 Qz, 5 Mt MBP tn DMS at SGS Lab 5 Chr, 3 Pyr, 10 Cpx, 6 Ol, 1 Ruby MBP tn DMS at SGS Lab No indicators Abbreviations for minerals are Chr (chromite), Ol (olivine), Alm (almandine), Cpx (clinopyroxene), Ilm ( ilmenite), Pyr (pyrope), Qz (quartz), Sap (sapphire), Rub (ruby), Mt (magnetite), Cd (corund)

10 A4. Electron microprobe analysis Heavy minerals with grain sizes mm from bulk samples processed in commercial labs were analyzed for major and minor element contents by electron microprobe (JEOL 733 Superprobe) under standard operating conditions (15 KeV, 20 na operating current, 500 micron beam size, 20 seconds counting time) in the C.F. Mineral Research Ltd Laboratory. The minimum detection limits for these conditions are wt% SiO 2, wt% TiO 2, wt% Al 2 O 3, wt% Cr 2 O 3, 0.05 wt% FeO, wt% MnO, wt% CaO, wt% Na 2 O, wt% K 2 O, NiO, 0.08 ZnO. Quality of the analysis was ascertained by repeat analyses of standards, i.e. diopside, pyrope, chromite, Ni spinel, magnetite and rutile. Analysis of almandine from panned concentrates were carried out on the JXA 8100 X-ray microprobe (The Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences) under standard operating conditions (15 KeV, 20 na operating current, 3 micron beam size, 20 seconds counting time) using natural minerals as standards. References: Gerstenberger, H., Haase, G., A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 3-4, Ludwig, K.R., Isoplot 3.00, A Geochronological Toolkit for Microsoft Excel. University of California at Berkely Scoates, J.S. Friedman, R.M., Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa by the U-Pb zircon chemical abrasion ID-TIMS techique, Econ. Geol., 103, Roddick, J.C., Generalized numerical error analysis with application to geochronology and thermodynamics. Geoch. Cosmoch. Acta, 51, Thirlwall, M.F., Inter-laboratory and other errors in Pb isotope analyses investigated using a 207 Pb 204 Pb double spike. Chem. Geol.,163,

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf]

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf] TABLE DR1. LOWER CRUSTAL GRANULITE XENOLITH DERIVATION AND MINERALOGY Sample Kimberlite Type Mineralogy KX1-1 Lace s gt + qz + sa + rt (sil, ky, gr, su, cor, zr, mz) KX1-2 Lace s gt + sa + qz + rt (sil,

More information

GSA Data Repository Denyszyn, et al., 2018, A bigger tent for CAMP: Geology,

GSA Data Repository Denyszyn, et al., 2018, A bigger tent for CAMP: Geology, GSA Data Repository 2018306 Denyszyn, et al., 2018, A bigger tent for CAMP: Geology, https://doi.org/10.1130/g45050.1 SPPLEMENTARY FILE: Methods and Data Geochemistry Methods Bulk-rock compositions of

More information

Single zircon U/Pb analyses were performed at the Berkeley Geochronology Center. After using

Single zircon U/Pb analyses were performed at the Berkeley Geochronology Center. After using DR2010104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 APPENDIX: ANALYTICAL PROCEDURES Single zircon U/Pb analyses were performed at the Berkeley Geochronology Center. After using standard

More information

Appendix 1. Supplementary data presented here include isotopic and concentration data for

Appendix 1. Supplementary data presented here include isotopic and concentration data for 267 Appendix 1 Chronology of Pluton Emplacement and Regional Deformation in the Southern Sierra Nevada Batholith, California-Supplementary Data and Discussions Saleeby, J., Division of Geological and Planetary

More information

XM1/331 XM1/331 BLFX-3 XM1/331

XM1/331 XM1/331 BLFX-3 XM1/331 a b AkC AkC strontian fluoro-apatite clinopyroxene phlogopite K-richterite XM1/331 clinopyroxene XM1/331 Fe-Ti ox c d clinopyroxene kric AkC ilmenite Sr-barite AkC XM1/331 BLFX-3 Supplementary Figure 1.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11021 Sample Description Tuff beds and granular iron formation Tuff beds were identified in the basal Frere Formation in diamond drill-core from drill hole TDH26

More information

Metcalf and Buck. GSA Data Repository

Metcalf and Buck. GSA Data Repository GSA Data Repository 2015035 Metcalf and Buck Figure DR1. Secondary ionization mass-spectrometry U-Pb zircon geochronology plots for data collected on two samples of Wilson Ridge plutonic rocks. Data presented

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Tables Major element compositions of host and daughter crystals: Table 1 reports composition for host-olivine. No daughter olivine has been found. The number for

More information

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area Breeding, Ague, and Brocker 1 Figure DR1 21 o 24 Greece o A 38 o Athens Tinos 37 o Syros Attic-Cycladic Blueschist Belt Syros Kampos B Study Area Ermoupoli N Vari Unit Cycladic HP-LT Unit Marble horizons

More information

Cloudland gneisses, Mars Hill terrane, NC-TN: New SHRIMP U-Pb ages for detrital zircon and. monazite

Cloudland gneisses, Mars Hill terrane, NC-TN: New SHRIMP U-Pb ages for detrital zircon and. monazite GSA DATA REPOSITORY 2013302 J.N. Aleinikoff et al. Late Mesoproterozoic (ca. 1.0 Ga) deposition of protoliths of the high grade Carvers Gap and Cloudland gneisses, Mars Hill terrane, NC-TN: New SHRIMP

More information

Australia. Australian Journal of Earth Sciences (2002) 49,

Australia. Australian Journal of Earth Sciences (2002) 49, Fohn lamproite and a possible Late Eocene pre-miocene diatreme field, Northern Bonaparte Basin, Timor Sea* J. D. GORTER 1 AND A. Y. GLIKSON 2 1 Agip Australia Limited, 40 Kings Park Road, West Perth, WA

More information

Reassessing the uranium decay constants for geochronology using ID-TIMS U Pb data

Reassessing the uranium decay constants for geochronology using ID-TIMS U Pb data Geochimica et Cosmochimica Acta 70 (2006) 426 445 www.elsevier.com/locate/gca Reassessing the uranium decay constants for geochronology using ID-TIMS U Pb data Blair Schoene a, *, James L. Crowley a, Daniel

More information

APPENDICES. Appendix 1

APPENDICES. Appendix 1 Corthouts, T.L., Lageson, D.R., and Shaw, C.A., 2016, Polyphase deformation, dynamic metamorphism and metasomatism of Mount Everest s summit limestone, east central Himalaya, Nepal/Tibet: Lithosphere,

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL GSA DATA REPOSITORY 2014105 Earth s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia Jonathan M. Pownall 1, Robert Hall 1, Richard A. Armstrong 2, and Marnie A. Forster

More information

Geochemical analysis unveils frictional melting process in a

Geochemical analysis unveils frictional melting process in a GSA Data Repository 219116 1 2 3 Geochemical analysis unveils frictional melting process in a subduction zone fault Tsuyoshi Ishikawa and Kohtaro Ujiie 4 Supplemental Material 6 7 8 9 METHOD TABLES (Tables

More information

published sources and U-Pb geochronology performed in this study. We analyzed six

published sources and U-Pb geochronology performed in this study. We analyzed six Data Repository: Uba, Strecker, and Schmitt U-Pb radiometric dating The age controls for the stable isotopic records presented here are from both published sources and U-Pb geochronology performed in this

More information

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008

GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 GEOL3313 Petrology of Igneous and Metamorphic Rocks G. Mattioli, Dept. of Geosciences, Univ. of Arkansas, Spring 2008 Homework Assignment 3 Calculation of CIPW Norm Due in Class February 13, 2008 Problem

More information

vacuum system with a diffusion pump and high-cathode gauge/getter that allows us to maintain

vacuum system with a diffusion pump and high-cathode gauge/getter that allows us to maintain GSA Data Repository 2017221 Zakharov, 2017, Dating the Paleoproterozoic snowball Earth glaciations using contemporaneous subglacial hydrothermal systems: Geology, doi:10.1130/g38759.1. Supplemental information

More information

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES

DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES Berman et al. - page 1 DATA REPOSITORY ITEM: METAMORPHIC-AGE DATA AND TEXTURES This data repository contains details of pressure (P) - temperature (T) and age methods and data (Tables DR1, DR2, DR3). Figures

More information

U Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40 Ar/ 39 Ar standard MMhb

U Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40 Ar/ 39 Ar standard MMhb Contrib Mineral Petrol (2006) DOI 10.1007/s00410-006-0077-4 ORIGINAL PAPER Blair Schoene Æ Samuel A. Bowring U Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age

More information

FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 2. Research Program for Data and Sample Analyses, Institute For Research on Earth Evolution (IFREE) 2

FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 2. Research Program for Data and Sample Analyses, Institute For Research on Earth Evolution (IFREE) 2 Evaluation of silica-gel activator in order to find the optimal silica-gel activator for lead isotope measurement by thermal ionization mass spectrometer (TIMS) Takashi Miyazaki 1, Tomoyuki Shibata 2,

More information

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER Pressure- and stress-induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): implications for mantle seismic anisotropy Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN,

More information

GSA DATA REPOSITORY Topuz et al. ANALYTICAL PROCEDURE

GSA DATA REPOSITORY Topuz et al. ANALYTICAL PROCEDURE GSA DATA REPOSITORY 2013062 Topuz et al. ANALYTICAL PROCEDURE 40 Ar/ 39 Ar Dating Samples were selected, prepared and analysed following procedures described in Rolland et al. (2008). Pure white mica and

More information

Data Repository for 40 Ar/ 39 Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico

Data Repository for 40 Ar/ 39 Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico Open File Report OF-AR-6 New Mexico Bureau of Geology and Mineral Resources A division of New Mexico Institute of Mining and Technology Data Repository for Ar/ 39 Ar Age Constraints on the Duration of

More information

DATA REPOSITORY. The Ellsworth Terrane, Coastal Maine: Geochronology, Geochemistry, and Nd-Pb Isotopic Composition Implications for the Rifting of

DATA REPOSITORY. The Ellsworth Terrane, Coastal Maine: Geochronology, Geochemistry, and Nd-Pb Isotopic Composition Implications for the Rifting of DATA REPOSITORY The Ellsworth Terrane, Coastal Maine: Geochronology, Geochemistry, and Nd-Pb Isotopic Composition Implications for the Rifting of Ganderia Klaus J. Schulz 1*, David B. Stewart 2, Robert

More information

Supporting Information

Supporting Information Supporting Information Bindi et al. 10.1073/pnas.1111115109 Fig. S1. Electron microprobe X-ray elemental maps for the grain reported in Fig. 1B. Experimental details are given in Experimental Methods.

More information

The Palmer Hill ore body consists of massive magnetite, with quartz, apatite, microcline, albite, fluorite, and zircon. Disseminated magnetite is

The Palmer Hill ore body consists of massive magnetite, with quartz, apatite, microcline, albite, fluorite, and zircon. Disseminated magnetite is DR2009060 Data Repository Item DR-1 Ore deposit descriptions Palmer Hill The Palmer Hill ore body consists of massive magnetite, with quartz, apatite, microcline, albite, fluorite, and zircon. Disseminated

More information

LAACHER SEE REVISITED: HIGH SPATIAL RESOLUTION ZIRCON DATING IMPLIES RAPID FORMATION OF A ZONED MAGMA CHAMBER -

LAACHER SEE REVISITED: HIGH SPATIAL RESOLUTION ZIRCON DATING IMPLIES RAPID FORMATION OF A ZONED MAGMA CHAMBER - LAACHER SEE REVISITED: HIGH SPATIAL RESOLUTION ZIRCON DATING IMPLIES RAPID FORMATION OF A ZONED MAGMA CHAMBER - DATA REPOSITORY ANALYTICAL PROCEDURES Ion microprobe U-Th measurements Th-U dating was performed

More information

Geogenic versus Anthropogenic Metals and Metalloids

Geogenic versus Anthropogenic Metals and Metalloids Geogenic versus Anthropogenic Metals and Metalloids Geochemical methods for evaluating whether metals and metalloids are from geogenic versus anthropogenic sources 1 Definitions Geogenic from natural geological

More information

Data Repository DR Supplemental Data File. Feinberg et al., Figure DR2. Isothermal remanent magnetization data for typical lapillus

Data Repository DR Supplemental Data File. Feinberg et al., Figure DR2. Isothermal remanent magnetization data for typical lapillus Data Repository DR2968 Supplemental Data File Feinberg et al., 29 Age Constraints on Alleged Footprints Preserved in the Xalnene Tuff near Puebla, Mexico The accompanying pages include additional evidence

More information

Earth Sciences Report Alberta Kimberlite-Indicator Mineral Geochemical Compilation

Earth Sciences Report Alberta Kimberlite-Indicator Mineral Geochemical Compilation Earth Sciences Report 2001-20 Alberta Kimberlite-Indicator Mineral Geochemical Compilation Alberta Kimberlite-Indicator Mineral Geochemical Compilation D.R. Eccles 1, M. Dufresne 2, D. Copeland 2, W. Csanyi

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2013011 Chen et al. ANALITICAL METHODS Microprobe analysis Microprobe analyses of minerals were done on a JEOL Superprobe JXA 8100 at the Key Laboratory of Orogenic Belts and Crustal

More information

CLOSURE TEMPERATURES OF ACCESSORY MINERALS

CLOSURE TEMPERATURES OF ACCESSORY MINERALS DR2005002 Flowers et al. CLOSURE TEMPERATURES OF ACCESSORY MINERALS The range of Pb diffusivity in accessory minerals provides the opportunity to reconstruct detailed thermal histories using the U-Pb isotopic

More information

Tailings and Mineral Carbonation: The Potential for Atmospheric CO 2 Sequestration

Tailings and Mineral Carbonation: The Potential for Atmospheric CO 2 Sequestration Tailings and Mineral Carbonation: The Potential for Atmospheric CO 2 Sequestration H. Andrew Rollo Lorax Environmental Services Ltd. Heather. E. Jamieson Department of Geological Sciences and Geological

More information

of numerous north-south trending Miocene and volcanic centres and lava flows. For

of numerous north-south trending Miocene and volcanic centres and lava flows. For DATA REPOSITORY DR009071 Duggen et al. SAMPLES AND ANALYTICAL METHODS Lavas were collected from a ca. 10 km by 100 km volcanic field consisting of numerous north-south trending Miocene and volcanic centres

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2013019 Supplemental information for The Solidus of Alkaline Carbonatite in the Deep Mantle Konstantin D. Litasov, Anton Shatskiy, Eiji Ohtani, and Gregory M. Yaxley EXPERIMENTAL METHODS

More information

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa Summary of test results for Daya Bay rock samples by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa October 2004 Summary A series of analytical tests were conducted on a suite of granitic rock samples

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE

MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE MACRORYTHMIC GABBRO TO GRANITE CYCLES OF CLAM COVE VINALHAVEN INTRUSION, MAINE NICK CUBA Amherst College Sponsor: Peter Crowley INTRODUCTION The rocks of the layered gabbro-diorite unit of the Silurian

More information

Oceanic plateau subduction during closure of Bangong-Nujiang Tethys: Insights from Central Tibetan volcanic rocks

Oceanic plateau subduction during closure of Bangong-Nujiang Tethys: Insights from Central Tibetan volcanic rocks GSA Data Repository Item 2018295 Hao, L.-L., Wang, Q., Zhang, C., Ou, Q., Yang, J.-H., Dan, W., and Jiang, Z.-Q., 2018, Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean: Insights

More information

Sample Analysis Design. Solution Mode

Sample Analysis Design. Solution Mode Sample Analysis Design Solution Mode Step I Sample preparation The quality of your data will only be as good as the quality of your sample i.e. did you adequately prepare your sample in the clean lab?

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2012161 Allan et al. SUPPLEMENTARY INFORMATION Summary of Magma Types Table DR1 summarizes some of the key petrologic, geochemical and physical characteristics of the three magma types

More information

Th) ) dating of micro-baddeleyite

Th) ) dating of micro-baddeleyite U-Pb (and U-ThU Th) ) dating of micro-baddeleyite 30 μm Axel K. Schmitt UCLA SIMS, NSF National Ion Microprobe Facility Collaborators: T. Mark Harrison (UCLA) Kevin Chamberlain (University of Wyoming)

More information

from the Sierra Nevada Fault Project

from the Sierra Nevada Fault Project Open File Report OF-AR-15 New Mexico Bureau of Geology and Mineral Resources A division of New Mexico Institute of Mining and Technology 40 Ar/ 39 Ar Geochronology Results from the Sierra Nevada Fault

More information

Zircon Dissolu,on for Isotope Dilu,on

Zircon Dissolu,on for Isotope Dilu,on 4 Zircon Dissolu,on for Isotope Dilu,on For high- precision analysis of zircons by Isotope Dilu,on Thermal Ioniza,on Mass Spectrometry (ID- TIMS), fragments of crystals are dissolved so that the U and

More information

DR DATA REPOSITORY

DR DATA REPOSITORY DR2009092 DATA REPOSITORY ANALYTICAL TECHNIQUES Zircons were separated from 3-5 kg samples using standard crushing and grinding techniques, followed by three rounds of magnetic separation at increasing

More information

Additional Analytical Methods. Detrital zircon samples were collected from nine fine-, medium-, and coarse-grained

Additional Analytical Methods. Detrital zircon samples were collected from nine fine-, medium-, and coarse-grained GSA Data Repository 2016214 Leary, R.J., DeCelles, P.G., Quade, J., Gehrels, G.E., and Waanders, G., 2016, The Liuqu Conglomerate, southern Tibet: Early Miocene basin development related to deformation

More information

Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from

Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from DATA REPOSITORY APPENDIX 1. ANALYTICAL TECHNIQUES Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from proximal lithic breccias deposits (Fig. DR1 and

More information

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee Massachusetts Institute of Technology Dr. Nilanjan Chatterjee Electron Probe Micro-Analysis (EPMA) Imaging and micrometer-scale chemical compositional analysis of solids Signals produced in The Electron

More information

doi: /nature09369

doi: /nature09369 doi:10.1038/nature09369 Supplementary Figure S1 Scanning electron microscope images of experimental charges with vapour and vapour phase quench. Experimental runs are in the order of added water concentration

More information

Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS)

Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS) JAMSTEC-R IFREE Special Issue, November 2009 Precise Pb isotope analysis of igneous rocks using fully-automated double spike thermal ionization mass spectrometry (FA -DS- TIMS) Takashi Miyazaki 1*, Nobuyuki

More information

SR Allen, RS Fiske, Y Tamura Sumisu methods

SR Allen, RS Fiske, Y Tamura Sumisu methods SR Allen, RS Fiske, Y Tamura Sumisu methods FTIR water contents from melt inclusions Quartz-hosted melt inclusions were analyzed for H 2 O and CO 2 by Fourier Transform Infrared Spectroscopy (FTIR) at

More information

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque GSA Data Repository 2017365 Marshall et al., 2017, The role of serpentinite derived fluids in metasomatism of the Colorado Plateau (USA) lithospheric mantle: Geology, https://doi.org/10.1130/g39444.1 Appendix

More information

Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3

Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3 Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3 A short history of diamonds Derived from the ancient Greek αδάμας (adámas): unbreakable Thought to have been first recognized and

More information

When good zircons go bad Redistribution of Radiogenic Pb in Granulite Grade Zircon, Snowbird Tectonic Zone, Canada

When good zircons go bad Redistribution of Radiogenic Pb in Granulite Grade Zircon, Snowbird Tectonic Zone, Canada When good zircons go bad Redistribution of Radiogenic Pb in Granulite Grade Zircon, Snowbird Tectonic Zone, Canada Nicole Rayner, Bill Davis, Tom Pestaj Geological Survey of Canada, SHRIMP Lab 2 J.C. Roddick

More information

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8. EPMA IMAGES The attached images and mineral data can be used to supplement an instrument-based lab, or serve as the basis for lab that can be completed without an instrument. Please provide credit for

More information

ESS Minerals. Lee. 1. The table below shows some properties of four different minerals.

ESS Minerals. Lee. 1. The table below shows some properties of four different minerals. Name: ESS Minerals Pd. 1. The table below shows some properties of four different minerals. The minerals listed in the table are varieties of which mineral? (A) garnet (B) magnetite (C) olivine (D) quartz

More information

GSA Data Repository

GSA Data Repository GSA Data Repository 2019057 1 METHODS Grain Boundary Imaging and Orientation Analysis Backscatter electron (BSE) maps of thin sections were acquired using the FEI Verios XHR scanning electron microscope

More information

Jörg Ostendorf, Friedhelm Henjes-Kunst, Nicola Mondillo, Maria Boni, Jens Schneider, and Jens Gutzmer

Jörg Ostendorf, Friedhelm Henjes-Kunst, Nicola Mondillo, Maria Boni, Jens Schneider, and Jens Gutzmer GSA Data Repository 2015353 Supplemental Information for: Formation of Mississippi Valley type deposits linked to hydrocarbon generation in extensional tectonic settings: Evidence from the Jabali Zn-Pb-(Ag)

More information

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION GSA Data Repository 080 Schorn et al., 08, Thermal buffering in the orogenic crust: Geology, https://doi.org/0.30/g4046.. SUPPLEMENTARY INFORMATION 3 PHASE DIAGRAM MODELING 4 5 6 7 8 9 0 3 4 Phase diagrams

More information

REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL

REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

Figure 2. Location map of Himalayan Mountains and the Tibetan Plateau (from Searle et al., 1997).

Figure 2. Location map of Himalayan Mountains and the Tibetan Plateau (from Searle et al., 1997). Nazca Plate Figure 1. Location map of Central Andes arc. This map also shows the extent of the high Altiplano-Puna plateau (from Allmendinger et al., 1997). 33 Figure 2. Location map of Himalayan Mountains

More information

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere 07/11/2017 GEO-DEEP 9300 Claire Aupart Introduction Introduction Getting samples Cores: Maximum depth reach in

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY Brandon E. Schwab Department of Geology Humboldt State University

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

TABLE DR1. Summary of SHRIMP U-Pb zircon results for migmatitic rocks at Stowe Mountain. Total Radiogenic ratios Ages (in Ma) 204 Pb f U/ ±

TABLE DR1. Summary of SHRIMP U-Pb zircon results for migmatitic rocks at Stowe Mountain. Total Radiogenic ratios Ages (in Ma) 204 Pb f U/ ± TABLE DR1. Summary of SHRIMP U-Pb zircon results for migmatitic rocks at Stowe Mountain Grain U Th Th/U Pb* Total Radiogenic ratios Ages (in Ma) 204 Pb f 238 206 U/ ± 207 Pb/ ± 206 Pb/ ± 206 Pb/ ± Spot

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Abstract 1. Introduction 2. Geological position and host volcanics 3. Summary of primary mineralogy of Tirich and other peridotites of Dzhilinda River Figure 1. Composition of clinopyroxenes from the Dzhilinda

More information

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION Concordia University CHEM 205 Fall 2009, B LAST NAME: FIRST NAME: STUDENT ID: Chem 205 - GENERAL CHEMISTRY I MIDTERM EXAMINATION PLEASE READ THIS BOX WHILE WAITING TO START INSTRUCTIONS: Calculators are

More information

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company Key Analytical Issues: Sample Preparation, Interferences and Variability Tim Shelbourn, Eli Lilly and Company Presentation Outline Sample preparation objectives and challenges Some common interferences

More information

The origin of geochemical diversity of lunar mantle sources inferred from the combined U Pb, Rb Sr, and Sm Nd isotope systematics of mare basalt 10017

The origin of geochemical diversity of lunar mantle sources inferred from the combined U Pb, Rb Sr, and Sm Nd isotope systematics of mare basalt 10017 Geochimica et Cosmochimica Acta 71 (2007) 3656 3671 www.elsevier.com/locate/gca The origin of geochemical diversity of lunar mantle sources inferred from the combined U Pb, Rb Sr, and Sm Nd isotope systematics

More information

REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL

REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL REFLECTANCE EXPERIMENT LABORATORY (RELAB) DESCRIPTION AND USER'S MANUAL Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored

More information

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma) Table 1. Average U-Pb ages from this study in comparison with previous ages from Sherrod and Tosdal (1991, and references therein). Previous study ages are reported as ranges including uncertainty (i.e.

More information

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE DANIEL HAWKINS Western Kentucky University Research Advisor: Andrew Wulff INTRODUCTION Round Point, in the

More information

Indicator Mineral Methods in Mineral Exploration. Harvey Thorleifson Minnesota Geological Survey

Indicator Mineral Methods in Mineral Exploration. Harvey Thorleifson Minnesota Geological Survey Indicator Mineral Methods in Mineral Exploration Harvey Thorleifson Minnesota Geological Survey Mineral exploration Direct inspection Remote detection Remote detection Exploration geophysics Exploration

More information

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample Treatment of Data Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample Detection Limits Assessment of analytical quality -Analytical

More information

Economic Ores. - Mostly metals

Economic Ores. - Mostly metals Economic Ores - Mostly metals Intro points An ore is a naturally occurring solid material from which a metal or valuable mineral can be profitably extracted. Gangue is the commercially valueless material

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

SUPPLEMENTARY MATERIALS

SUPPLEMENTARY MATERIALS GSA DATA REPOSITORY 2013096 Rubidge et al. SUPPLEMENTARY MATERIALS Lithostratigraphic and biostratigraphic information on volcanic ash beds Samples were collected from key volcanic ash layers ranging from

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Peter Kibarov, Peter Marchev, Maria Ovtcharova, Raya Raycheva,

More information

Rapid Detection of Americium-241 in Food by Inductively-Coupled Plasma Mass Spectrometry

Rapid Detection of Americium-241 in Food by Inductively-Coupled Plasma Mass Spectrometry Rapid Detection of Americium-241 in Food by Inductively-Coupled Plasma Mass Spectrometry Zhichao Lin, Kathryn Emanuele, Stephanie Healey, and Patrick Regan Analytical Branch Winchester Engineering and

More information

CHARACTERIZATION OF THE DISTRIBUTION OF SIDEROPHILE AND HIGHLY SIDEROPHILE ELEMENTS IN THE MILTON AND EAGLE STATION PALLASITES.

CHARACTERIZATION OF THE DISTRIBUTION OF SIDEROPHILE AND HIGHLY SIDEROPHILE ELEMENTS IN THE MILTON AND EAGLE STATION PALLASITES. CHARACTERIZATION OF THE DISTRIBUTION OF SIDEROPHILE AND HIGHLY SIDEROPHILE ELEMENTS IN THE MILTON AND EAGLE STATION PALLASITES. Jeff Hillebrand April 27, 2004 Advisors: Dr. Richard Walker Dr. William McDonough

More information

Timing of global regression and microbial bloom linked with the Permian-Triassic

Timing of global regression and microbial bloom linked with the Permian-Triassic 426 427 Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms 428 429 430 Björn Baresel 1*, Hugo Bucher 2, Borhan

More information

Petrogenetic Constraints at Mount Rainier Volcano, Washington

Petrogenetic Constraints at Mount Rainier Volcano, Washington Petrogenetic Constraints at Mount Rainier Volcano, Washington S. C. Kuehn and P. R. Hooper, Department of Geology, Washington State University, Pullman, WA A. E. Eggers and C. Kerrick, Department of Geology,

More information

DETRITAL ZIRCON GEOCHRONOLOGY BY LASER-ABLATION MULTICOLLECTOR ICPMS AT THE ARIZONA LASERCHRON CENTER

DETRITAL ZIRCON GEOCHRONOLOGY BY LASER-ABLATION MULTICOLLECTOR ICPMS AT THE ARIZONA LASERCHRON CENTER DETRITAL ZIRCON GEOCHRONOLOGY BY LASER-ABLATION MULTICOLLECTOR ICPMS AT THE ARIZONA LASERCHRON CENTER GEORGE GEHRELS, VICTOR VALENCIA AND ALEX PULLEN Department of Geosciences University of Arizona Tucson,

More information

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets Lan Wang, a Ling Zang, b Jincai Zhao c and Chuanyi Wang*

More information

This is how we classify minerals! Silicates and Non-Silicates

This is how we classify minerals! Silicates and Non-Silicates Why are some minerals harder than others? Their atomic structure and chemical formula. This is how we classify minerals! Silicates and Non-Silicates Part #1 - Silicates: Silicon and Oxygen make up 70%

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

Lin Chen Robert A Creaser Daniel J Kontak Oct 29th, 2014

Lin Chen Robert A Creaser Daniel J Kontak Oct 29th, 2014 FURTHER Re-Os ARSENOPYRITE GEOCHRONOLOGY FROM SELECTED MEGUMA AU DEPOSITS, MEGUMA TERRANE, NOVA SCOTIA: POSSIBLE EVIDENCE FOR A PROTRACTED GOLD-FORMING SYSTEM Lin Chen Robert A Creaser Daniel J Kontak

More information

Chemical Analysis of Anorthosites near Silver Bay, MN. Andrea Oswald Petrology 422, NDSU Spring 2016

Chemical Analysis of Anorthosites near Silver Bay, MN. Andrea Oswald Petrology 422, NDSU Spring 2016 Chemical Analysis of Anorthosites near Silver Bay, MN Andrea Oswald Petrology 422, NDSU Spring 2016 Outline Background Location Previous work Hypothesis Methods Results Discussion Conclusion Anorthosite

More information

IV. Governador Valadares clinopyroxenite, 158 grams find

IV. Governador Valadares clinopyroxenite, 158 grams find IV. Governador Valadares clinopyroxenite, 158 grams find Figure IV-1. Photograph of Governador Valadares (158 grams) from Dr. Fernanda Ferrucci via Dr. Giuseppe Cavarretta. Photo taken by L. Spinozzi.

More information

Common non-silicate planetary minerals

Common non-silicate planetary minerals Common non-silicate planetary minerals Many of the non-silicate minerals are simple oxides. Corundum Al2O3 Al2+3 O3-2 Rutile Ti2O3 Ti2+3 O3-2 Ilmenite FeTiO3 Fe+3Ti+3O3-2 Hematite Fe2O3 Fe2+3 O3-2 Families

More information

UV-V-NIR Reflectance Spectroscopy

UV-V-NIR Reflectance Spectroscopy UV-V-NIR Reflectance Spectroscopy Methods and Results A. Nathues Naturally-occurring inorganic substances with a definite and predictable chemical composition and physical properties Major groups: Silicates

More information

Grimmer et al. GSA DATA REPOSITORY

Grimmer et al. GSA DATA REPOSITORY GSA DATA REPOSITORY 2015126 Grimmer et al. Additional methodological details P-T pseudosection calculation To constrain detailed P-T paths of the garnet-micaschists and the garnet-kyanite-micaschists,

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information