The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake. Mark Stirling, Graeme McVerry, & Matt Gerstenberger

Size: px
Start display at page:

Download "The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake. Mark Stirling, Graeme McVerry, & Matt Gerstenberger"

Transcription

1 The National Seismic Hazard Model, NZS1170, & the M7.1, 4 Sept 2010 Darfield Earthquake Mark Stirling, Graeme McVerry, & Matt Gerstenberger

2 Plate Tectonic Setting Christchurch Earthquake epicentre

3 Crustal Seismicity

4 Darfield EQ basic facts Magnitude 7.1 earthquake, 30 km west of Christchurch Saturday 4 th September at c. 4:36 a.m. Local time 0 fatalities, only 2 serious injuries Surface rupture of c. 29 km, with strike-slip displacements E-W striking fault, previously unmapped Shaking damage, liquefaction, lateral spreading Most damage confined to older brick and un-reinforced masonry structures and residential damage due to liquefaction and lateral spreading Cost: Estimate of $4 billion for direct and indirect Hundreds of ongoing aftershocks (M 3-5.9) Psychological impacts on community despite no loss of life

5 Regional Context

6

7 Aftershocks in relation to epicentre and surface rupture

8

9 Focal Mechanisms

10 Temporary GPS array MMI MMI from from public GeoNet response public to response GeoNet Temporary seismograph and strong motion array GeoNet and VUW

11 Preliminary interpretation of GPS network and INSAR (satellite radar differencing)

12 National Seismic Hazard Model

13 Source Model Background sources LogN/yr Fault sources Magnitude

14 2010 NSHM Over 200 new fault sources (mainly offshore) 11 years more seismicity data New regionalisation scheme for background seismicity New methods for parameterisation of fault and background seismicity sources

15 Active Fault Sources (prior to 4 Sept 2010) Christchurch

16 Background Seismicity Model 2010 Gutenberg-Richter modelled seismicity rates Avalue: Continuously -distributed/gaussian smoothed Bvalue: calculated for zones or combinations of zones Mcutoff: M7.2 everywhere except TVZ (M6.5) Source: Matt Gerstenberger

17 NSHM 2010

18 NSHM 2010

19 Christchurch Hazard Deaggregation model 100% Port2GreyS 80% Springbank Pegasus1nw Percentage 60% 40% Return period (years) Cust AlpineF2K Ashley Hope1888 HopeCW AlpineK2T HopeConw ay Kelly 20% Other faults Background Return period 0% MM Intensity 10

20 Ground Motion Records epicentral pgas Very strong motions in epicentral region Unfiltered pgas up to 1.26g vertical and 0.77g horizontal at Greendale, about 0.5g horizontally at Darfield and g vertically at Rolleston, Hororata, Templeton and Lincoln Crop and Food Research Filtering (25 Hz max frequency) reduces some vertical pgas 0.95g at Greendale, g at other sites above, little effect on horizontal pgas

21 Peak ground accelerations Vertical pgas > horizontal pgas near-source Unprocessed PGAS - Vertical and Horizontal Components Vertical pgas generally stronger than horizontal for distances to about 40 km 1g g PGA (mm/s^2) Vertical Horizontal_1 Horizontal_ Chch at about km epicentral distance Epicentral distance (km) Horizontal pgas similar to expected values for Mw 7.1 earthquake

22 Selection of recorded peak ground accelerations (unfiltered) Epicentral Distance (km) PGA (g) Site Code Vertical Horiz_1 Horiz_2 Name of Recording Site GDLC Greendale DFHS Darfield High School DSLC Dunsandel School ROLC Rolleston School HORC Hororata School TPLC Templeton School LINC Lincoln Crop and Food Research CACS Christchurch Canterbury Aero Club RHSC Riccarton High School CMHS Christchurch Cashmere High School KPOC Kaiapoi North School LPCC Lyttelton Port Company

23 Ground motion records epicentral PGVs and displacements Peak ground velocities about 0.95m/s from standard processing at Greendale, perhaps 1.5m/s from special processing that accommodates permanent displacements PGVs > 0.5m/s at Hororata, Lincoln, Rolleston Some near-source records show indications of permanent displacements require special processing Some polarisation, often two major velocity or displacement peaks polarised in different directions (NS, NW-SE) (source complexity, both strike-slip and reverse episodes within mainshock)

24 Selection of recorded peak ground velocities (PGVs > 500mm/s are very strong motions) Epicentral Distance (km) PGV (mm/s) Site Code Name of Recording Site Vertical Horiz_1 Horiz_ GDLC Greendale DFHS Darfield High School DSLC Dunsandel School ROLC Rolleston School HORC Hororata School TPLC Templeton School LINC Lincoln Crop and Food Research CACS Christchurch Botanic Gardens RHSC Christchurch Hospital CMHS Christchurch Cathedral College KPOC Kaiapoi North School

25 Epicentral motions vs NZS yr, 2500-yr (and 5000-yr) motions Epicentral Region vs NZS1170 Deep Soil Spectrum Z=0.3 R=1.0, R=1.8 and R=2.34 (Approx 500-, and 5000-year spectra) yr 2500-yr SA(T) (g) Greendale NZS1170 R=1 (500-year) NZS1170 R=1.8 (2500-year) 2.34*NZS1170 (approx year) Greendale_GDLC Hororata_HORC Darfield_DFHS 500-yr 0.5 Hororata Darfield Period T(s)

26 Acceleration records from Greendale note long-period pulses 1 0 Acceleration (g) ` VERT Time (s)

27 Ground motion records in Christchurch CBD Four sites about 1-2 km from CBD Stronger component (as recorded) PGAs g, average about 0.21g 500-year (R=1) design-motion pga for deep soil is 0.22*1.12g=0.25g Vertical pgas g Strong PGVs m/s Strong spectral peaks around 2.5s Velocities and displacements polarised approx NS (not so obvious in accelerations)

28 PGAs from four sites closest to CBD Epicentral Distance (km) PGA (g) Site Code Vertical Horiz_1 Horiz_2 Name of Recording Site CBGS Christchurch Botanic Gardens CHHC Christchurch Hospital REHS Christchurch Resthaven CCCC Christchurch Cathedral College Average stronger horizontal component pga about 0.21g

29 CBD Spectra Median PGA close to NZS1170 Deficient up to 0.3s Approx code-level 0.3s-1s Increasingly stronger than code for T>1.5s Site, source or rupture-propagation effect?

30 Approx NS polarisation of CBD velocities and displacements Cathedral College Christchurch Hospital

31 CBD accelerograms Christchurch Hospital Strong NS polarisation obvious in velocities and displacements

32 1/3 Current Design Spectra for ERBs CENTRAL CITY SPECTRA vs 1/3 NZS1170 CLASS D DEEP OR SOFT SOIL (ERBs) Larger Horizontal Component SA(T) (g) Current design levels NZS1170 Class D Deep or Soft Soil Botanic Gardens CBGS Cathedral College CCCC Hospital CHHC Resthaven REHS Median Larger Central City 1/3 NZS1170 Deep Soil (ERBs) ERBs Period T(s)

33 Christchurch urban area selection of records 2.5 CHRISTCHURCH SPECTRA vs NZS1170 CLASS D DEEP OR SOFT SOIL AND CLASS E VERY SOFT SOIL Larger horizontal component Head of Heathcote Valley High pga and short period peaks Weak at long periods NZS1170 Class D Deep or Soft Soil Aero Club CACS Botanic Gardens CBGS Cathedral College CCCC Hospital CHHC SA(T) (g) Heathcote Valley HVSC Kaiapoi KPOC 1 Papanui PPHS Resthaven REHS Riccarton RHSC 0.5 Median Larger NZS1170 Class E Very Soft Soil Period T(s)

34 Eastern Christchurch spectra EASTERN CHRISTCHURCH RECORDED SPECTRA vs NZS SA(t) (g) NZS1170 Class D Deep or Soft Soil NZS1170 Class E Very Soft Soil SHIRLEY_SHLC PagesRd_PRPC Hulverstone_HPSC Geometric Mean of 3 sites Period T(s) Note long-period components, pgas about g

35 Records at liquefied sites Hulverstone Road Pumping Station (by Anzac Drive bridge) Note change to long-period character High-frequency blips in acceleration Important for analysis of ground-motions inducing liquefaction was long-period character of Christchurch motions important?

36 Short-period site responses Softer soils do not necessarily produce stronger ground motions Material with low velocity tends to have low Q (fraction of critical damping =1/(2Q)) Amplifying effect of low-velocity material may be partly or totally offset by greater attenuation A cross-over from amplification to deamplification often occurs at frequencies above 5-10 Hz Nonlinear soil behaviour further diminishes highfrequency response Softer soils usually give stronger amplifications at long periods

37 Aftershock Motions Christchurch Hospital 7:49am Wednesday 8 Sep (M5.1 near Lyttelton) 0.25g H 0.31g V SAmax approx 1g in EW component

38 Summary year motions at Greendale year motions at Hororata Strong velocity pulses and permanent displacements near-source CBD spectra approx R=1 NZS1170 deep soil Deficient at very short-periods (except pgas), much stronger at long periods (and strong PGVs) Approx 0.65g at Heathcote Valley likely to be siteresponse related (short-period character) Records from liquefied sites

39 Materials Kindly Provided by: Kelvin Berryman, Natural Hazards Platform manager Mark Quigley, Geological Sciences, University of Canterbury (plus other staff & students) earthquake geology team, especially Pilar Villamor, Russ Van Dissen, Nicola Litchfield & Robert Langridge /GeoNet seismologists, especially John Ristau, Martin Reyners, Bill Fry & Caroline Holden /LINZ geodetic team Engineering seismologists from GNS & Canterbury University Matt Gerstenberger, Warwick Smith,

Observed Ground Motions in the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes.

Observed Ground Motions in the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes. Observed Ground Motions in the September Darfield and February Christchurch Earthquakes. B. A. Bradley University of Canterbury, Christchurch, New Zealand. NZSEE Conference ABSTRACT: This paper provides

More information

A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE

A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE New Zealand Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes December -, Paper No. ++++ A SUMMARY OF STRONG GROUND MOTIONS OBSERVED IN THE CANTERBURY EARTHQUAKE SEQUENCE Brendon

More information

NEAR-SOURCE STRONG GROUND MOTIONS OBSERVED IN THE 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE

NEAR-SOURCE STRONG GROUND MOTIONS OBSERVED IN THE 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE 8 NEAR-SOURCE STRONG GROUND MOTIONS OBSERVED IN THE FEBRUARY CHRISTCHURCH EARTHQUAKE Brendon A. Bradley, Misko Cubrinovski SUMMARY This manuscript provides a critical examination of the ground motions

More information

A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence

A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence A Summary of Strong Ground Motions Observed in the Canterbury, New Zealand earthquake Sequence B.A. Bradley University of Canterbury, New Zealand SUMMARY: This paper provides a summary of the ground motions

More information

Figure 1. Map of 57 recording sites across the South Island, as well as the plate boundary (bold line). Earthquakes are caused by ruptures below the

Figure 1. Map of 57 recording sites across the South Island, as well as the plate boundary (bold line). Earthquakes are caused by ruptures below the 1 An Analysis and Comparison of the Response Spectra Records from the 4 September, 21 Darfield Earthquake and the 22 February, 211 Port Hills Earthquake to Building Code NZS117.5 using SPECTRA Software

More information

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3 Preliminary report on the Canterbury Earthquake South Island of New Zealand 21.02.2011, M 6.3 Kyriazis Pitilakis and the group of - Aristotle University Thessaloniki, Greece. General 2 General 147 people

More information

GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE

GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE GROUND MOTION MAPS BASED ON RECORDED MOTIONS FOR THE EARTHQUAKES IN THE CANTERBURY EARTHQUAKE SEQUENCE Robert Buxton 1, Graeme McVerry 2, Tatiana Goded 3 ABSTRACT: There has been a demand for maps of estimated

More information

The Seismic Hazardscape of New Zealand

The Seismic Hazardscape of New Zealand The Seismic Hazardscape of New Zealand Mark Stirling Professor of Earthquake Science Introduction Plate tectonic setting of New Zealand Seismic hazards for University of Otago campuses Kaikoura earthquake

More information

Cyclic fatigue demands on structures subjected to the Canterbury Earthquake Sequence

Cyclic fatigue demands on structures subjected to the Canterbury Earthquake Sequence Cyclic fatigue demands on structures subjected to the -11Canterbury Earthquake Sequence J.B. Mander Texas A&M University, College Station, Texas, USA. G.W. Rodgers Dept. of Mechanical Engineering, University

More information

Time-varying and long-term mean aftershock hazard in Wellington

Time-varying and long-term mean aftershock hazard in Wellington Time-varying and long-term mean aftershock hazard in Wellington A. Christophersen, D.A. Rhoades, R.J. Van Dissen, C. Müller, M.W. Stirling, G.H. McVerry & M.C. Gerstenberger GNS Science, Lower Hutt, New

More information

TECHNICAL NOTE APPLYING SUN-YUAN LIQUEFACTION DETECTION METHOD IN THE FEBRUARY 2011 CHRISTCHURCH (M W 6.3) EARTHQUAKE, NEW ZEALAND

TECHNICAL NOTE APPLYING SUN-YUAN LIQUEFACTION DETECTION METHOD IN THE FEBRUARY 2011 CHRISTCHURCH (M W 6.3) EARTHQUAKE, NEW ZEALAND 7 TECHNICAL NOTE APPLYING SUN-YUAN LIQUEFACTION DETECTION METHOD IN THE FEBRUARY CHRISTCHURCH (M W.) EARTHQUAKE, NEW ZEALAND Rui Sun, Longwei Chen, Xiaoming Yuan SUMMARY In April, 7 processed seismic acceleration

More information

Design Spectra for the Reconstruction of Christchurch

Design Spectra for the Reconstruction of Christchurch Design Spectra for the Reconstruction of Christchurch G.H. McVerry, M.C Gerstenberger, D.A. Rhoades & M.W. Stirling GNS Science, New Zealand SUMMARY: There have been many challenges in developing new design

More information

Spectra and Pgas for the Assessment and Reconstruction of Christchurch

Spectra and Pgas for the Assessment and Reconstruction of Christchurch Spectra and Pgas for the Assessment and Reconstruction of Christchurch G.H. McVerry, M.C. Gerstenberger, D.A. Rhoades & M.W. Stirling GNS Science, Lower Hutt, New Zealand. 2012 NZSEE Conference ABSTRACT:

More information

Source studies of the ongoing ( ) sequence of recent large earthquakes in Canterbury

Source studies of the ongoing ( ) sequence of recent large earthquakes in Canterbury Source studies of the ongoing (00-0) sequence of recent large earthquakes in Canterbury C. Holden & J. Beavan GNS Science New Zealand) SUMMARY: On September, 00, a surface rupturing crustal earthquake

More information

Ground motion directionality in the Canterbury earthquakes

Ground motion directionality in the Canterbury earthquakes EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. (204) Published online in Wiley Online Library (wileyonlinelibrary.com)..2474 Ground motion directionality in the 200 20 Canterbury

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara ESTIMATING SEISMIC SITE RESPONSE IN CHRISTCHURCH CITY

More information

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand.

Ground Motion Comparison of the 2011 Tohoku, Japan and Canterbury earthquakes: Implications for large events in New Zealand. Ground Motion Comparison of the 211 Tohoku, Japan and 21-211 Canterbury earthquakes: Implications for large events in New Zealand. B. A. Bradley University of Canterbury, Christchurch, New Zealand. 212

More information

Jocelyn Karen Campbell

Jocelyn Karen Campbell THE UNCERTAINTIES IN ASSESSING THE IMPACT OF REGIONAL SEISMICITY AT THE WIL SITE Statement of Evidence by Jocelyn Karen Campbell A CANTERBURY FAULTS coded by type CHARACTERISTICS OF THRUST FAULTS IN CANTERBURY

More information

Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington

Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington Incorporating simulated Hikurangi subduction interface spectra into probabilistic hazard calculations for Wellington G.H. McVerry & C. Holden GNS Science, Lower Hutt, New Zealand. 2014 NZSEE Conference

More information

Site-specific hazard analysis for geotechnical design in New Zealand

Site-specific hazard analysis for geotechnical design in New Zealand Site-specific hazard analysis for geotechnical design in New Zealand B. A. Bradley 1 1 Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Ilam, Christchurch,

More information

The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report

The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report The 2016 Valentine s Day Mw 5.7 Christchurch earthquake: Preliminary report A. Kaiser, C. Holden, I. Hamling, S. Hreinsdottir, N. Horspool, C. Massey, P. Villamor, D. Rhoades, B. Fry, E; D Anastasio, R.

More information

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1

The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1 Graeme BLICK, John BEAVAN, Chris CROOK, Nic DONNELLY Keywords: Darfield Earthquake, control, survey,

More information

SOURCES, GROUND MOTION AND STRUCTURAL RESPONSE CHARACTERISTICS IN WELLINGTON OF THE 2013 COOK STRAIT EARTHQUAKES

SOURCES, GROUND MOTION AND STRUCTURAL RESPONSE CHARACTERISTICS IN WELLINGTON OF THE 2013 COOK STRAIT EARTHQUAKES 188 SOURCES, GROUND MOTION AND STRUCTURAL RESPONSE CHARACTERISTICS IN WELLINGTON OF THE 2013 COOK STRAIT EARTHQUAKES C. Holden 1, A. Kaiser 1, R. Van Dissen 1 and R. Jury 2 SUMMARY The Cook Strait earthquake

More information

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake

Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake Imaging Unknown Faults in Christchurch, New Zealand, after a M6.2 Earthquake D.C. Lawton* (University of Calgary), M.B. Bertram (University of Calgary), K.W. Hall (University of Calgary), K.L. Bertram

More information

DYNAMIC SITE CHARACTERIZATION OF CHRISTCHURCH STRONG MOTION STATIONS

DYNAMIC SITE CHARACTERIZATION OF CHRISTCHURCH STRONG MOTION STATIONS 195 DYNAMIC SITE CHARACTERIZATION OF CHRISTCHURCH STRONG MOTION STATIONS Clinton M. Wood 1, Brady R. Cox 2, Liam M. Wotherspoon 3, and Russell A. Green 4 SUMMARY This paper details efforts to characterize

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Geotechnical Characterisation of Christchurch Strong Motion Stations

Geotechnical Characterisation of Christchurch Strong Motion Stations Earthquake Commission Report (Project No. 12/629) Geotechnical Characterisation of Christchurch Strong Motion Stations Version 1. September 213 Liam Wotherspoon, Rolando Orense The University of Auckland

More information

Zach Bullock Brendon A. Bradley. Research report Department of Civil Engineering University of Canterbury Christchurch New Zealand

Zach Bullock Brendon A. Bradley. Research report Department of Civil Engineering University of Canterbury Christchurch New Zealand SYSTEMATIC VERTICAL GROUND MOTION OBSERVATIONS IN THE CANTERBURY EARTHQUAKES Zach Bullock Brendon A. Bradley Research report 2016-03 Department of Civil Engineering University of Canterbury Christchurch

More information

Review of The Canterbury Earthquake Sequence and Implications. for Seismic Design Levels dated July 2011

Review of The Canterbury Earthquake Sequence and Implications. for Seismic Design Levels dated July 2011 SEI.ABR.0001.1 Review of The Canterbury Earthquake Sequence and Implications for Seismic Design Levels dated July 2011 Prepared by Norman Abrahamson* 152 Dracena Ave, Piedmont CA 94611 October 9, 2011

More information

which illustrates how exploration seismic technology can be applied in the case of a societal need. Summary

which illustrates how exploration seismic technology can be applied in the case of a societal need. Summary Post-earthquake seismic reflection survey, Christchurch, New Zealand Don C. Lawton*, Malcolm B. Bertram, Kevin W. Hall, Kevin L. Bertram, University of Calgary; Jarg Pettinga, University of Canterbury

More information

The Canterbury Earthquakes: Scientific answers to critical questions

The Canterbury Earthquakes: Scientific answers to critical questions OFFICE OF THE PRIME MINISTER S SCIENCE ADVISORY COMMITTEE The Canterbury Earthquakes: Scientific answers to critical questions The Canterbury region has had six months of unexpected and extremely difficult

More information

Representative ground-motion ensembles for several major earthquake scenarios in New Zealand

Representative ground-motion ensembles for several major earthquake scenarios in New Zealand Representative ground-motion ensembles for several major earthquake scenarios in New Zealand K. Tarbali & B.A. Bradley Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch.

More information

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND

A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND A NEW PROBABILISTIC SEISMIC HAZARD MODEL FOR NEW ZEALAND Mark W STIRLING 1 SUMMARY The Institute of Geological and Nuclear Sciences (GNS) has developed a new seismic hazard model for New Zealand that incorporates

More information

SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS LESSONS

SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS LESSONS Int. Journal for Housing Science, Vol.36, No.3 pp.162-169, 2012 Published in the United States SHAKING AND GROUND FAILURE-INDUCED DAMAGE TO BUILDINGS BY THE 2010 AND 2011 CHRISTCHURCH EARTHQUAKES AND ITS

More information

Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake

Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake Shattering a plate boundary: the 2016 Mw 7.8 Kaikōura earthquake Presenter: Pilar Villamor, On behalf of many, many others... 14 November 2016 Kaikōura Earthquake This talk - Background - During the Kaikōura

More information

Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S.

Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S. Unique Site Conditions and Response Analysis Challenges in the Central and Eastern U.S. James R. Martin, C. Guney Olgun, & Morgan Eddy Civil and Environmental Engineering World Institute for Disaster Risk

More information

Quantifying the effect of declustering on probabilistic seismic hazard

Quantifying the effect of declustering on probabilistic seismic hazard Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Quantifying the effect of declustering on probabilistic

More information

BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND. Brendon A. Bradley 1

BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND. Brendon A. Bradley 1 92 Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 48, No. 2, June 2015 BENEFITS OF SITE-SPECIFIC HAZARD ANALYSES FOR SEISMIC DESIGN IN NEW ZEALAND Brendon A. Bradley 1 (Submitted

More information

Deconvolution of Surface Motions from the Canterbury Earthquake Sequence for use in Nonlinear Effective Stress Site Response Analyses

Deconvolution of Surface Motions from the Canterbury Earthquake Sequence for use in Nonlinear Effective Stress Site Response Analyses 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Deconvolution of Surface Motions from the Canterbury Earthquake Sequence for use in Nonlinear

More information

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data P. McGinty Institute of Geological & Nuclear Sciences, PO Box 30-368, Lower Hutt, New Zealand 2004 NZSEE Conference

More information

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey

Arthur Frankel, William Stephenson, David Carver, Jack Odum, Robert Williams, and Susan Rhea U.S. Geological Survey Probabilistic Seismic Hazard Maps for Seattle: 3D Sedimentary Basin Effects, Nonlinear Site Response, and Uncertainties from Random Velocity Variations Arthur Frankel, William Stephenson, David Carver,

More information

Fling-step effect on the seismic behaviour of high-rise RC buildings during the Christchurch earthquake

Fling-step effect on the seismic behaviour of high-rise RC buildings during the Christchurch earthquake Fling-step effect on the seismic behaviour of high-rise RC buildings during the Christchurch earthquake H. Hamidi Jamnani Faculty of Civil Engineering, Babol University of Technology, Iran. A. Karbassi

More information

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into

Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Slide 1: Earthquake sequence (with colour coding around big events and subsequent period). Illustrates migration to the east initially into Christchurch, but now moving away (23 December in particular).

More information

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1

SEISMIC HAZARD ANALYSIS. Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 SEISMIC HAZARD ANALYSIS Instructional Material Complementing FEMA 451, Design Examples Seismic Hazard Analysis 5a - 1 Seismic Hazard Analysis Deterministic procedures Probabilistic procedures USGS hazard

More information

Modeling earthquake hazard and risk in Australia and New Zealand

Modeling earthquake hazard and risk in Australia and New Zealand Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Modeling earthquake hazard and risk in Australia and

More information

Ground Motion and Seismicity Aspects of the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes

Ground Motion and Seismicity Aspects of the 4 September 2010 Darfield and 22 February 2011 Christchurch Earthquakes SEI.BRA.2.1 Ground Motion and Seismicity Aspects of the 4 September 21 Darfield and 22 February 211 Christchurch Earthquakes Technical Report Prepared for the Canterbury Earthquakes Royal Commission Brendon

More information

Ken XS Hao (NIED) MaB Gerstenberger (GNS) J-RAPID

Ken XS Hao (NIED) MaB Gerstenberger (GNS) J-RAPID Sophis'ca'on of seismic hazard evalua'on based on inves'ga'on of ground mo'on and damage on immediate vicinity of co-seismic faults during the 2016 Kumamoto earthquake Ø The Fudagawa Fault zone assessed

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks

Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks Assessment of New Zealand scaling procedure of ground motions for liquid storage tanks M. Ormeno, M. Geddes, T. Larkin & N. Chouw The University of Auckland, Auckland, New Zealand. 2014 NZSEE Conference

More information

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 105 BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA-

More information

Nonlinear shear stress reduction factor (r d ) for Christchurch Central Business District

Nonlinear shear stress reduction factor (r d ) for Christchurch Central Business District Dismuke, J.N. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Nonlinear shear stress reduction factor (r d ) for Christchurch Central Business District J N Dismuke Golder Associates,

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Magnitude 7.0 SOUTH ISLAND OF NEW ZEALAND

Magnitude 7.0 SOUTH ISLAND OF NEW ZEALAND A powerful 7.0-magnitude earthquake shook much of New Zealand's South Island early Saturday morning local time. USGS A damaged building near Manchester St. New Zealand Herald Photo / Colin Cross A car

More information

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures

Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Scientific Research on the Cascadia Subduction Zone that Will Help Improve Seismic Hazard Maps, Building Codes, and Other Risk-Mitigation Measures Art Frankel U.S. Geological Survey Seattle, WA GeoPrisms-Earthscope

More information

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and

More information

The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines

The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines The transition period T L in the recommended spectra of the draft New Zealand Seismic Isolation Guidelines G.H. McVerry, C. Van Houtte. A. Kaiser, C. Holden, B. Fry & M. Gerstenberger Institute of Geological

More information

Gisborne 2007 earthquake tectonics and strong-motion records. In the Pacific plate subducting beneath the North Island

Gisborne 2007 earthquake tectonics and strong-motion records. In the Pacific plate subducting beneath the North Island Gisborne 2007 earthquake tectonics and strong-motion records Graeme McVerry and GNS Hazards Group and GeoNet 20 December 2007 Gisborne earthquake Occurred at 8:55 pm (NZ local time) Centred offshore at

More information

What Drives Seismic Risk in New Zealand? Insights from a nextgeneration

What Drives Seismic Risk in New Zealand? Insights from a nextgeneration Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia What Drives Seismic Risk in New Zealand? Insights from

More information

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand

Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand Rapid Earthquake Loss Assessment: Stochastic Modelling and an Example of Cyclic Fatigue Damage from Christchurch, New Zealand John B. Mander 1 and Geoffrey W. Rodgers 2, David Whittaker 3 1 University

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Design for seismic and climate changes Lecture 10: Characterisation of seismic motion Aurel Stratan, Politehnica University of Timisoara 07/04/2017 European Erasmus Mundus Master Course Sustainable

More information

Ground Motions from the 2008 Wells, Nevada Earthquake Sequence and Implications for Seismic Hazard

Ground Motions from the 2008 Wells, Nevada Earthquake Sequence and Implications for Seismic Hazard Nevada Bureau of Mines and Geology Special Publication 36 Ground Motions from the 2008 Wells, Nevada Earthquake Sequence and Implications for Seismic Hazard by Mark Petersen 1, Kris Pankow 2, Glenn Biasi

More information

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems :

log 4 0.7m log m Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module 1 Seismology Exercise Problems : Seismic Analysis of Structures by TK Dutta, Civil Department, IIT Delhi, New Delhi. Module Seismology Exercise Problems :.4. Estimate the probabilities of surface rupture length, rupture area and maximum

More information

EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES

EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES EARTHQUAKE CLUSTERS, SMALL EARTHQUAKES AND THEIR TREATMENT FOR HAZARD ESTIMATION Gary Gibson and Amy Brown RMIT University, Melbourne Seismology Research Centre, Bundoora AUTHORS Gary Gibson wrote his

More information

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010.

This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. 1 of 5 04/12/2012 11:05 a.m. This page answers some of the questions people have been asking about the earthquakes in Christchurch and Canterbury since September 2010. Why are we getting so many earthquakes?

More information

SURFACE RUPTURE OF THE GREENDALE FAULT DURING THE DARFIELD (CANTERBURY) EARTHQUAKE, NEW ZEALAND: INITIAL FINDINGS

SURFACE RUPTURE OF THE GREENDALE FAULT DURING THE DARFIELD (CANTERBURY) EARTHQUAKE, NEW ZEALAND: INITIAL FINDINGS 236 SURFACE RUPTURE OF THE GREENDALE FAULT DURING THE DARFIELD (CANTERBURY) EARTHQUAKE, NEW ZEALAND: INITIAL FINDINGS M. Quigley 1, R. Van Dissen 2, P. Villamor 2, N. Litchfield 2, D. Barrell 2, K. Furlong

More information

2016 Kaikoura Earthquake (NZ) Effects & Phenomena. Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence)

2016 Kaikoura Earthquake (NZ) Effects & Phenomena. Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence) 2016 Kaikoura Earthquake (NZ) Effects & Phenomena Trevor Matuschka With special acknowledgement Dan Forster (Damsafety Intelligence) Contents 1. Kaikoura Earthquake where and what happened 2. Seismic and

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

Earthquakes in Canada

Earthquakes in Canada Earthquakes in Canada Maurice Lamontagne, Ph.D., ing. Geological Survey of Canada Natural Resources Canada 1 What is an Earthquake? P S P S P PS 2 2 Movement on a fault plane causes vibrations The larger

More information

Haiti: Earthquake on January 12, 2010

Haiti: Earthquake on January 12, 2010 Geophysical Hazards and Plate Boundary Processes In Central America, Mexico and the Caribbean Haiti: Earthquake on January 12, 2010 Situation, achievements and perspective. Hotel La Condesa, Costa Rica

More information

ESTIMATES OF HORIZONTAL DISPLACEMENTS ASSOCIATED WITH THE 1999 TAIWAN EARTHQUAKE

ESTIMATES OF HORIZONTAL DISPLACEMENTS ASSOCIATED WITH THE 1999 TAIWAN EARTHQUAKE ESTIMATES OF HORIZONTAL DISPLACEMENTS ASSOCIATED WITH THE 1999 TAIWAN EARTHQUAKE C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology, Taiwan, ROC ABSTRACT A

More information

Interpretive Map Series 24

Interpretive Map Series 24 Oregon Department of Geology and Mineral Industries Interpretive Map Series 24 Geologic Hazards, Earthquake and Landslide Hazard Maps, and Future Earthquake Damage Estimates for Six Counties in the Mid/Southern

More information

Earthquake Hazards in Henderson

Earthquake Hazards in Henderson Earthquake Hazards in Henderson Craig M. depolo Nevada Bureau of Mines and Geology Nevada Hazard Mitigation Planning Committee November 15, 2012 Earthquake Truths The consequences of bad earthquakes to

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara LONG-PERIOD (3 TO 10 S) GROUND MOTIONS IN AND AROUND THE

More information

A note on ground motion recorded during Mw 6.1 Mae Lao (Northern Thailand) earthquake on 5 May 2014

A note on ground motion recorded during Mw 6.1 Mae Lao (Northern Thailand) earthquake on 5 May 2014 Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia A note on ground motion recorded during Mw 6.1 Mae Lao

More information

Japan Seismic Hazard Information Station

Japan Seismic Hazard Information Station Japan Seismic Hazard Information Station (J-SHIS) Hiroyuki Fujiwara National Research Institute for Earth Science and Disaster Prevention (NIED) Background of the Project Headquarters for Earthquake Research

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

AND STATEMENT OF EVIDENCE OF MATTHEW CHARLES GERSTENBERGER ON BEHALF OF THE CROWN AND CHRISTCHURCH CITY COUNCIL SEISMIC HAZARD MODELLING

AND STATEMENT OF EVIDENCE OF MATTHEW CHARLES GERSTENBERGER ON BEHALF OF THE CROWN AND CHRISTCHURCH CITY COUNCIL SEISMIC HAZARD MODELLING BEFORE THE CHRISTCHURCH REPLACEMENT DISTRICT PLAN INDEPENDENT HEARINGS PANEL IN THE MATTER of the Resource Management Act 1991 and the Canterbury Earthquake (Christchurch Replacement District Plan) Order

More information

Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake of June 23, 2010

Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake of June 23, 2010 CSCE 2011 General Conference - Congrès générale 2011 de la SCGC Ottawa, Ontario June 14-17, 2011 / 14 au 17 juin 2011 Engineering Characteristics of Ground Motion Records of the Val-des-Bois, Quebec, Earthquake

More information

September 28, 2004 Parkfield Earthquake

September 28, 2004 Parkfield Earthquake PRELIMINARY REPORT ON SEPTEMBER 28, 2004 PARKFIELD EARTHQUAKE By Rakesh K. Goel, M.EERI and Charles B. Chadwell, M. EERI Department of Civil & Environmental Engineering, California Polytechnic State University,

More information

Important Concepts. Earthquake hazards can be categorized as:

Important Concepts. Earthquake hazards can be categorized as: Lecture 1 Page 1 Important Concepts Monday, August 17, 2009 1:05 PM Earthquake Engineering is a branch of Civil Engineering that requires expertise in geology, seismology, civil engineering and risk assessment.

More information

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Earthquake Machine Stick-slip: Elastic Rebound Theory Jerky motions on faults produce EQs Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Three

More information

Professor Terje Haukaas University of British Columbia, Vancouver terje.civil.ubc.ca. Earthquakes

Professor Terje Haukaas University of British Columbia, Vancouver terje.civil.ubc.ca. Earthquakes Earthquakes In 1963 research concluded that sea floors and continents drift horizontally and soon after, in 1968, the term plate tectonics was established. This represented a paradigm shift in geology

More information

The key natural hazards relevant to the Project area relate to seismic activity and flood risk.

The key natural hazards relevant to the Project area relate to seismic activity and flood risk. 21. NATURAL HAZARDS Overview The key natural hazards relevant to the Project area relate to seismic activity and flood risk. Seismic activity, including ground shaking and liquefaction, is a significant

More information

Hazard and Vulnerability of Moderate Seismicity Regions

Hazard and Vulnerability of Moderate Seismicity Regions Hazard and Vulnerability of Moderate Seismicity Regions presented by Professor Tso-Chien PAN Dean, College of Engineering Director, 25 October 2010 DRM GDLN Session on Earthquake Vulnerability Reduction

More information

Earthquake Hazards in Douglas County

Earthquake Hazards in Douglas County Earthquake Hazards in Douglas County Craig M. depolo Nevada Bureau of Mines and Geology Nevada Hazard Mitigation Planning Committee August 9, 2012 Earthquake Truths The consequences of bad earthquakes

More information

Comparison between predicted liquefaction induced settlement and ground damage observed from the Canterbury earthquake sequence

Comparison between predicted liquefaction induced settlement and ground damage observed from the Canterbury earthquake sequence Power, P.M. & Jacka, M. (2013) the Canterbury earthquake sequence Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Comparison between predicted liquefaction induced settlement and ground

More information

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan Kenichi Nakano Graduate School of Engineering, Kyoto University,

More information

Earthquakes in Oregon: Past, Present & Future. Earthquakes in OREGON: Are we ready for the Big One?

Earthquakes in Oregon: Past, Present & Future. Earthquakes in OREGON: Are we ready for the Big One? Earthquakes in Oregon: Past, Present & Future Earthquakes in OREGON: Are we ready for the Big One? Scott Burns Portland State University Department of Geology New Yorker Article: 7/20/15 The Really Big

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake. 2.2 Strong Ground Motion 2.2.1 Strong Ground Motion Network The world densest digital strong ground motion network of Taiwan with the station mesh of 3 km in the urban areas (Shin et al., 2) monitored

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 20, 30 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Seismic Spectra & Earthquake Scaling laws. Seismic Spectra & Earthquake Scaling laws. Aki, Scaling law

More information

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3488 PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM

More information

Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova

Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova Seismic hazard modeling for Bulgaria D. Solakov, S. Simeonova Bulgarian seismic network and foreign stations used in epicenter location Sismicity in Bulgaria and surroundings (M 4.) Epicentral map for

More information

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update 01-October-2009 Christophe Vigny Directeur de recherches at CNRS Laboratoire de Géologie Geoscience Dept. Of ENS,

More information

A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011.

A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011. SEI.QUI.0001.SUB.1 A SCIENTIFIC UNDERSTANDING OF THE CANTERBURY CRUSTAL EARTHQUAKES FROM 4 SEPTEMBER 2010 TO THEIR CLOSURE ON 21 JUNE 2011. Submitted by James Quinwallace 13 September 2011 SEI.QUI.0001.SUB.2

More information

Technical Note 04 The Liquefaction Phenomenon

Technical Note 04 The Liquefaction Phenomenon Technical Note 04 The Liquefaction Phenomenon Introduction Earthquakes pose hazards to the built environment through five main types of processes. These include strong ground shaking (the most pervasive

More information

Characterization and modelling of seismic action

Characterization and modelling of seismic action COST C26: Urban Habitat Constructions under Catastrophic Events Final Conference, 16-18 September 2010, Naples, Italy Characterization and modelling of seismic action Report of WG2: Earthquake resistance

More information

Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide

Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide Kenneth W. Campbell 1 and Yousef Bozorgnia 2 1. Corresponding Author. Vice President, EQECAT, Inc., 1130 NW 161st

More information

Felipe Dimer, Matthew Mason, Paul Somerville and John McAneney Risk Frontiers 8 September 2010

Felipe Dimer, Matthew Mason, Paul Somerville and John McAneney Risk Frontiers 8 September 2010 September 4, 2010 Canterbury, NZ Earthquake Felipe Dimer, Matthew Mason, Paul Somerville and John McAneney Risk Frontiers 8 September 2010 The field observations from Christchurch and the associated analyses

More information